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Abstract

Hyperspectral imaging (HSI) is a branch of image processing that deals with hyper-
spectral images, which are composed of a large number of channels covering the visible
and near-infrared part of the electromagnetic spectrum. HSI is used in a lot of different
fields and its use has greatly increased in the past few years. Image noise is a real
concern in HSI, due to the way those kind of images are acquired. The aim of this
project is to apply TV regularization for the denoising of hyperspectral images using
Collaborative Total Variation (CTV), a new type of regularization which allows us to
combine several norms to obtain different properties and behaviours from the denoising
algorithm. A dual gradient projection algorithm is used to implement said variational
method and the different norms are tested using a dataset of hyperspectral images.
After testing, the conclusion reached is that the regularizer obtained by using the norm
0211 (col, der, pix) is the one which provides us with the best results. Results obtained
open the door for possible further research in CTV applied to HSI for other processes
like inpainting or unmixing.
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1 Introduction

1.1 Hyperspectral imaging

Hyperspectral image (HSI) analysis has been, in the recent years, one of the most
powerful and growing technology in the field of remote sensing. Hyperspectral images
are images that represent information from across the visible and near-infrared part of
the electromagnetic spectrum. While the human eye sees light as the superposition of
three different colors, or bands, hyperspectral imaging divides the spectrum of light in
many more bands, covering a wider range of wavelength spectrum. Capturing these
images is done by special sensors and cameras. Unlike conventional color cameras,
which capture light in the three spectral bands humans can process and see (referred to
as RGB), hyperspectral cameras have the ability to capture a part of the electromagnetic
spectrum at every pixel. One can imagine a hyperspectral image as a cube with
dimensions (x,y,A), where x and y are the two spatial dimensions of the scene and A is
the spectral dimension, each level corresponding to a different range of wavelengths
in the electromagnetic spectrum. This description of an hyperspectral image can be
seen more clearly in figure 1.1. The representation of the part of the electromagnetic
spectrum captured in each pixel can be seen in the graphs next to the cube.

Figure 1.1: Data cube of a hyperspectral image. Source: Universitat Trier
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Processing and interpreting this type of images allows us to find materials or detect
objects which could not be detected otherwise. Hyperspectral imaging is currently be-
ing used in fields like agriculture, astronomy, geology, biomedicine, physics, medicine,
remote sensing or even government surveillance, among others, and it is still spreading
into other areas because of its wider availability and the reducing cost of the technology
needed.

A problem that arises when dealing with hyperspectral imaging is noise. HS im-
ages acquired by sensors are almost always disturbed by noise, because of the spatial
distance between the aforementioned sensors and their targets. Hyperspectral image
sensors are remote sensing systems, usually installed in a satellite. This means that
the distance between the sensors and the source of the light we want to capture and
process is usually quite large. This distance is filled with gases, vapor, particles, among
other components, and all of them affect the light sensed by the systems. Also, we do
not only get the light from the object we want to identify, but from other sources too:
directly from the sun or reflected from other objects nearby, to cite some examples. For
this reason, the light that reaches the sensors does not have the same composition as
the light reflected by our objective: some wavelengths may have been absorbed by other
objects, and others may have merged and reduced the detail from our desired band,
and corrupt the information we want to gather.

1.2 Variational image processing

For the reason mentioned before, it is important to reduce noise in the raw images
before processing their information. In the recent years several different methods
for HSI denoising have been proposed. [14, 34, 19, 24, 3, 26]. The most popular
classical regularization method in image processing is Total Variation (TV) [29]. This
is a variational problem. In a variational problem in image processing, we design an
energy functional E, mapping and image u to a real number E(u) in a way that low
energy corresponds to an image with the properties we desire, and viceversa. Once
this functional is designed, we want to define an argument that minimizes E(u):

in E
arg min (u)

We will discuss the full energy functional in section 3.2.2. Part of that energy
functional is the total variation of a signal or function, and can be defined as the
integral over the absolute value of the gradient gradient. Let () be an open subset of
R", we define the TV of a function f as:
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TV(f) = [ IVf(x)|dx

QO

Images with excessive noise are supposed to have high total variation [29], so by
regularizing or reducing the TV of the signal we can get a closer match to the original
signal or, in our case, image.

TV regularization has been used in a wide range of image processing fields. For ex-
ample, color image denoising [32, 6], the process aforementioned in which the objective
is to remove unwanted noise in the image, color image restoration, an inverse problem
which aims to reconstruct an image from initial data [32, 21], or image inpainting, a
process used to restore missing or heavily corrupted parts of the image and remove
selected objets from the image, among others [1]. For HSI, TV has also been used for
image decompression [17, 18], a procedure in which one tries to recover lost detail
in a compressed hyperspectral image. This procedure is really important because
hyperspectral images usually are huge in size, and compression is needed to deal with
such amount of data. Unmixing [2, 25] is also an important process in HSI. In some
hyperspectral images several different materials can be mixed in one pixel and this
makes recognising their spectrum more difficult. Unmixing is the process to recover or
unmix those materials. Those are only some examples of the processes in which TV is
widely used.

The term Collaborative Total Variation (CTV) is a way to refer to a new class of
regularization [16] that involves using different norms along the different dimensions
(pixel, derivative and channel dimension, as defined in the paper) for the regularization
term of the TV minimization. TV was defined originally on grayscale images, and
efforts to extend it to multiple channels have been made [32, 6]. The aim of this project
is to extend TV denoising from normal colored images, specifically the studies done in
[16], to HSI, experimenting with different collaborative mixed matrix norms to achieve
and find the best possible result.

Our objective is, then, to extend this regularization of the total variation to hyper-
spectral images, test it using various HSIs and regularization norms and compare
the results. The main algorithm used will be a gradient projection algorithm (more
information in chapter 4, using different regularization penalization norms to find out
which one works best, comparing them by using image quality measures like peak
signal-to-noise ratio and structural similarity, and finally extracting valid conclusions.
This will be the main objective and focus of this project.
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1.3 About the project

The algorithms and testing in this project will be done using the MATLAB environment.
The advantages that this programming environment gives us, such as fast prototyping
or several libraries and tools for image processing, makes it ideal for this kind of
work. After talking about and explaining the mathematical background and concepts
behind the project, we will present the algorithm used to implement those concepts and
describe it. Then, we will talk about our testing methodology, present the results ob-
tained on our data, compare and discuss said results and extract conclusions from them.

The organization of this thesis is as follows: in chapter 2 we will take an in-depth look
at the state of the art to both TV regularization and hyperspectral image processing. we
will compare and comment the available literature on the field and link it to the topic of
this thesis. In chapter 3 the focus will be in detailing all the mathematical background
in convex analysis and variational methods needed to gain a better understanding
of the topic at hand. Next, in chapter 4, the focus will be on the algorithm we have
chosen to implement the regularization. We will describe how it works and how it is
implemented. Here we will also talk about the testing environment, the HSI images
chosen for testing and the parameters of the algorithm that we will be using. Finally,
in chapter 6 the results obtained are presented in proper plots and tables for a better
understanding for the reader, said results are discussed and a proper conclusion is
reached.




2 State of the Art

TV regularization as a method for denoising signals and images has received a fair
deal of attention during the last two decades by researchers. In 1992, [29] Rudin et
al. proposed a model for removing noise from images which involved a constrained
minimization of the total variation of the image. The results presented were state of
the art in image denoising at the time and served as a staring point for all kinds of
research involving TV and multiple different applications and variations of the concept.
This model was later improved by incorporating high-order derivatives [9, 10]. A
logical next step for the method is the TV minimization for color images. The paper [6]
describes how to apply TV to restore color images, with preserving edges and being
rotationally invariant in the image space. Since then, TV has always been a competitive
method for image denoising in color images.

In the recent years, a lot of different versions of TV minimization for denoising have
appeared. In [23], a method which uses a Bregman iteration is presented, extending
previous methods. [12] describes a TV method using box constraints which improves
results with images that need projection after TV denoising to bring them back into their
dynamic range. Even more recently, [22] presents a general total variation method that
combines two different smoothing methods, with great results. In a different approach,
[13] uses a proximity algorithm to solve the fractional-order TV image denoising model,
a variation of the TV denoising model. In [21] a higher degree total variation model
using weighted mixed norms of image derivatives is used for image restoration. We
will use a similar concept in this project.

TV is not only used for denoising in the field of image processing: it has also been
applied to image reconstruction or inpainting, methods we mentioned in chapter 1. An
interesting study for color image restoration using TV regularization is the approach
by Wen, Ng and Huang [32], where they use an alternating minimization algorithm
with remarkable results. In their paper, [1] Afonso and Sanches announce a method
for inpainting that uses total variation regularization to estimate the missing pixels
of an image, and most interesting, that can be extended to denoising by changing the
type of regularization. The data from experimentation show better results than other
known methods. In a recent paper, [16], the concept of collaborative total variation was
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defined and applied to color images, which showed that ¢*° channel coupling obtained
the best results.

Concerning hyperspectral imaging and looking at recent literature, a lot of different
methods for HSI denoising have been proposed. For example, Chen and Qian [14]
propose a denoising method for low noise HSIs that involves using principal com-
ponent analysis (PCA) to detect and remove noise from the low energy PCA output
channels. A different method has been using spectral-spatial kernel regularization
[19, 34], whose most interesting feature is that it takes into account different noise
distributions in different bands. The reliability of the proposed method in removing
noise is demonstrated. Further strategies for HSI denoising have been proposed, based
on wavelet transforms as presented in[24, 3, 26].

Total variation models have also been used in HSI. In a very recent work [20], a
multidimensional nonlocal total variation model is proposed, taking into account the
correlation of the spectral bands and the spatial structure similarity. Edge preservation
and image denoising are both achieved with remarkably good results. A similar ap-
proach is taken in [33], taking also into account the different levels of noise intensity.
Total variation has also been used in HSI for compressed image recovery and restora-
tion. In [17, 18], Eason, et al. present convincing results using different methods on
compressed image recovery with a method based on subgradients and total variation
regularization. TV has also been used in hyperspectral images for feature extraction
[26], which is an interesting use of the method.

Looking at previous work, our objective in this project is to extend the work done in
[16] on CTV to hyperspectral images and experiment which norm works best. Rather
than producing state of the art denoising results by incorporating nonlocal information,
our goal is to investigate the optimal coupling of the different hyperspectral bands in
the regularization. Such investigations have a potential to improve more sophisticated
methods such as [20] or [33].




3 Background

The objective of this chapter is to talk about and explain the mathematical background
which will be used and referenced throughout the project and that is needed to gain a
better understanding of the algorithms and methods we will be using.

3.1 Convex Analysis

Convex analysis is a field in mathematics that studies convex functions and convex
sets. The more usual application of convex analysis is on convex minimization. Most
of the definitions and theorems described here are based on and extracted from the
books Convex Analysis [28], and Convex Optimization [8]. A more in depth explanation
and insight in convex analysis and optimization can be found there. In this project, we
will only focus on the definitions and concepts that are useful and related to our work,
presented in the most comprehensive way possible.

3.1.1 Convex functions

Convex functions are the main focus of study of convex analysis. Before defining a
convex function, we will first state some basic useful concepts that will be needed for
more complex definitions later:

Definition 3.1.1. For a function E : R” — R J{oo}, we call the domain of E the set:

dom(E) = {u € R"|E(u) < oo} (3.1)
Definition 3.1.2. A function E is proper if its domain is not the empty set.

As we have said before, we will use these concepts later. Now, a convex function can
be defined as follows:

Definition 3.1.3. [28, §2 p.10] A subset S C IR" is a convex set if for all #,v € S and all
A € [0,1] it holds that:
(1-ANu+AyesS (3.2)

Definition 3.1.4. [28, §4.1] A function E : R” — R [J{co} is a convex function if:
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1 dom(E) is a convex set. That is, the domain of the function E.

2 Forall u,v € E and all A € [0,1] it holds that:

E(Au— (1 —A)uv) < AE(u) + (1 —A)E(v) (3.3)

E is strictly convex if the inequality in 2 is strict, for all u # v and A €]0,1].

An equivalent definition for convex functions can be described by using the concept
of epigraph of a function.

Definition 3.1.5. [28, §4 p.23] Given a real-valued function f defined on a non-empty
M C R" {0}, the epigraph of f is:

Epi(f) = {(t,x) € R"' | J{oo}|x € Mt > f(x)} (3.4)

Knowing what the epigraph of a function is, one can understand the following more
simple definition of convex function.

Theorem 3.1.1. [28, §4 p.23] A function E : R" — R J{oo} is a convex function if and only
if its epigraph is convex as a subset of R"*1

Definition 3.1.6. [28, §7.1] A convex function E is called closed if its epigraph is a
closed set in R"*1.

In other words, a function defined on an interval is convex if, in a two dimensional
setting, the segment between any two points on the graph of the function lies above the
graph. Similar intuition also applies to higher dimensions. An example of a convex
function is x2. Regarding continuity of convex functions:

Theorem 3.1.2. [28, §10.1] If the function E : R" — R|J{co} is convex, then E is locally
Lipschitz (and continuous) on int(dom(E)), where int is the interior of the set.

From now on, for simplification purposes, every time we refer to a convex function,
this will be proper.

3.1.2 Convex optimization

One of the main fields of study in optimization is convex optimization. Convex opti-
mization, or convex minimization, studies the problem of minimizing convex functions
over convex sets. Minimizing convex functions and not other type of functions offer
some advantages that we will explain in this section. Most of the theorems and expla-
nations found here are based on the book Convex Optimization [7] and Convex Analysis
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[28], as mentioned earlier.

We will start by defining our problem. For a function E : R" — R J{oo}, which we
call the energy functional, the minimization problem to optimize the function can be
written as:

il = arg igiQn” E(u) (3.5)

For implementation, we will need to work with a discrete setting. More info on that
can be found in chapter 4.

We now have to ask ourselves two questions in order to be able to find the minimum:
First, if the minimum exists, and second, if said minimum is unique. For convex
functions, we need to define the following concepts and properties first to properly
define the existence of a minimizer:

Definition 3.1.7. [28, §7.1] A closed convex function E : V —— R |J{oo} is called lower
semi-continuous if:

liminf E(v) > E(u) (3.6)

v—U

holds, for any u.

Definition 3.1.8. [4, §2.31] We call E : R" — R[J{co} coercive, if all sequences (1),
with [|u,|| — co meet E(u,) — oo.

With those new concepts, we can finally define the condition for a function to have a
minimum:

Theorem 3.1.3. [4, p. 2.32] If E : R" — R is convex and coercive, then there exists:

il = arg Lrlrelﬁ% E(u) (3.7)

This last theorem defines the existence of a minimizer for convex functions. About
the uniqueness of convex minimization, we have the following one:

Theorem 3.1.4 (Uniqueness of convex minimization). [28, §27 p.264] If E : R" —
R J{oo} is convex, then any local minimum is a global minimum. If E is strictly convex, that
global minimum is unique.

Now the existence and uniqueness of the solution to the minimization of a convex
function have been properly defined. We want also to describe one type of convex
problems that are relevant to our work: saddle point problems. This will be needed
during the development of the algorithm in chapter 4:
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Theorem 3.1.5. [28, §33 p.264] Let C and D be non-empty closed proper convex sets in R"
and R™, and let F be a continuous finite convex function on C x D. If either C or D is bounded,
then:

inf sup F(v,q) = sup inf F(v, q) (3.8)
veC qeg qeg veC

The next step is to find a method on how to find said minimizer. To reach that point,
we will first talk about the concept of subdifferential calculus.

3.1.3 Subdifferential calculus

In simple words, the subdifferential of a function is the generalization of the derivative
to functions that are not differentiable. For example, the absolute value f(x) = |x| is
nondifferentiable when x = 0. Subdifferentials appear in convex analysis and are of
utmost importance in solving minimization problems. Formally, the subdifferential of
a function E can be defined as:

Definition 3.1.9. [28, §23 p.214]
JdE(u) = {p € R"|E(v) — E(u) — {p,v —u) > 0,YVv € R"} (3.9)

If 0E(u) # @, then we say that E is subdifferentiable at u.
The theorem that interest us is:

Theorem 3.1.6 (Optimality Condition). [28, §27 p.264] Let 0 € 0E((i1)) and E is convex.
Then 1l € argmin, E(u).

We now have an optimality condition that helps us to solve minimization problems.
Expanding on the topic of subdifferential calculus, its important to note the relationship
between subderivatives and derivatives. If a convex function E : R” — R {J{oo} is
differentiable in x € dom(E), then:

IE(x) = {Vf(x)} (3.10)

3.1.4 Duality

In mathematics, any vector space has a corresponding dual vector space. We will pro-
ceed by assuming that the reader already has some basic knowledge and understanding
of dual space. Chapter 3 in [28] contains an in-depth explanation and insight on duality
applied to convex analysis. Here we will only talk about the points and concepts used
in this project.

10



3 Background

We will start by defining the convex conjugate of a function:

Definition 3.1.10. [28, §12 p.104] We define the convex conjugate of the function
E:R" — RJ{co} as

E*(p) = sup ({u,p) — E(u)) (3.11)

u€eR”
The conjugate of a convex function is also convex. Some other properties of the
conjugates are:

Theorem 3.1.7 (Fenchel-Young Inequality). [8, §3.3.2] Let E be proper, convex and lower
semi-continuous u € dom(E) C R", and p € R", then

E(u)+E*(0) > (u,p) (3.12)
Equality holds if and only if p € 0E(u).

Theorem 3.1.8 (Biconjugate). [28, §12.2] Let E be proper, convex and lower semi-continuous,
then E** = E.

Theorem 3.1.9 (Subgradient of convex conjugate). [28, §23.5] Let E be proper, convex and
lower-semi continuous, then the following two conditions are equivalent:

1. p € 0E(u)
2. u € 90E*(p)

And most important:

Theorem 3.1.10 (Fenchel’s Duality Theorem). [28, §31.1] Let f and g be proper convex
functions on R". One has:

inf{f(x) +g(x)} = sup{—f"(y') —g"(x")} (313)

if either of the following conditions is satisfied:

ri(dom(f)) Nri(dom(g)) # 0

* fand g are closed, and
ri(dom(f*)) Nri(dom(g*)) #0

This theorem, and duality as a whole, allows us to perform useful transformations of
convex problems, making them easier to compute and translate to real algorithms. An
application of this theorem will be explored in chapter 4.

11



3 Background

3.2 Variational Methods

Variational calculus is the field of calculus that deals with functionals on vector spaces.
One can think of a variational problem as the minimization of a integral functional E,
usually called energy functional, over an argument u € V with several constraints and
penalties that determine our problem:

arg min E(u) (3.14)

Variational calculus has gained popularity in the last years with the availability of
powerful computational resources, that allows researchers to work on more complex
problems. There exist a wide range of applications, problems, algorithms and open
problems where variational methods are of utmost importance. Here we will only focus
on the problem we are working on, which is TV regularization and on a discrete setting.
For more context on the topic, as well as on analysis on the continuous setting, we refer
the reader to the book Variational Analysis [27].

3.2.1 Total variation

Total Variation regularization (TV) is a variational problem in which the problem
solution is the minimizer of an energy functional E, as explained before. In our case, the
energy functional is the total variation of a signal or function f, which can be defined
as the integral over (2, which is an open subset of IR", of the gradient of the function:

TV(f) = [ V()] dx (3.15)
O

Reducing this energy functional is interesting for a reason: in [29], it was shown
that images with a lot of noise are supposed to have high TV, so by trying to reduce
the TV and staying close to the original image at the same time, we can reduce the noise.

Total variation has the properties of being lower-semi continuous, convex and homo-
geneous [11] 1. This will prove to be useful when defining the minimization equation,
down below. For a continuous setting analysis of TV, also refer to [11].

IThose properties will not be proven here. Refer to the paper [11] for proofs and more details on total
variation.

12
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3.2.2 Total variation minimization

Now, let us move onto our problem. For a noisy imput image f, we need to find an
image u which has to be similar to f but with less total variation. The most well-known
model for this variational problem, and the one which we will be using as base model,
is the so called Rudin-Osher-Fatemi model [29], or ROF-model, for grayscale image
denoising:
u(a) = arg min 1/ (u —f)zdx—i—)\/ |Vu|dx (3.16)
uel2(Q) 2 Ja 0 ’
This equation is divided in two terms. The first one is called the data or model term,
and is the one that restricts the final result to be close to the original image. The second
one is called the regularizer, and is the term that penalizes high total variation and
force the minimum to have a low total variation. A is the regularization parameter,
which weights between the two terms. This parameter is of utmost importance, as it is
usually the parameter that needs to be adjusted in order to obtain a better result.

3.2.3 Norms and projections

First of all, we will define what a norm is.

Definition 3.2.1 (Norm). [8, §A1]
A function f : R” — R with dom(f) = R" is a norm if it fulfills the following
properties:

* fis nonnegative: f(x) > 0 for all x € R".

* fis definite: f(x) =0 only if x = 0.

e fishomogenuous: f(tx) = [t|f(x) forall x € R" and t € R.

e f is satisfies the triangle inequality: f(x +y) < f(x) + f(y), for all x,y € R™.

Examples of norms are the absolute value or the ¢, norm. This last norm is a part of
a family of norms called the Zp—norm, defined by:

16l lp = (eal? + -+ o [P) 17 (3.17)

We are going to use norms for our different penalizations on TV. As seen in equation
(3.16), the TV in the regularizer term is penalized by a ¢, norm. By changing this norm,
we can penalize the TV in different ways and obtain different results. As explained in
chapter 1, this is one of the main aspects in the project and it will be mentioned and
worked on several times in the next chapters.

13
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3.2.4 Collaborative norms

Collaborative norms are a relatively new conc ept in the variational analysis field.
Described in [16], they are a new class of regularization using mixed norms. We will
not go into a lot of detail on the topic during this project, as most of the mathematical
demonstration, properties and definition surpasses the scope of it, but a basic definition
of the concept will be provided.

For a color image (note that is also true for a hyperspectral image) in a discrete
setting, the gradient of the image can be described as a three dimensional matrix. One
dimension corresponds to the space or pixels of the image or signal. Another one
corresponds to the directional derivatives containing the differences between pixels.
We can define the directional derivatives for values of the pixels x and channels y with
the Jakobi matrix:

0xy 0xy,

Du=| : oo (3.18)
Ym . Wn
0xy 0xy,

Note that, if we only have one channel, we obtain the following matrix:
oy oy
Du=|-—2 ... A1
" {axl axn] (3.19)

Which is the gradient of the image, as seen in (3.16) for grayscale images (only one
channel). It is clear to see now that we are generalizing the original equation for any
number of channels.

The last dimension is the channel dimension (3 for color images, many more for
hyperspectral images). Then, to compute the TV of such image, one can penalize each
dimension in a different way depending on the norm we use. Combining different
norms for the different dimensions allows us to obtain different results with the regu-
larization.

To put an example, considering a three dimensional matrix A € RN*M*C where N
is the number of pixels, M the number of derivatives, and C the number of channels,
one can apply the /7 norm to the channel dimensions, the £7 norm to the derivative
dimension and the ¢" norm to the final pixel dimension. The expression obtained will
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3 Background

be referred as the ¢/P7" norm:

N M C
|Allpqr = 2 Z Z k|p q/p r/q)l/r (3.20)
i=1 j=1 k=1
In the next section we will explain and describe the collaborative mixed norms we
will use during the project.

3.2.5 TV variations

As explained in the section before, one can use a wide variety of norms on the
regularization to affect the algorithm. In the experiments of this thesis we will use
different versions of the algorithm by modifying the type of TV regularization used. By
changing the penalization norms used in the initial expression, a different projection
is obtained in the final algorithm (see chapter 4 for more details) depending on the
initial total variation term we use. For convenience, a discrete setting is used for the
description of the norms. The dimensions of the term will correspond to the ones
mentioned earlier. The notation of the different norms used will be based on the
framework described in [16]: we refer to each norm as (P47 (dim1, dim2, dim3), with
p,q,r being the norms applied to dimension dim1, dim2, dim3 respectively.

o (M1 (der, pix, col)

The expression for this collaborative norm in the discrete setting is;

TV(u) =) |Dyujj| + |Dyujj]. (3.21)
ij

o (211(col, der, pix)

The same as before, but now we perform a /% norm alongside the channels or
colors of the image. We use this total variation expression, with the dimensions
ordered by channels, derivatives and pixels:

B (o o) o

o (221 (col, der, pix)
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3 Background

This is basically a £>?! norm, coupling the channel dimensions and the derivative

dimension with the /2 norm.

m

TV(u) = Zf \/i(Dxu{fj)Z + (Dyuf;)? (3.23)
~=\ 4

1

021 (der, col, pix)

This total variation is similar to the ones before, with the only change being that
we do not couple the channel, only the derivative dimension:

TV(u) = fzz \/ (Datdh)? + (Dyu)2 (3.24)
i j ok

0>V (col, der, pix)

Here the norm is [®11, alongside the channel or spectral dimension:

TV (u) = kaax |Dxu§-‘j| +max |Dyu§‘j|. (3.25)
ij
=1 (der, col, pix
p

This norm is similar to the previous one, but we do ¢* across the derivative
dimension, not the channel dimension:

TV (u) = Z;max(mxum, | Dyuf]). (3.26)
L

£ (col, der, pix)

Similar to the two norms mentioned before, the norm implemented in the algo-
rithm this time is of the form ¢*°! where we apply the £* norm to both the
derivative and the channel dimension.

TV(u) = Zmax(ml?x |Dxufj|,m]?x \Dyué‘j|). (3.27)
L)
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4 Total Variation for Hyperspectral Images

In this section we will describe the implementation of the TV regularization and the
different norms mentioned in the previous chapter. We will describe the algorithm
used and discuss its implementation in MATLAB.

4.1 Gradient projection algorithm

We will start by describing the problem: starting with a noisy image f, we need to find
an image u which has to be similar to f but with less total variation. The model we
used to define the problem is the one I talked about in the previous chapter, in section
3.2.2:

A .1
i(a) = arg min ~[lu— f]3 + af|Kul|; (41)

ucRman 2

Note the similarity with equation (3.16). The main difference is that we have moved
from a continuous setting to a discrete setting. In (4.1), K is the matrix we use to
discretize the gradient of u. Also, for the description of the algorithm, I will be using
a ! norm as penalizer the regularizer term. This will be done mainly for simplicity.
Changing this norm for the collaborative norms described in the previous chapter will
also change the behaviour of the regularization. We will talk about this in section 4.2.1.

This is a convex optimization problem: since both terms of the function are convex,
we can use convex optimization to minimize it and find u, which will exists thanks to
theorem 3.1.3. To find the expression that minimizes u, we approach the problem using
the theorem of optimality condition of a function, defined in theorem 3.1.6. Finding
the minimizer with this theorem is numerically hard to find, so another approach
must be found. To do this, we will apply the biconjugate theorem (Theorem 3.1.8) to
the regularization term of the initial expression, in order to transform it to a more
manageable one:

17



4 Total Variation for Hyperspectral Images

1
min 2|l — 13+ e Ku, @2)
1
= minEHu —fH% +a sup (Ku,q) 4.3)
! l9llw<1

If I now apply theorem 3.1.5, the following expression can be obtained:

1
sup min 1 — |3+« (Ku, q) (@)
u 2
9l =1
Compared to equation (4.1), the expression we obtain after applying the optimality
condition 3.1.6 for finding the optimum is much more simpler:

Uopt = f - “KTq (45)

Now I want to solve the inner problem in (4.4) with the optimality condition from
before. The following expression is obtained:

1
Sup 3l - aK'q = f|l3 + a{K(f = aK"q),q) (4.6)
Il <

And, by developing the equation:

1

2||0€KT!7||§ +a(Kf,q) — [[«K"q]13 (4.7)

sup
lqlleo<1

We add (—3||f]|*+ 3/[f]?) to the expression before in order to reduce to the square
of a binomial:

1 1 1
sup = |laKql3 + a(Kf,q) — [|«K (3 — <[ FII* + 5|1 117 (4.8)
lqlle<t 2 2 2
1 1
= sup —=[aK'g— fI5+ = |IfI? (4.9)
lglo<t 2 2

The interest is in the argument 4 that solves the problem, since we know that the
optimality 4.5 solves 4.4. For this reason, the last term of our last expression (|| f||?)
can be left out, as it is not relevant for the argument that maximizes q. It is easier
to work with minimizations than maximizations, so the following transformation is
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4 Total Variation for Hyperspectral Images

performed on the equation:

1
A — ar max —— DCKT + 2 (4.10)
7= arg max 5 [aKlq+fl3
1 f
j=arg min S|[K'q"+ |3 (4.11)
7 8 I9lline<1 2 1K q . 5

To solve equation (4.1), and find the optimal, a wide range of methods can be used.
As explained before, I will be using the gradient descent algorithm described in [8,
§9.3]. A more in depth explanation about the algorithm can be found there. Basically,
the idea behind the algorithm is that, to find the minimum of a differentiable function
F(x), one can move towards the direction of the negative gradient, such that:

Xk+1 = Xk — ’)’VF(Xk) (412)

For a time step v, a starting point x; and a number of steps k. Applying this to
equation , we only need to project each step onto a feasible set to keep the condition
|9linf < 1 and we have our final algorithm:

gt =TIy, <1 (g — YK (KTg" + i)),with (4.13)

u' = f —aK'q" (4.14)

As a remark, the time step size has to be v < 1/4 for the TV minimization to
converge.

4.2 Implementing and adapting the algorithm to hyperspectral
images

It is not complicated to adequate the previous algorithm to work with spectral images,
this is, images with more color channels. The two big things to take in account are the
gradient matrix K and the projection. To implement the gradient, we can use a sparse
matrix multiplication.

We need to create the matrix K and then vectorize the original image. We create K by
defining two diagonal matrix with function spdiags() of size m x m and n x n and then
we use the function kron() to combine them and create the sparse matrix. The resulting
K will have a size of [2mn, mn].
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4 Total Variation for Hyperspectral Images

% We create the sparse differencing matrix

e = ones(m,1);

yDerMat = spdiags([-e e], 0:1, m, m);

yDerMat(end) = 0;

e = ones(n,1);

xDerMat = spdiags([-e e], 0:1, n, n);

xDerMat(end) = 0;

K = [kron(xDerMat', speye(n,n)); kron(speye(m,m), yDerMat)];

% We vectorize the image alongside each channel
F = reshape(F,m*n,c);

By reshaping the original image to [mn, c] (putting each channel in one dimension,
like a vector and not a matrix) will make our algorithm to work properly for hyper-
spectral images. Obviously, after running the algorithm we will have to reshape the
result into a proper image.

To implement the projections, the fact that we will use CTV norms must be considered.
In the following section we will talk about the the different norms commented in
section 3.2.5 and how to implement them in MATLAB. Thanks to the advantages this
environment provides relating images and matrices, this is not a difficult task.

4.2.1 TV variations

Depending on the norm chosen for the regularization term in equation (4.1), one will
obtain a different projection in equation (4.13). More specifically, the projection obtained
is the projection over the /77" unit ball, with (79" corresponding to the conjugate
(definition 3.1.10) of the initial norm, as seen in the description of the algorithm. Here
we will describe first the numerical and then the MATLAB implementation of the
collaborative norms described in section 3.2.5.

o (L1 (der,pix,col)

The projection resulting from the dual conjugate from the norm (3.21) is the form
||p|leo < 1. To implement it, and knowing that the co-norm is defined as:

[ p[]eo Iml.aX\Pi\ (4.15)
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4 Total Variation for Hyperspectral Images

We have to limit every element of g to be 1 or less. This can easily be implemented
in MATLAB:

g-out = sign(q).*min(abs(q),1);

This expression will work regardless of g being a vector, matrix, or high-dimensional
matrix, thanks to the way MATLAB works with matrices.

211 (col,der,pix)

The resulting projection from the norm described in 3.22 will be ||p||2,00,00 < 1.
The 2-norm is defined as:

n

plla =4/ Y 1x/? (4.16)

k=1

We need to group the dimensions on a ¢? norm and then penalize the image
vector by dividing the original image by that grouping to make sure that the
condition < 1 is met. This can be implemented in MATLAB with the following
piece of code:

temp = sqrt(sum(q.”2,2));
g_out = q./repmat(max(temp, 1), [1,size(q,2)]);

£221 (col,der,pix)

The projection obtained is ||p||220 < 1. We can implement this in a similar way
to the previous one:

[m,n,~] = size(q);

g = reshape(q, [m/2,n*2]);

temp = sqrt(sum(q.”2,2));

g = q./repmat(max(temp, 1), [1,size(q,2)]);
g_out = reshape(q,[m,nl);

To understand this code, it is important to remember that the original image,
which has a size [m, n, c| has been resized to [mn,c|. So, by this point, what is
being that is that the derivatives and the channels for each pixel are put alongside
the second dimension to do the 2 norm on them. After the projection, of course,
the image needs to be restored to its proper shape.
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4 Total Variation for Hyperspectral Images

o (%L1 (der,col,pix)

The resulting projection from the collaborative norm described in equation 3.24
translates to a ||p||2,0,00 < 1 projection and it is implemented in a similar way as
before, reshaping the image:

[m,n,~] = size(q);

q = reshape(q, [m/2,2,n1);

temp = sqrt(sum(q.”2,2));

g = q./repmat(max(temp, 1), [1,size(q,2)]);
g-out = reshape(q,[m,n]);

In this case, we put the channels alongside the third dimension so that we do not
apply the ¢, norm on them.

o (11 (col,der,pix)

When we translate this norm to the gradient projection algorithm, the resultant
projection is ||p|[1,c00 < 1. To implement the projection ||p|l; < 1, a more
complex algorithm is needed. We have used the algorithm described in the paper
[15] for projecting a vector onto the ¢'-ball. The algorithm is as follows:

Algorithm 1: Projection onto the [; Ball [15].

Input :A vector v € R" and a scalar z > 0
Sorting vinto y:puy > po > -+ > Uy ;

Findp:max{j € [n] :‘u]'—% (Zizlyr—z> >0} ;
Define 0 = % (X mi—z);
Output: B such that p; = max{v; — 0,0}

w such that w; = sign(v;)p;

For more information on the algorithm, the idea behind them, and extensions of
it, refer to [15].

We want to extend the algorithm for ¢!-projection to work for 2-dimensional
vectors (matrices), in order to insert it into the code. To do this, we apply the
algorithm to each column of the matrix: each column is sorted and then p and 6
is computed for each column. For this, we transpose the image at the beginning
of the algorithm to work with the columns, as it makes more sense for coding;:
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4 Total Variation for Hyperspectral Images

qa=q";

[m,n,~] = size(q);

% We sort each column
sort(abs(q),1, 'descend');
cumsum(v,1);
repmat((1:m)', [1,n]);
(v - (w - 2)./1) > 0);

U <
1]

After this piece of code we have a logical matrix P with the indexes of the vector
needed to compute 6. To get the values in an efficient way we proceed as follows:
First, we switch the value of the logical matrix. After doing this, we use the
MATLAB function max() to look to the first 1 that appears, and then substract 1
to get the right index. Using this procedure is fast, but one extreme case appears
that need to be dealt with: when all the values in a column in P are 1. In this case,
when the values are changed, an index is obtained pointing to the first element of
the column, while the wanted element is the last. To solve this, we just append
an extra row of 1 at the end of the matrix:

% We add an extra row of ones to take care of the extreme case
P = cat(1l,double(1-P),ones(1,n));

[~,p] = max(P);

p=max(l,p - 1);

pl =p + (0:n-1)*m;

theta = max(0, (w(pl) - z) ./ p);

Once the appropriate 0 for each column is computed, we just need to proceed as
with previous projections, and transpose again to obtain the original matrix:

g_out
g-out

sign(q).*max(abs(q) - repmat(theta, [m,1]), 0);
g_out';

el (der,col,pix)

To compute the projection conjugate of the norm (3.26), defined as ||p||1,c0,00 < 1,
we proceed as before but modifying the entry matrix such that the derivative
are located on the columns, and then compute the projection for each different

channel:
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[m,n,~] = size(q);
q = reshape(q, [m/2,2,n1);
for i = 1:n
g_out(:,:,i) = ProjectionL1Ball(q(:,:,1i), z);
end
g_out = reshape(g_out,[m,n]);

o (ool (col,der,pix)

The projection ||p||1,1,00 < 1 resulting from the dual conjugate of the norm (3.27)
is implemented by putting both the derivative and the color dimension alongside
the columns of the matrix for our projection algorithm to work:

% q will be [nxmx2,c]

[m,n,~] = size(q);

g = reshape(q, [m/2,2%n]);
g_out = ProjectionL1Ball(q,z);
g_out = reshape(g_out, [m,n]);
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5 Testing Methodology

5.1 Introduction

After describing the algorithm and the different projections that we will be using,
the next thing to do is to describe the sample hyperspectral images tested, and the
measures of image quality we will use to compare the results.

5.2 Sample images

For the images, we have employed a set of images from the database of hyperspectral
images from the University of Stanford [31]. The images cover wavelengths from 0.4 to
2.5 micrometers, spanning the visible, NIR and SWIR electromagnetic spectral ranges.
The images are contained in .mat files, which makes them easier to process in MATLAB.
The format of the data is a matrix of size n x m x w, where n and m are the rows
and columns of the image, and w is the number of spectral bands. The database also
provides us with extra information, like the scene radiance data, the scene illuminant
and a vector listing the wavelenghts of the bands stored in w.

The criteria for choosing which hyperspectral image to use is simple: we could not
simply use only one image, and the reasoning behind that is obvious, so we need a
good enough number of hyperspectral images. Also, the images used should not be
too similar, in order to avoid strange behaviour of our algorithms tied to a specific
image. The images we will be using are LoResFemale2.mat, an image of a female face;
SanFrancisco.mat, a picture from the city of San Francisco, and Stan ford Memorial .mat,
a picture from the facade of a Church. You can see a colored version of the pictures we
will be using in figure 5.1 .
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(a) Female (b) SanFrancisco (c) Stanford

Figure 5.1: Color renditions of the hyperspectral images used in the project

5.2.1 Preprocessing of the images

A problem arises when one has to work with hyperspectral images: their size is usually
too big to process them in a reasonable amount of time. The solution is to reduce
the original image to a manageable size. To do this, we first perform a resize of the
image by 0.5 and then we crop a 150 x 150 section of the resized image. By doing those
processes, we minimize the quality loss from the original image, while reducing its size
to be more manageable. We also will scale the range of the values in the image matrix
to [0,1] for convenience and easiness in working with them. You can see the cropped
pictures that will be used in the project in figure 5.2. As it is difficult to accurately
portrait an hyperspectral image on a paper, we have included pictures of several bands:
for each image, bands number 1, 50 and 100 are displayed.
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(a) Femalel (b) Female50 (c) Femalel00

(d) SanFranciscol (e) SanFrancisco50 (f) SanFrancisco100

(g) Stanford1 (h) Stanford50 (i) Stanford100

Figure 5.2: Bands 1, 50 and 100 of the three images used for testing

5.2.2 Noise model

To be able to evaluate the performance of the algorithm and the different regularizations,
we need to create a synthetic data set by artificially adding noise to the images. The
model used for the noise is a normal distribution of random numbers generated by the
MATLAB function randn() and multiplied by an scalar noise that allows us to modify
the final noise level:

noised = image + noisexrandn(size(image));
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We will be testing two sets of images with different noise values. This will allow me
to test the algorithm in two different noise environments and see the robustness of the
model for different noise levels. The values of the noise will be defined by the value
of the scalar noise: 0.05 and 0.025 for high and low noise, respectively. In figures 5.3
and 5.4 you can see the previous bands of each image after adding the noise. Note that
the images have been brightened using the MATLAB function imadjust() in order to
obtain a better clarity.

A

ALK

(a) Femalel (b) Female50 (c) Femalel00

-

(g) Stanford1 (h) Stanford50 (i) Stanford100

Figure 5.3: Bands 1, 50 and 100 of the three images used for testing, after adding
low-value noise
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gk
(b) F

it

emale50

T

(c) Femalel00

i

(a) Femalel

) SanFrancisco100

(d) SanFranciscol (e) SanFrancisco50 (f

(g) Stanford1 (h) Stanford50 (i) Stanford100

Figure 5.4: Bands 1, 50 and 100 of the three images used for testing, after adding
high-value noise

As one can see in the figure, the different bands have significantly different signal-
to-noise ratios: some have more distortion than others. This can happen because in
lower bands there is less difference between the values of the pixels (as one can see in
the original images) and, exposed to random noise, this can lead to a higher level of
distortion. In higher bands one can see that the noise, while not as pronounced, is still
present.
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5.2.3 Measures of image quality

To compare the results we obtain, just relying on our subjective direct view of the
denoised images is not enough. For this reason, we will be using several measures and
comparison methods to be able to make a more objective approach to comparing the
different results. The methods we will be using are

PeakSNR

The first measure of image quality we will use to classify our projections is the Peak
Signal-to-Noise ratio (PSNR) (cf. [30]). It is the ratio between the maximum possible
value of a signal and the power of the noise that affects the quality of its representation.
In simpler words, it measures the amount of noise the image has. It is expressed in dB.

Mathematically speaking, here is the expression that defines PSNR:

AX3
PSNR = 10 - log,, (%) (5.1)
MAX; )
=20-log,, | ——==—= 5.2
810 ( MSE (5.2)
= 20-log,, (MAX;) — 10 -log,, (MSE) (5.3)

MAX is the maximum possible pixel value of the image, which equals 1 in our case.
MSE is the mean squared error. Given a noise free image I and a noisy image |, of size
m x n, we define MSE as:

1 &
mn

1n-1
MSE = > [1G,7) =TGP
i=0 j=0
In the case of multiple channels, like in color images or hyperspectral images, the
definition is the same, and we just divide all the squared value differences between
channels by the image size times the number of channels. A higher PSNR value means
that the images are more similar. If both images were identical, the MSE would be 0,

and the PSNR would be infinite (or division by zero)

We have used the command psnr() in MATLAB to compare the different denoised
imagesto the corresponding noise free images.
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Structural similarity

The structural similarity index (SSIM) is a method to measure similarity between two
images. Contrary to PSNR, SSIM values structural information: the method considers
that pixels have inter-dependencies between them, that are stronger when they are
spatially close.

The difference with respect to other techniques mentioned previously such as MSE
or PSNR is they are often accused of not measuring the perceived visual quality. SSIM
considers image degradation as perceived change in structural information. Structural
information is the idea that the pixels have strong inter-dependencies, especially when
they are spatially close. These dependencies carry important information about the
structure of the objects in the visual scene.

The mathematical expression for this index, for two images or signals x and y of the
same size is:

(2Vxﬂy +¢1) (204 + c2)
(u2+ p2 4 c1) (02 + 02 +c2)

SSIM(x,y) = (5.4)

where i, 0% and 0y, represent the average, variance and covariance of the images,
and c¢; = (0.01L)? and c, = (0.03L)? are two variables that are used to stabilize the
division. L is the dynamic range of the pixel values, and it changes depending on the
format of the image. In our case, and for the function we are using, its value is 1. We
have used the MATLAB function ssim() to calculate this index.

Spectral Angle Mapper

Spectral Angle Mapper Classification (SAM) is a method that calculates the spectral
angle between an image spectrum and a known spectrum (in our case, the denoised
spectrum and the original spectrum) each spectrum is considered as a vector in a
g-dimensional space, where g is the number of bands or channels. We then calculate
the angle between those two spectra. One advantage of SAM is that it uses only the
direction of the spectra, not the length. This means that this method is insensitive to
different illumination between pixels, as it does not use the vector length.

The mathematical expression for this method is:

2?21 tiri

1
N
\/Zizl f; \/Zizlri

SAM = cos™

(5.5)
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Where g is the number of bands in the image, t is the spectrum of a pixel in the image
and r is spectrum of a pixel on the original image. There is an angle for each pixel
of the image, so the best way to represent those values is by an image. Despite this,
direct visual comparison is difficult, so we have decided to compute the average and
the variance of each image, and use the values obtained to compare between different
regularizations.

5.2.4 Methodology

The simulations will be run with different values of a (the regluarization parameter)
each time. This way, we can not only compare the projections against each other but also
against different values of the regularization term, and find the optimal configuration
to obtain the best possible results. This can be done in an iterative way, changing the
values of the simulations after evaluating the results of the previous one.

There are some variables whose value will not be changed during testing. These are
the number of iterations of the gradient projection algorithm, which will be at 200, and
the time step z, with a value of 0.25, which is the largest possible value to still ensure
the convergence of the algorithm.

32



6 Results

In this chapter we will present the results obtained during the experiments and discuss
them. We will first present the results for images with a lower added noise value
and after that we will show, with the same structure, the ones obtained for images
with more noise. For information on all the parameters used and about the testing
environment, please refer to chapter 5.

6.1 Results with lower noise model

The structure of the result presentation is as follows: for each image measure, the
results obtained for each norm are plotted against the regularization parameter. We
present four plots: in three of them, the measures are presented against their real scale,
with the x axis representing the regularization parameter a and the y axis representing
the value of each image quality measure we are plotting. Then, the last graph plots
all the different regularizations without scale in the x axis, in order to compare them
more easily. Finally, for each noise model, we present the results obtained for each
image in four tables, one for each measure. The regularization parameter used for each
regularization is the one that maximizes the PSNR.
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Figure 6.1: PSNR plot of the different norms relative to the regularization parameter.
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Figure 6.2: PSNR plot of the different norms.
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Figure 6.5: Average of the SAM plot of the different norms.
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37




6 Results

62,2,1 gl,l,l £2,1,1 goo,l,l goo,l,l goo,oo,l

gZ,l,l
Norm
(col,der,pix) (col,der,pix) (der,pix,col) (der,col,pix) (der,col,pix) (col,der,pix) (col,der,pix)
SanFrancisco 40.71 40.08 38.58 39.68 39.16 40.56 38.9
40.72 39.36 40.1 39.78 41.1 39.27

Female 41.45
Stanford 43.48

Table 6.1: PSNR Table with ideal regularization parameter for each norm

429 4136 4201 41.68 43.7 42.22

£2’1’1 £2’2’1 61,1,1 52’1’1 goo,l,l goo,l,l goo,oo,l
Norm
(col,der,pix) (col,der,pix) (der,pix,col) (der,col,pix) (der,col,pix) (col,der,pix) (col,der,pix)
SanFrancisco  0.97 0.96 0.96 0.96 0.96 0.97 0.95
Female 0.96 0.96 0.95 0.95 0.95 0.95 0.93
Stanford 0.97 0.96 0.96 0.96 0.95 0.97 0.96

Table 6.2: Structural Similarity Table with ideal regularization parameter for each norm

p2,1,1 p2,2,1 gl,l,l 52,1/1 Eoo,l,l /oo,l,l poo,oo/l

Norm
(col,der,pix) (col,der,pix) (der,pix,col) (der,col,pix) (der,col,pix) (col,der,pix) (col,der,pix)
326-1072 326-102 3.67-102 3.71-1072 3.37-1072 4.03-10 2

3.64-1072 3.17-1072 3.95.102

SanFrancisco 2.90 - 102
9.14 1072

Female 2.80-102
Stanford 6.91-10°2 7.74-1072 7.44.102

Table 6.3: Average of the Spectral Angle values in each pixel with ideal regularization

3.17-1072 3.31-102 3.60-102
9.36-1072 9.14-1072 7.80-102

parameter for each projection

gz,l,l 62,2,1 gl,l,l 52,1,1 goo,l,l goo,l,l goo,oo,l
Norm
(col,der,pix) (col,der,pix) (der,pix,col) (der,col,pix) (der,col,pix) (col,der,pix) (col,der,pix)
SanFrancisco 5.49-107% 6.77-107% 826-107* 7.33-107* 854-10% 6.44-10* 993.10*
Female 262-107% 4.18-107* 4.01-107* 4.87-107* 567-107* 3.84-107* 8.40-10~*
213-107% 245-107% 1.43-107% 227-10°°

Stanford 130-107% 1.74-103 1.68-1073

Table 6.4: Variance of the Spectral Angle values in each pixel with ideal regularization

parameter for each projection
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6.2 Results with higher noise model
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Figure 6.9: PSNR plot of the different norms relative to the regularization parameter.
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Figure 6.10: PSNR plot of the different norms.
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6 Results

gZ,l,l 62,2,1 gl,l,l gZ,l,l goo,l,l goo,l,l goo,oo,l
Norm
(col,der,pix) (col,der,pix) (der,pix,col) (der,col,pix) (der,col,pix) (col,der,pix) (col,der,pix)
SanFrancisco 37.61 3696 3094 3638 3592 3747 3597
Female 3819 3737 2852 3675 3644  38.07 36.06
Stanford 40.52 3992 3295  39.07 38.8 40.77 3948

Table 6.5: PSNR Table with ideal regularization parameter for each norm

£2’1’1 £2’2’1 61,1,1 52’1’1 goo,l,l goo,l,l goo,oo,l
Norm
(col,der,pix) (col,der,pix) (der,pix,col) (der,col,pix) (der,col,pix) (col,der,pix) (col,der,pix)
SanFrancisco  0.94 0.93 0.87 0.92 0.92 0.94 0.92
Female 0.93 0.91 0.84 0.91 0.91 0.92 0.88
Stanford 0.94 0.94 0.89 0.93 0.92 0.95 0.93

Table 6.6: Structural Similarity Table with ideal regularization parameter for each pro-
jection

52,1,1 €2,2,1 61’1’1 52,1,1 foo,l,l Zoo,l,l goo,oo,l
Norm
(col,der,pix) (col,der,pix) (der,pix,col) (der,col,pix) (der,col pix) (col,der,pix) (col,der,pix)
SanFrancisco 4.06-10"2 459-1072 576-1072 4.91-1072 499-102 425-102 5.06-1072
Female 3.99-1072 459-1072 4.66-1072 497-1072 5.06-1072 4.10-107% 5.29-102
Stanford 9.68-1072 1.10-107! 9.69-102 121-10"! 1.19-10"! 9.58-10"2 1.11-1071

Table 6.7: Average of the Spectral Angle values in each pixel with ideal regularization
parameter for each projection

52’1’1 (2,2,1 el,l,l 52,1,1 éoo,l,l (00,1,1 Zoo,oo,l
Norm

(col,der,pix) (col,der,pix) (der,pix,col) (der,col,pix) (der,col,pix) (col,der,pix) (col,der,pix)

SanFrancisco 9.93-10~% 125-103 358-10% 1.37-10° 1.63-10% 1.08-10% 1.75-10°3

Female 594-107% 993.-107* 1.14-1073 1.03-107% 1.28-1073 7.30-107* 2.16-103

Stanford 297-1073 3.64-107% 6.19-107° 4.42-.-1073 481-10° 283-10% 3.84-10°

Table 6.8: Variance of the Spectral Angle values in each pixel with ideal regularization
parameter for each projection
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6 Results

6.3 Discussions of results

After testing all the regularization on both sets of noised images, with higher and lower
noise, the aim was to find the collaborative norm that provided us with the best results.
As one can see in figures 6.18 and 6.19, it is particularly difficult to be able to discern
the quality of the denoising for hyperspectral images with our bare eyes. One cannot
just look at one of the bands and decide, so numbers and measures are needed to be
able to compare with good criteria.

Let us first look at is the PSNR. As explained in chapter 4, section 2, the PSNR can
be a measure of the noise an image has compared to its original. If one looks at the
plots 6.2 and 6.10, it is seen that, for all regularizations, if the regularization parameter
increases, the PSNR tends to increase until a peak is reached, and then it starts to
decrease. Looking at the previous plots and at the tables 6.1 and 6.5 it can be seen
that the projections that obtain the best results are the ¢! (col, der, pix) norm and the
E‘”flfl(col, der, pix) norm, both in low and in higher noise. As expected, the results
with higher noise the results are worse. The regularizations with worse results are
MY (der, pix, col) and £ (col, der, pix).

If we move to the structural similarity comparison (6.2 and 6.6), the results are similar:
Both norms ¢>1(col, der, pix) and £*11(col,der, pix) obtain better results, although
the differences among regularizations are small. For the Spectral Angle Mapper, it is
difficult to compare them, but generally the seeked result is a low value of the SAM
average. The SAM variance depends on the test picture, but in general we also aim
for a low value. One can see here that the ¢>!(col, der, pix) norm keeps presenting
the best results, and 2% (col, der, pix) and £°V(col, der, pix) follow. There is a huge
variation of results between images. This may hinder the testing: it is possible that
some methods work well for some types of HSI but not so well for others. This is a
very common behaviour in general for methods like this.

All the results have been gathered using the same regularization parameters that have
been used in the PSNR plots 6.9 and 6.1. Thanks to this fact, we am able to compare
how the other image measures evolve along the PSNR changes. In figures 6.4 and 6.12
we can see that the structural similarity peaks at around the same values as PSNR for
each projection: this is an expected ocurrence. For SAM, one can see the corresponding
plots in figures 6.13 and 6.5 and figures 6.7 and 6.15 that the same happens here.

There are two norms that stand out from the others: ¢! (col,der,pix) and the norm
021 (col, der, pix). The regularization parameter needed to achieve their best results is
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6 Results

very high compared to the others, and their curve is much less pronounced that in the
other norms. This different behavior makes them interesting for further studies.

Finally, we have to mention one strange occurrence: with high noise, the norm
(Y1 (der, pix, col) seemed to obtain a really poor denoised image, discernible even by
bare eye (as seen in figure 6.19). This issue happens also with the other images, but only
with that projection. We have not found a specific reason for this issue to occur, and it
seems to be tied to the projection. Our guess is tat it could be the gradient projection
not having fully converged, or the original band having almost no information from
other channels, giving this result. As this norm also obtained really poor results, it is
probably not adequate for the algorithm.

In figures 6.19 and 6.18, the images have been brightened using the MATLAB function
imadjust() in order to obtain a higher quality for the reader.

(a) Original Image (b) Noised Image (High (c) Noised Image (Low
noise) noise)

Figure 6.17: Original San Francisco image (band 50) and the result after adding the two
different noise values described.
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(a) Noised Image (b) Zz'l'l(col,der,pix) (c) Zz'zfl(col,der,pix)
PSNR:32.04 PSNR:40.71 PSNR: 40.08

(d) ¢¥11(der,pix,col) (e) £¥V1(der,col,pix) (f) ¢! (der,col,pix)
PSNR: 38.58 PSNR: 39.68 PSNR: 39.16

(g) oAl (col,der,pix) (h) ¢ (col,der,pix)
PSNR: 40.56 PSNR: 38.9

Figure 6.18: Denoised bands for each projection, from an original image with low value
noise added.
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(a) Noised Image (b) Zz'l'l(col,der,pix) (c) 62'2'1(col,der,pix)
PSNR: 26.0240 PSNR: 37.61 PSNR: 36.96

(d) ¢¥11(der,pix,col) (e) £¥V1(der,col,pix) (f) ¢! (der,col,pix)
PSNR: 30.94 PSNR: 36.38 PSNR: 35.92

(g) €°°'1'1(c01,der,pix) (h) €°°'°°'1(c01,der,pix)
PSNR: 37.47 PSNR: 35.97

Figure 6.19: Denoised bands for each projection, from an original image with high
value noise added.
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7 Conclusions

Different TV regularizations for hyperspectral images using collaborative norms have
been tested. TV and gradient projection algorithm had already been used for color
images, as well as collaborative norms. Using them for hyperspectral images, and being
a simpler method compared to those already in literature for TV HSI denoising [20, 34],
makes this an interesting field of research.

After performing testing on three different sample hyperspectral images, seven dif-
ferent types of Collaborative norms and two levels of noise, we obtained a dataset of
results, which we proceeded to analyse.

Analyzing the results, we found that the ¢>11(col, der, pix) and the ¢4 (col, der, pix)
norms are the regularizers that obtain better results across the board. For its interesting
properties, the (°'1(col, der, pix) and ¢°*(col,der, pix) norms could be useful in
other contexts, using a much higher optimal regularization parameter than the rest.

Comparing our results to the ones obtained for normal color images in [16], the norm
with better results on color images, (11 (col,der, pix), translates well to hyperspectral
images, maintaining a good performance. But with both norms ¢*%!(col, der, pix) and
02>V (col, der, pix) being at least equally good, it is better to use (> (col, der, pix), as it
is faster and simpler. However, one could try to implement a local ¢*1(col, der, pix)
norm in order to adapt to the color image case and even improve the results, as it
makes little sense to couple all the channels at once, and a local coupling could perform
better:

|| Dttpandsi—10||eo,1,1 + || Dthpandsii—20]leop1 + - - - (7.1)

This could be a topic for future research.

Future research could be extended at using other types of regularization with the
same algorithm and compare to the results obtained or extend the results with a
bigger pool of hyperspectral images to further test the best norms. Also, an extension
to other types of variational problems in hyperspectral imaging, like unmixing or
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7 Conclusions

uncompressing, using TV and the norms obtained here could be an interesting field of
research. One could also try to implement a nonlocal TV model [20, 5] with the norms
described in this project.
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