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Abstract. The paper is devoted to numerical solution of a small-strain quasi-static
elastoplastic problem. It is considered an isotropic model containing the Drucker-Prager
yield criterion, a non-associative flow rule and a nonlinear hardening law. The problem
is discretized by the implicit Euler and finite element methods. It is used an improved
return-mapping scheme introduced in "PART 1”7 and the semismooth Newton method.
Algorithmic solution is described and efficiency of the improved scheme is illustrated on
numerical examples.

1 INTRODUCTION

The paper is devoted to numerical solution of a small-strain quasi-static elastoplastic
problem that contains the Drucker-Prager yield criterion, a non-associative flow rule and a
nonlinear hardening law. Such a problem consists of the constitutive initial value problem
(CIVP) and the balance equation representing the principle of virtual work. A broadly
exploited and universal numerical/computational concept includes the following steps:
(a) the implicit Euler discretisation of CIVP leading to an incremental constitutive law;
(b) substitution of the law into the balance equation; (c¢) finite element discretization of
this boundary value problem formulated in terms of displacements; (d) solving a related
system of nonlinear equations.
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The incremental constitutive problem is usually solved by the elastic predictor/plastic
corrector method. The plastic correction is called the (implicit) return-mapping scheme.
In "PART 17 [3], there was introduced a straightforward simplification of the current
return-mapping scheme which can be found e.g. in [6, Chapter 8]. The improved scheme
is based on a subdifferential formulation of the plastic flow rule. It leads to a priori
information whether the unknown stress tensor lies on the smooth portion or at the apex
of the Drucker-Prager yield surface even if the nonlinear isotropic hardening is considered
within the model.

Further, the discretized incremental boundary value problem which leads to the system
of non-linear equations is usually solved by the Newton method or its modifications. More
precisely, one must use a nonsmooth version of the method since the stress-strain operator
received from the constitutive problem is nonsmooth. In [7], the semismooth Newton
method was introduced. The method can have local quadratic convergence under certain
assumptions. In particular, it is necessary to show that the stress-strain operator is
strongly semismooth. Such a treatment can be found in [8, 9] for the Drucker-Prager
model. From the computational point of view, there is a minimal difference between the
standard and semismooth Newton methods. One must only suitably extend the definition
of the consistent tangent operator where the derivative 0o /Je does not exists. Here, o, €
denotes stress, and strain, respectively.

In Section 2 and 3, we introduce a few implementation details of the discretized in-
cremental boundary value problem, mainly the improved return-mapping and the semis-
mooth Newton method. We confine ourselves on a plane strain problem, linear simplician
elements and algebraic notation. Algorithmic solution to a 3D problem is discussed in [1].
In Section 4, we illustrate the efficiency of the presented algorithm on numerical examples.

2 ALGEBRAIC FORMULATION OF THE PROBLEM

In this section, we sketch the incremental boundary value elastoplastic problem in an
algebraic form and summarize the semismooth Newton method. For more details, we
refer e.g. [2].

Assume a deformable body from an elastoplastic homogenoues material. The material
model contains the Drucker-Prager yield criterion, the non-associative flow rule and the
nonlinear hardening law as in [3, 6]. For the sake of simplicity, consider a plane strain
problem. Let €2 be a polygonal 2D domain represented the cross-section of the investigated
body and 7, denote its triangulation. Further, consider linear and conforming elements.
So displacement fields are approximated by continuous and piecewise linear functions and
strain, stress and the isotropic hardening fields are approximated by piecewise constant
functions. Assume that the history of loading is prescribed in the interval [to, tmaz]-
Consider the partition

to <t <...<tp<...<tmax

of this interval and the implicit Euler discretization of the initial value constitutive prob-
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lem introduced in "PART 17 [3].
Let NV denote a number of nodal points of T, and set n = 2A/. Define the space

VY :={v e R"| Bpv = o},

where Bp € R™*" is the restriction matrix represented prescribed Dirichlet boundary
conditions. Then admissible displacement vectors at the k-th step belong to the set
uy v + V where the vector ug y := un(t;) includes eventual nonhomogeneous Dirichlet
conditions.

Strain, plastic strain and stress tensors are represented by the following vectors

T ~ _ T

€= (5117522,2512) , &= (511,522,251270) )
__ (P P T zp_ (P P P _p
el = (e}, ehy,2e12)", &P = (e]}, €99, 2605, €33
_ T ~ T
o = (011,0227012) , O = (0117022,0127033) )

)T

Y

respectively. Let & denote an isotropic hardening variable. The nonlinear and implicit
stress-strain operator is represented by a function 7'. In particular, we write

_ . =P =P _
o, =T(ex; e, 1,80 4), k=12...,m,

at the k-th step. For purposes of the semismooth Newton method, we also need a function
T° := T°(ey; €L _,,&h ) € R33 representing a generalized derivative do/dey. The
algebraic forms of the operators T" and T are introduced in the next section.

Further, we introduce a matrix Ra € R%*" that restricts a displacement vector v € R"
on an element A € Ty, i.e.

v = RA’U.
The stress-displacement relation on an element A € 7, is represented by the matrix
Gx € R?’XG, ie.
EA = (511,A7522,A; 2512,A)T =GaARpv.

Finally, denote f, € R"™ as the load vector at the time ¢; and define the operators
Fp :R" - R", K : R® — R™" representing the system of nonlinear equations and the
tangential stiffness matrix, respectively:

Fiw) = Y |A(T(GaRaviEl 5.8 1 ) GaRa, vER,
AeTy

Kk(v) = Z ’A’ (T()(GARA’U;F:‘Z_LA,&TZ_LA)GARA)TGARA, v e R™
AETy

Then the incremental elastoplastic problem reads as follows:

find UkGUkJV_FVZ ’UT[Fk;(’U,k)—fk]:O Yv € V.

This leads to the system of nonlinear equations after elimination the rows corresponding to
the Dirichlet boundary conditions. The system can be solved by the semismooth Newton
method.
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Algorithm 1 (Semismooth Newton method).

. initialization: u) = wy_;

: for:=0,1,2,... do

find du’ € V: vT Kj(u})du’ = o' [f, — Fp(ul)] Yo eV
=l + ou’

i st — b}/ | + b)) < exvewson then stop
: end for

+1

1

2

3

4:  compute u;,
5

6

7. set up = uy,

3 CONSTRUCTION OF T AND 7°

As follows from Algorithm 1, it is necessary to compute values of T(ez A& AT A)
and T°(e}, p; €, ps 1) for any A € Ty, where €} , = GaRaug. To simplify the
notation, we omit the indices ¢ and A. So, let the vectors e, €, and the scalar &, be

eitr . ~e,tr ~ ~p —p,tr D
given and denote ;" =g —ef_,, & ==&, — €&, _, and & =&} ..
We use the results introduced in ”PART 1”7 [3, Section 3]. Recall that the investigated

Drucker-Prager model is given by the parameters E v,n,n,& cy and by the function H.

We standardly set K = ) 2 ) and G = +V).
Let ¢ = (1,1,0)7, z = (1,1,0,1)7,
2/3 =1/3 0 —-1/3
2/3 —1/3 0 . -1/3 2/3 0 -1/3
I, = -1/3 2/3 0 s ey = 0 0 1/2 0
0 0 1/2

~1/3 —-1/3 0  2/3

and D, = Ku" +2G1 ., D, = Kii" +2G1 4, Further, we compute the following trial
vectors and scalars:

&Z—D ~etra &ZT: ( 0k33>T,
8y 2GIdev~etra 5 = ( Sk 33) )
pllfcr — KLT 6157“7 QI];T _ 2G\/( etr>TIdev~Ztr,
ngz‘zg, ﬁz”:'g’g, if ol £ 0.

To decide whether the unknown stress 6y = (011, T22.4, 12,1, 033.%) " lies in the elastic
region, the smooth portion or at the apex of the yield surface, we define the function

q(v) = \/g (QZ" - vG\@)+ +n(p —vKn) — & (co+ HEYT +7€), 7> 0.
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The elastic response. It happens if and only if ¢(0) < 0. Then we set

. =P =P __ e tr [ . =P =P — =p _ =P
T(ex;€p_y 8k1) =0 T°(er;i€y_y 6 1) = De, & =844, €

The return to the smooth portion. It happens if and only if ¢(0) > 0 and ¢ (Q'Z/G\/ﬁ) < 0.
Then AN € (0, 0" /G+/2) and satisfies

1
0= g(AN) = \/;< — AAGVE) +n(p — ANKT) — € (e + H(E" + AXE))
After finding A\ we set H; = H'(Z0" + AXE) and
T(er & & ) = ol — A\ (G\/_ n’" + Km>

QGQ\/_ (Idev_ kr(an)T)_

o
T
GV2nl + K
K
(G\/_n + Kne) (G+Knn+§2H1

. . 1 ]
gr = &b+ AN <\/;n',?+gb>,

g = a_+ AN

To(Ek;éi_l,gg_l) = D A,

The return to the apex. It happens if and only if q( /G\/_) > 0. Then A\ > ol /G2

and satisfies
0= q(AN) = n(pf — AAKT) — € (co + H(E + LX)
After finding A\ we set H; = H'(E0" 4+ AXE) and

T(e; €} 1,80 ) = (pfF — ANKT) e,

. _ EKH, T
T° . ZPb P — —
(€ Eh_1: Eh1) Knﬁ+52H1LL ’
N N — ANKT
A e

gy = & +AN

Notice that the function 7 is defined everywhere. If the derivative 0T /ey, exists then
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4 NUMERICAL EXPERIMENTS

To illustrate the efficiency of the presented algorithmic solution we choose the strip
footing benchmark introduced in [6], which is solved as a plane strain problem. We use
the same geometry and material parameters as in [6] for comparison. A symmetric half
of the cross section is depicted in Figure 1. It is a square with the length 5m. The
homogeneous Dirichlet boundary conditions in the normal direction are prescribed on the
left, right, and bottom sides. The footing length is B = 1 m, i.e., the length B/2 is
depicted in Figure 1. The loading is controlled by the vertical displacement, u, which is
assumed to be uniform under the footing. A total displacement u = 20.15 mm is applied
in 29 increments. The material parameters are defined as follows:

Figure 1: Geometry Figure 2: Mesh

E =10"kPa, v = 048, ¢y = 490kPa, ¢ = 20°, and ¢ = 20°,

n— 3tan(¢) 7= 3tan () ¢ = 3 ‘
V9 + 12(tan(¢))?’ V9 + 12(tan(¢))?’ V9 + 12(tan(¢))?

Further, we compare results for two constant functions H: H = 0 kPa (perfect plasticity)
and H = 1000 kPa (linear hardening).

We use three different triangular meshes with 511, 1561, and 4497 nodes. Their scheme
is depicted in Figure 2. One can see that the meshes are regular and finer in vicinity of
the footing. The tolerance of the Newton method is €newton = 107°. The problem has
been implemented in MatSol library [5, 4, 2] developed in Matlab.

Comparison of loading paths for the investigated meshes and the hardening functions
is depicted in Figure 3 and 4. Here, P denote computed average pressure supported by
the footing. We observe dependence on a mesh parameter. The dependence is not so
significant for the two finer meshes. The curves are comparable with ones introduced in
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20+

nodes=511
nodes=1561
-nodes=4497

0 0.005 0.01 0.015 0.02
u/B

Figure 3: Loading paths for perfect plasticity. Figure 4: Loading paths for linear hardening.

[6] where eight-noded quadrilaterals with fourth-point quadrature were used to reduce a
possible locking effect.

For illustration, we add Figure 5 and 6 depicted displacements in the vertical direc-
tion and the plastic strain increments Ae} = ||eb|| — |lef_, ||, respectively. The figures
corresponds to the end of the loading process, the perfect plasticity and the finest mesh.

Figure 5: Vertical displacements for the per- Figure 6: Plastic strain increments for per-
fect plasticity and the finest mesh. fect plasticity and the finest mesh.

In Table 1, iteration numbers in selected loading steps are summarized. The numbers
are small in each time step. The convergence is slowest around the loading step k& = 13
where © = 4.15 mm and the loading curves are strongly nonlinear. In Table 2, values of
the criterion introduced in Algorithm 1 are summarized for the perfect plasticity and the
finest mesh. It is readily seen that the convergence of the semismooth Newton method is
at least superlinear.
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Table 1: Numbers of Newton iterations in selected loading steps.

k 2 4 9 13 20 29

w [mm] | 0.05 | 0.15 | 1.15 | 4.15 | 11.15 | 20.15
Perfect plasticity

511 nodes 2 3 6 8 4 3

1561 nodes 2 4 6 12 4 3

4497 nodes 3 4 6 12 4 3
Linear hardening

511 nodes 2 3 6 6 3 3

1561 nodes 2 4 6 7 3 3

4497 nodes 3 4 6 8 4 3

Table 2: Convergence in selected loading steps for the perfect plasticity and the finest mesh.

2 4 9 13 20 29
3.33e-01 | 1.98e-01 | 2.31e-01 | 1.75e-01 | 5.15e-02 | 2.71e-02
1.69e-04 | 1.35e-03 | 4.48e-02 | 2.42e-03 | 2.11e-04 | 3.90e-05
5.83e-07 | 8.74e-05 | 1.21e-02 | 1.31e-03 | 4.90e-05 | 7.38e-07
2.79e-07 | 1.29e-03 | 9.45¢-04 | 6.57e-06
5.73e-05 | 3.34e-04
5.30e-07 | 2.15e-04
1.81e-04
8.85e-05
1.54e-04
3.27e-05
3.42e-05
5.52e-06

~
™

© 00 J O U i W N~

—_ =
= O

—_
\)

Finally, we also considered the following nonlinear isotropic hardening:
co = 450kPa, H (") = min{1000"; 40} kPa.

The computed loading curves visually coincide with the curves for perfect plasticity. More-
over, the superlinear convergence is also observed.

5 CONCLUSIONS

In this paper, the improved solution algorithm for the Drucker-Prager elastoplastic
problem was introduced. Its efficiency was checked on the well-known strip footing bench-
mark. The results are comparable with [6] and the quadratic convergence was observed.
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