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ABSTRACT 

NiTi alloy is the only practical shape memory alloy (SMA) in biomedical use because 

of its excellent mechanical stability and functionality. However, it is estimated that 

between 4.5% and 28.5% of the population are hypersensitive to nickel metal, with a 

higher prevalence in females. Therefore, developing nickel-free low modulus β-type 

titanium alloys showing shape memory or super elastic behavior would have a great 

interest in the biomaterials field. Homogeneous 127 μm diameter Ti25Hf21Nb wires 

were produced and compared to straight annealed Ti-50.8 at.%Ni (Nitinol) and 90% 

cold-drawn 316L wires. Microstructural changes taking place during the heat treatment 

of cold-worked Ti25Hf21Nb wires were investigated.  Large plastic deformation during 

wire drawing and subsequent annealing led to nano-crystallization and amorphization 

which may contribute to the observed superelasticity. Mechanical properties were 

characterized using cyclic uniaxial tension and rotary beam fatigue test modes. A 

modulus of elasticity of less than 60 GPa and axial recoverable strain of greater than 3% 

were observed with stress hysteresis resembling a reversible stress-induced martensitic 

transformation at higher temperatures. The new Ti25Hf21Nb alloy is an important 

candidate for developing Ni-free SMAs in the future. 

  

 

 

 

 

 

 

 



1. INTRODUCTION 

The increase in average life expectancy, as well as rapid advances in modern surgery 

require new generations of clinically relevant biomaterials, with enhanced biological 

and mechanical performance [1].  Shape memory alloys (SMAs) belong to a group of 

materials known as smart functional materials. One of the commercial uses of SMA 

exploits its pseudo-elastic properties in the high-temperature (austenitic) phase in 

isothermal service. Ni–Ti alloy dominates biomedical use because of its excellent 

corrosion resistance and rather extreme reversible strain limit. These properties 

combined with good strain-control fatigue resistance, biological and magnetic resonance 

compatibility, explain the large adoption over the last 20 years, in the production of 

biomedical devices (catheter guide wires, stents, orthodontic wires, and recent trials in 

orthopedic use) [2,3]. 

Unfortunately, concerns have been raised about the composition of nitinol, specifically 

with the presence of nickel, a potential allergen in select individuals [4,5].  In addition 

to this, there are concerns over nickel genotoxicity [6], carcinogenicity [7] and potential 

mutagenicity [8]. Reduction of Ni content or development of Ni-free SMAs is desired 

by some practitioners to reduce the risks of nickel hypersensitivity and carcinogenicity.  

 

Another aspect frequently reported for load bearing implants is the stress-shielding 

effect caused by mechanical incompatibility between bone and implant.  A material that 

is significantly stiffer than bone may, dependent upon geometry, hinder bone 

regeneration and promote fibrous tissue ingrowth [9,10]. To achieve materials that 

exhibit a low elastic modulus, similar to that of human cortical bone (10-30 GPa) is 

another challenge for bone substitution in the metal implant field.  



Therefore, the possibility of developing Ni-free SMAs or Ni-free low elastic modulus 

(LEM) alloys has a great interest in the biomaterials field. For these reasons, new β-type 

titanium alloys showing these properties are also currently being developed [11]. The 

most common approach consists in using non-toxic β-stabilizing alloying elements, 

such as Ta, Nb, Mo, Hf and Zr, because the β-phase Ti alloys show lower elastic 

modulus (LEM) compared to the α-phase ones [12,13]. Several efforts have been 

concentrated on the production of natively biocompatible alloys; e.g. the Ti–Nb and the 

related Ti–Nb–X system (where X = Zr, Ta, Au, O) have yielded alloys with 

superelastic strains as high as 4.2% without affecting biocompatibility [14-16]. The 

TiNbHf ternary system has been widely studied by our group and it presents a blend of 

attractive properties ideal for fabricating orthopedic implants[17,18,27].  For example, 

by cyclic nanoindentation test, the Ti-16.2Hf-24.8Nb showed a decrease in the apparent 

elastic modulus up to 42 GPa by increasing the cold work percentage.  

On the other hand, nano-grained (NG) materials have attracted increasing interest due to 

their improved mechanical, as well as, biological properties compared to coarse-grained 

(CG). In general, NG materials present higher yield strength, better fatigue life, wear 

resistance and biological behavior than CG materials [19,20]. One of the most efficient 

methods of fabrication of bulk nanocrystalline materials is the metalworking technology 

called ‘‘severe plastic deformation’’ (SPD) [20]. For example, cold plastic deformation 

plays an important role in enhancing the mechanical properties and the functional 

properties of NiTi SMA [21,22]. A process similar to SPD was recently developed in 

wire materials through cold working and subsequent annealing to produce ultrafine-

grained structures [23], i.e. nano or microcrystalline, which exhibit improved 

mechanical and functional properties [23-27]. 



In this research work, homogeneous Ti25Hf21Nb wires were produced at different 

thermo-mechanical conditions and compared to straight annealed Ti-50.8 at.% Ni 

(Nitinol) and 90% cold-drawn 316L wires. The nanograin microstructure modification 

and consequent adjustment of shape and functional properties has been studied. 

2. EXPERIMENTS AND METHODS 

Bar of the designed alloy was fabricated in an arc melting furnace from CP Ti Gr. 1 

bars, Nb foil 99.8% purity and Hf shavings 99.7% by Fort Wayne Metals. Thin 127 μm 

wires were produced with varying final cold-work cross-sectional reduction of 75%, 

95% and 99% followed by constant tension reel-to-reel heat treatment in an argon 

atmosphere at 650°C. The treatments of cold drawn wire were performed at dwell times 

of 1s (HT-B) and 3s (HT-A). 

The XRD data were collected by a Bruker D8 Advance X-ray diffractometer, with 

CuKα1 radiation, Göbel mirror and SOL-X solid state detector. The diffractograms were 

obtained from 4º to 120º of 2-theta with a step of 0.02º and a counting time of 9 s. The 

crystalline phase identification was carried out by using the computer program ‘‘EVA’’ 

(Produced by Bruker). The software TOPAS (Bruker AXS TOPAS, General profile and 

structure analysis software for powder diffraction data, V2.0, Bruker AXS, Karlsruhe, 

Germany, 2000) with the fundamental parameter approach was used for Rietveld 

refinement [29]. The optimized parameters were background coefficients, zero-shift 

error, peak shape parameters, scale factor and cell parameters. The values of the pattern 

dependents, Rwp, disagreement factor, and statistical reliability factor of Bragg, RB, 

were evaluated and they indicated that fits are satisfactory [29].  

TEM micrographs were obtained from radial slabs extracted close to the wire edge 

using the focused ion beam (FIB) technique. A 1.5μm thick strip of Pt was deposited at 

the location of the slab, then trenches on both sides of the strip were milled using a 30 



kV/5 nA Ga beam (30 min). Finer milling along both sides of the slab was carried out at 

30 kV/0.3 nA until its thickness reached 100nm (figure 1). The same beam settings 

were used to cut the slab loose. In order to check for any radial homogeneity of the 

microstructure, an additional slab was extracted.  Since no significant differences in 

grain size, morphology and aspect ratio were found, the microstructure was considered 

homogeneous and only one slab was prepared for each wire.  

Both monotonic and cyclic tensile testing was conducted at both 23°C and 150°C at a 

strain rate of 0.001/s in a 125 mm gage length using an Instron Model 5565 tensile 

tester with pneumatic grips. Finally, rotary beam fatigue testing at room temperature 

for Ø 127 μm TiNbHf alloy, NiTi, and cold-drawn 316L were performed. 

 

3. RESULTS  

3.1. As received material (bar) 

(i) Chemical analysis 

The composition was verified by quantitative analysis using Energy Dispersive X-ray 

Spectroscopy (EDS). In Table I the values of experimental and theoretical chemical 

composition for the designed alloy are shown.  

(ii) Microstructural studies 

As it is shown in figure 2, the as received microstructure consisted of β-equiaxed grains 

with some martensitic plates inside them. The average β-grain size was 39.03 ± 9.2 µm. 

(iii) TEM studies 

TEM images also demonstrated that this alloy was mainly composed of β-phase 

equiaxial grains with high dislocation density (figure 3a). In addition, α’’-martensite 

was observed inside the β-phase grains. It is well known that the presence of ω phase 



precipitates in β matrix could be confirmed by electron diffraction pattern [30]. In this 

case omega phase was not observed.   

     (iv) XRD Diffraction studies  

The experimental XRD pattern of Ti25Hf21Nb alloy is shown in figure 4. It is found 

that the microstructure was mainly formed by β-phase with a crystallographic structure 

of body-centered cubic as well as a minor phase of martensitic ´´ with an 

orthorhombic structure (S.G. Cmcm). The two most intense peaks corresponding to 

´´martensitic phase (111 and 002) are partially overlapped by the peak 110 of the β 

phase. However, the (200) ´´ peak (third with higher intensity) can be seen clearly 

confirming its presence. Rietveld refinement yielded a fraction of 61.95 and 38.05 wt.% 

of β and α´´ phases, respectively (weighted profile R factor; Rwp=  15.5). Rietveld 

refinement of the experimental peak positions yielded lattice parameters being a = 

3.3080 Å for the β phase (S.G. Im-3m) whereas for the martensitic ´´ phase a = 3.2507 

Å, b = 4.9025 Å and c = 4.6147 Å (S.G. Cmcm)  

 

3.2. Severely deformed as-drawn microstructure 

The as-drawn wire as produced at Fort Wayne Metals medical wire facility had a 

complex deformed microstructure resulting from the final cold-work. From the SADP 

reproduced in Figure 5, the wire was found to be a mixture of austenite β (BCC), 

orthorhombic martensite α´´ and amorphous phase. The strong crystalline reflections 

belong to the austenite phase whereas the weak martensite reflections indicate that only 

a small amount of martensite was retained. A strong diffuse halo may indicate the 

presence of an amorphous phase. SADP shows arched spots, indicating that the crystal 

lattice was strained and a preferential orientation is probably inherited from the original 

grain. SADP results are in agreement with the results of X-ray diffraction. 



Lattice distortion is also confirmed in the BF images by the non-uniform contrast visible 

in the dark regions. In addition to the high density of dislocations, a complex network of 

twin-like interfaces was observed inside the microstructure (figure 6a). Plastic 

deformation mechanisms create a high density of interfaces and dislocation networks, 

which are responsible for the partial amorphization of the crystalline lattice. 

The HRTEM images are shown in figure 6, exhibiting a microstructure comprising both 

amorphous and crystalline regions (figure 6b). Such microstructure has a great 

similarity with the microstructures arising from the amorphization of NiTi shape 

memory alloy under severe plastic deformation based on cold working, such as high 

pressure torsion (HPT), cold rolling, cold drawing or surface mechanical attrition 

treatment (SMAT) [24-28].      

It is worth noting that microstructures obtained for different final cross-sectional 

reduction (75%, 95% and 99%) were very similar. Although it is difficult to conclude, it 

seems that the diffuse halos which indicate the presence of an amorphous phase is lower 

for less deformed values. 

3.3. Microstructure of  heat-treated wires 

(i) 75 % cold working (75%CW)  

Figure 7 shows details from the microstructures of wires heat-treated. Comparing these 

microstructures with the as-drawn microstructure discussed above, it is observed an 

overall decrease in the lattice strain, segregation of the strained lattice regions and the 

emergence of a clearly defined nanocrystalline microstructure in both heat treatments. 

For HT-A wires, the microstructure consisted of uniform submicron regions, with grain 

size ranging from 220 to 400 nm. Nevertheless, for HT-B wires certain grains showed 

clearly defined grain boundaries and no internal strain contrast whereas others showed 



rather ill-defined boundaries as well as strain contrast. In this case, the grain size ranged 

from 25 to 90 nm. 

Comparing the SADP of the as-drawn microstructure for HT-B wires discussed above 

(figure 7b), the intensity of the halo rings was weaker; suggesting that recrystallization 

in the amorphous areas has already started. Obviously, lattice strain is reduced 

compared to the as-drawn sample since the reflections are less arc-shaped.  

 

(ii) 95 % cold working (95%CW)  

For HT-A wires, most grains showed clearly defined grain boundaries and no internal 

strain contrast was observed (figure 8a). Nanograined regions presented a grain size 

ranging from 290 to 545 nm (x =387.3 nm). For lower treatments times, coexistence of 

recrystallized and recovered microstructures was observed together with ill-defined 

boundaries as well as strain contrast. The recrystallized grains size varied from 50 up to 

112 nm (x =103,4 nm). Although in the original alloy omega phase was not present, 

SADPs from wires showed the existence of ω phase with a hexagonal symmetry. When 

the ω transformation is complete, it was found that the orientation relationship between 

β and ω was (0001)ω //(111)β;<1120>ω//<110>β in agreement with the literature [30]. 

Furthermore, it was verified that experimental ω-lattice parameters aω could be, 

approximately, defined as √2 aβ and cω as aβ [33]. The presence of ω phase 

precipitates in β matrix can be confirmed by electron diffraction pattern, as well as, by 

dark images (figure 9). 

 

(iii) 99 % cold working (99%CW)  

For HT-A wires, microstructure clearly showed defined grain boundaries with a grain 

size from 342 up to 657 nm (x =454.3 nm); whereas for lower treatments times (HT-B), 



the recrystallized grains size were smaller in the range of 50 up to 200 nm (x = 123.4 

nm)  

 

3.4. Mechanical characterization 

(i) Uniaxial tensile testing 

The stress-strain curves obtained for the different materials tested (Figure 11a) showed 

that the elastic modulus of the alloy under study with different grades of cold work (% 

cw) was similar to that of NiTi and much more lower than the elastic modulus of 316L 

and Ti6Al4V. Figure 11b shows monotonic uniaxial tension true stress-strain data for 

the 99% cold-worked wire with treatment A. Total strain to rupture was about 6% true 

strain in both cases with ultimate strength ranging from 800 MPa at elevated 

temperature to 950 Mpa at room temperature. Figure 12 shows cyclic uniaxial tension 

tests that were performed at body temperature (37ºC) and at 150ºC using an Instron load 

frame after 99% cw.   A modulus of elasticity of less than 60 GPa and axial recoverable 

strain of greater than 3% were observed with stress hysteresis resembling a reversible 

stress-induced martensitic transformation at a test temperature of 150°C. Data were 

compared to straight annealed Ti-50.8 at.%Ni (Nitinol). 

(ii) The Rotary Beam Fatigue test. 

Figure 13 shows the results obtained during the Rotary Beam Fatigue test at room 

temperature for Ø 127 μm TiNbHf alloy, NiTi, and typical result for 90% cold-drawn 

316L. At room temperature, Ti25Nb21Hf alloy was capable to perform at higher strain 

values until failure than the other two materials under study. 

4. DISCUSSION 

The microstructure is mainly formed by β-phase with a crystallographic structure of 

body-centered cubic as well as a second phase of martensitic ´´ with an orthorhombic 



structure (S.G. Cmcm). The Rietveld refinement yielded a fraction of 38.05% of α´´ 

martensite. It is well know that the shape memory and superelastic effects are based on 

the formation and reversion of the orthorhombic α´´ phase and therefore profound 

knowledge about the conditions of α´´ formation and its stability are crucial. The XRD 

patterns obtained have a number of similarities with other Ti-Nb [30,31], Ti-Nb-Ta [33] 

or Ti-Nb-Hf [34] alloys studied in the literature. The literature has shown that the 

atomic rearrangements of the martensites h.c.p. α´ and orthorhombic α´´ depend 

strongly on the stoichiometry of the parent phase [35, 36]. For example for TiNb 

systems, higher Nb content results in the formation of α´´ in preference to α´. The 

transition from hexagonal α´ to orthorhombic α´´ martensite was found to lie between 

14 and 16.5 wt% Nb. The experimental results are in accordance with the literature 

since both orthorhombic α´´ martensite (figure 2) and a reversible stress-induced α´´ 

martensitic transformation (figure 12) have been observed for the new Ti24Nb21Hf 

alloy.  

Moreover, the presence of ω phase precipitates in β matrix can be confirmed by electron 

diffraction pattern as well as by dark images (figure 9). A deformation-induced ω-phase 

transformation is expected to occur during cold-working processes because there was no 

ω phase in the original alloy (figure 3). In agreement with the present results, it is 

reported that high applied strain might induce the ω-phase. In the case of Ti and their 

alloys, it has been reported that high applied strain might induce the ω-phase [37, 38]. 

For TiNb alloys and depending on the concentration of β-stabilizing elements, severe 

deformation by wire drawing may yield martensite to ω-phase formation or β to ω 

transformation at relatively low strain [39]. 

For the new Ti25Nb21Hf alloy, the thermal stability of the ω-phase has been found to 

be considerably larger than that of ω-Ti (140ºC) and ω-Zr (250°C) [40]. However, after 



the applied heat treatments (650ºS at 1s and 3s), ω phase is still remaining. Further 

studies will be necessary in order promote the ω to β transformation in terms of anneal 

treatments parameters.  

Thin wires produced with cold-work cross-sectional reduction and subsequent thermal 

treatment can strongly enhance mechanical properties; especially, in terms of 

mechanical strength and cyclic fatigue behavior due to grain refinement down to the 

submicron scale (figures 11-14). Furthermore, the elastic modulus value of the nano-

grained Ti24Nb21Hf alloy was 30 to 40% lower than those of its coarse-grained 

counterpart. Original alloy (size grain, 39 μm±9.2) has a value of 86 GPa while, in all 

the cases, the modulus obtained for the nano-grains wires were between 50 GPa and 59 

GPa (Figure 11). Indeed, lower values are obtained for microstructures having a smaller 

grain size, that is, wires treated at 650ºC for 1second (HT-B).  

There are some reports showing a reduction in the elastic moduli of some 

nanocrystalline materials, compared with the corresponding coarse-sized crystalline 

materials [41-43].  Due to the extremely small dimensions of grains, a large volume 

fraction (e.g. up to 40%) of atoms reside in interface regions. It is reported that the large 

volume fraction of distorted atomic structure could induce the reduction of the elastic 

modulus. Furthermore, the formation of ultrafine-grained structures with high-angle and 

non-equilibrium grains boundaries capable of grain-boundary sliding (GBS) increases 

ductility [43]. 

The 99% cold work sample with treatment A, exhibited reversible strain up to about 4% 

true strain when tested at 150°C.  Unlike pseudoelasticity in typical binary Ti-Ni (see 

Figure 12), the transformation region displayed some hardening slope as opposed to a 

flat plateau.  This effect is attributed to deformation mechanisms changing as a function 

of temperature.  At room temperature (see Figure 11b), the treated Ti25Hf21Nb wire, 



exhibited the typical flat loading plateau associated with low stress martensite 

detwinning and Luders-like deformation.  At elevated temperature (>Af) it is likely that 

distinct stress-induced variants were selected during deformation and that the near-yield 

stresses generated some plastic flow and hardening during partial transformation. 

Finally, it is shown that thin wires present a considerable increase in fatigue life in 

comparison with a similar 90% cold-drawn 316L or superelastic Nitinol wires (Af   

15°C). This is very important because the Ti25Nb21Hf alloy was capable of performing 

at higher strain values until failure than the other two alloys. In terms of nanomaterials 

processing, a noticeable increase in both low and high cycle fatigue has been reported 

[44,45]. For example, it was shown that fine grained Cp Ti Gr.1 processed by ECAP 

(equal-channel angular pressing) revealed a considerable increase in fatigue life and 

fatigue limit when compared with those in the coarse-grain state [46].  

Regardless of the wires, for orthopedic applications the low Young’s modulus close to 

that of human bone is helpful to minimize the stress shielding effect [47]. Most 

commercial alloys used as implant materials present an elastic modulus in the range of 

110 GPa for Ti6Al4V up to 220 GPa for cobalt-chrome alloys. It has been demonstrated 

that, by means of thermo-mechanical treatments (severe plastic deformation), the 

mechanical properties have been enhanced by lowering young’s modulus up to 50 GPa. 

Although still higher than the Young’s modulus of cortical (dense) bone, this alloy is a 

candidate for load bearing implant applications by preliminary fatigue and stiffness 

characteristics. It is well known that the Young’s modulus of the alloy is related to the 

different Young’s modulus values of the different phases present in the microstructure 

[47]. In general, Eβ < Eα” <Eα’ < Eω, therefore it could be interesting to carry out further 

studies in order to remove the ω-metastable phase; as for example by modifying the 

heat-treatments parameters. Therefore, properties such as high strength, low elastic 



modulus, potential pseudo-elasticity and good biocompatibility may provide value in 

many applications. 

 

5. CONCLUSIONS 

A new nickel-free low modulus β-type titanium alloy showing superelastic behavior has 

been characterized. A modulus of elasticity of less than 60 GPa and axial recoverable 

strain of greater than 3% were observed with stress hysteresis resembling a reversible 

stress-induced martensitic transformation at higher temperatures. The ability of β-

TiNbHf alloy to undergo cold deformation with high reductions is of great importance.  

For one, this aspect enables readily scalable process conditions and because high 

deformation (with up to 99% reduction in cross section) combined with subsequent 

recrystallization upon continuous rapid heating allows formation of submicron-grained 

microstructure, with an excellent balance of good recoverability, high strength, 

acceptable ductility and fatigue strength. The microstructural modification and 

consequent adjustment of shape and functional properties by means of 

thermomechanical treatment is effective in enhancing its mechanical properties. 

Homogeneous Ti25Hf21Nb wires compared to straight annealed Ti-50.8 at.%Ni 

(Nitinol) and 90% cold-drawn 316L wires showed attractive  properties in terms of low 

elastic modulus and rotary beam fatigue behavior. Nevertheless, further studies will aid 

in further body-temperature, superelastic, property improvements. In summary, the low 

cytotoxicity and excellent hemocompatibility, as well as its mechanical properties make 

it as an important nickel-free SMA candidate. 
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LEGENDS 

 

Figure 1 Slabs extracted close to the wire edge using the focused ion beam (FIB) technique. 

 

Figure 2 Optical micrograph showing β grains with some martensitic plates inside. 

 

Figure 3. a) β- phase equiaxed grains with a high dislocation density (zone axis [013]) .b)  α´´-

martensitic plates inside the β grains. 

 

Figure 4. X Ray Diffraction pattern showing mainly β phase (PDF 00-044-1288 β-Ti; S.G. Im-

3m (229); PDF 01-071-9958 Nb0.3Ti0.7; S.G orthorhombic Cmcm(63).   

 

Figure 5. Microstructure of wire deformed at different magnifications (12K, 25K and 75K) 

corresponding to scale bar 500, 200 and 100nm respectively. a) As-drawn 75%, b) 95% As-

drawn. 

 

Figure 6. TEM photographs of alloy subjected to deformation by 95%; a)   TEM bright field 

image showing a complex network of twin-like interfaces and non- uniform contrast visible 

regions; b) HRTEM image, corresponding to the area marked with a circle, showing the 

presence of nanocrystalline phase and amorphous phase.  

 

Figure 7. 75 % CW microstructures at different magnifications. Scale bar 500, 200 and 100nm 

respectively. The upper file corresponds to HT-A treatment whereas at the bottom HT-B 

treatment 

 

Figure 8. 95 % CW microstructures at different magnifications 

 

Figure 9. Bright and dark field micrographs showing ω phase.  

 

Figure 10. 99 % cold working microstructures at different magnifications. Scale bar 500, 200 

and 100nm, respectively 

 

Figure 11 a). Uniaxial tensile testing data for Ti-Hf-Nb alloy tested at room temperature (T = 

25°C) at a strain rate of 10-3 s-1. b) Monotonic uniaxial tension true stress-strain data for the 

99% cold-worked wire with treatment A 

 

Figure 12 Comparison of the uniaxial tensile behavior of the alloy TiNbHf (T = 150°C) and  

Ti-50.8 at.% Ni (T= 25ºC). 

 

Figure 13. Results obtained during the Rotary Beam Fatigue test at room temperature for Ø 

127 μm TiNbHf allo Af 100, NiTi Af 15 and typical result for 90% cold-drawn 316L. 
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Alloy  

formulation 

%w Element 

 

Nb Hf Ti 

 

Exp. Theor. Exp. Theor. Exp. Theor. 

Ti-24.8Nb-21Hf 21.41 ±0.65 24.8 21.50 ±0.28 21 57.09 ±0.63 51.2 

 

Table 1. Values of experimental and theoretical chemical composition for the 

designed alloy 

 

 


