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Abstract

We study a natural variant of the implicational fragment of propositional logic. Its
formulas are pairs of conjunctions of positive literals, related together by an implica-
tional-like connective; the semantics of this sort of implication is defined in terms of a
threshold on a conditional probability of the consequent, given the antecedent: we are
dealing with what the data analysis community calls confidence of partial implications
or association rules. Existing studies of redundancy among these partial implications
have characterized so far only entailment from one premise and entailment from two
premises. By exploiting a previously noted alternative view of this entailment in terms
of linear programming duality, we characterize exactly the cases of entailment from
arbitrary numbers of premises. As a result, we obtain decision algorithms of better
complexity; additionally, for each potential case of entailment, we identify a critical
confidence threshold and show that it is, actually, intrinsic to each set of premises and
antecedent of the conclusion.

1 Introduction

The quite deep issue of how to represent human knowledge in a way that is most useful for
applications has been present in research for decades now. Often, knowledge representation
is necessary in a context of incomplete information, whereby inductive processes are required
in addition. As a result, two facets that are common to a great number of works in knowledge
representation, and particularly more so in contexts of inductive inference, machine learning,
or data analysis, are logic and probability.

Adding probability-based mechanisms to already expressive logics enhances their expres-
siveness and usefulness, but pays heavy prices in terms of computational difficulty. Even
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without probability, certain degrees of expressivity and computational feasibility are known
to be incompatible, and this is reflected in the undecidability results for many logics. In
other cases, the balance between expressivity and feasibility hinges on often open complexity-
theoretic statements. To work only within logics known to be polynomially tractable may
imply serious expressiveness limitations.

Literally hundreds of studies have explored this difficult balance. Even limiting ourselves
somewhat to the machine learning perspective, we could mention a large number of references
such as those cited in the book [1], for one.

Both in machine learning and in data mining, one particularly well-studied knowledge
representation mechanism is given by relaxed implication connectives: a relatively natural
abstract concept which can be made concrete in various ways. The common idea is to relax
the semantics of the implication connective so as to allow for exceptions, a feature actually
mandatory in all applications in data analysis or machine learning. However, this can be
done in any of a number of ways; and each form of endowing relaxed implications with
a precise meaning yields a different notion with, often, very different properties. See the
survey [2].

This paper focuses on one of the simplest forms of relaxed implication, endowed with
its most natural semantics: the one given by conditional probability. Syntactically, these
partial implications are pairs of conjunctions of positive propositional literals. For sets X
and Y of propositional variables, we write the corresponding implication as X → Y . Now,
instead of the classical semantics, whereby a model satisfies the implication if it either fails
the antecedent or fulfills the consequent, we want to quantify exceptions; hence, instead of
individual propositional models, our semantic structures are, then, so-called “transactional
datasets”, that is, multisets of propositional models. By mere counting, we find, on each
dataset, a frequentist probability for X and Y seen as conjunctions (or, equivalently, as
events): then, the meaning of the implication is simply that the conditional probability of
the consequent, given the antecedent, exceeds some fixed threshold, here denoted γ ∈ (0, 1).
In application-aware works, very often that quantity, the frequentist conditional probability,
is called confidence of the partial implication. We also use this name here.

This probabilistic version of implications has been proposed in different research commu-
nities. For instance, [3] introduced them as “partial implications”; much later, [4] defined
“association rules” (see also [5] and the survey [6]): these are partial implications that impose
the additional condition that the consequent is a single propositional variable, and where
additional related parameters are used to assess their interest.

Actually, confidence does not seem to be the best choice in practice for the meaning of
a partial implication, as discussed e.g. in [2]. However, it is clearly the most natural choice
and the obvious step to start the logical study of partial implications, many other preferable
options being themselves, actually, variations or sophistications of confidence.

Motivated by practical issues, several works have analyzed notions of redundancy among
partial implications: two proposals in [7] and [8] turned out to be equivalent among them and
were, in turn, as described in [9], equivalent to the natural notion of logical entailment of one
partial implication by another (modulo minor details such as allowing or disallowing empty
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antecedents or consequents). This entailment means that any dataset in which the premise
reaches confidence at least γ must assign confidence at least γ as well to the conclusion.

The contributions of [9] that are relevant to the present paper are chiefly syntactic char-
acterizations of one partial implication entailing another, and of two partial implications
entailing another. Further details are provided below; for the time being, we simply indicate
that, whereas the case of one premise is quite natural, the case of two premises is quite
complex. For perspective, let’s briefly consider here the case of transitivity. In contrast with
full implications, which obey it, here transitivity fails: it is not difficult to see that, if X → Y
has confidence over γ, and Y → Z as well, still most occurrences of Y could be without X ,
leaving low or even zero confidence for X → Z. Even if we consider X → Y and XY → Z,
the probabilities multiply together and leave just γ2 < γ as provable threshold. (Cf. [9].)

A tempting intuition is to generalize the observation and jump to the statement that
no nontrivial consequence follows from two partial implications; however, this statement is
wrong, and an explicit example of proper entailment from two premises is given in the same
reference and restated below in Section 3.1.

Besides offering this observation, [9] goes beyond, and generalizes the example into a
precise characterization of when a partial implication is entailed by two partial implications.
The proof is not deep, using just basic set-theoretic constructions; but it is long, cumbersome,
and of limited intuitive value. Attempts at generalizing it directly to more than two premises
rapidly reach unmanageable difficulties, among which the most important one is the lack of
hints at a crucial property that we will explain below in Section 5.1.

Here, we identify an alternative, quite different approach, that turns out to be successful
in finding the right generalization. The new ingredient is a connection with linear program-
ming that is almost identical to a technical lemma in [10]. Stated in our language, the lemma
asserts that k partial implications entail another if and only if the dual of a natural linear
program associated to the entailment is feasible. We develop this tool and use it to get our
main results:

1) for low enough values of the confidence threshold γ, we use this connection to show
that k partial implications never entail nontrivially another one;

2) for high enough values of γ, we use it also to provide a characterization of the cases in
which k partial implications entail another one, but this one purely in terms of elementary
Boolean algebraic conditions among the sets of attributes that make the partial implications;

3) for the intermediate values of γ, we explain how to compute the exact threshold, if
any, at which a specific set of k partial implications entails another one.

The characterizations provide algorithms to decide whether a given entailment holds.
More concretely, under very general conditions including the case that γ is large, the connec-
tion to linear programming gives an algorithm that is polynomial in the number of premises k,
but exponential in the number of attributes n. Our subsequent characterization reverses the
situation: it gives an algorithm that is polynomial in n but exponential in k. This may sound
surprising since the proof of this characterization is based on the previous LP-based take;
but it merely reflects the fact that, in our proof of our main characterization, the theory of
linear programming was just used as a technical tool.
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At any rate, our main characterization also shows that the decision problem for entail-
ments at large γ is in NP, and this does not seem to follow from the linear programming
formulation by itself (since the program is exponentially big in n), let alone the definition
of entailment (since the number of datasets on n attributes is infinite). We discuss this in
Section 7.

2 Preliminaries and notation

Our expressions involve propositional variables, which receive Boolean values from proposi-
tional models; we define their semantics through data-sets: simply, multisets of propositional
models. However, we mostly follow a terminology closer to the standard one in the data anal-
ysis community, where our propositional variables are called attributes or, sometimes, items;
likewise, a set of attributes (that is, a propositional model), seen as an element of a dataset,
is often called a transaction.

Thus, attributes take Boolean values, true or false, and a transaction is simply a subset
of attributes, those that would be set to true if we thought of it as a propositional model.
Typically, our set of attributes is simply [n] := {1, . . . , n}, for a natural number n, so
transactions are subsets of [n]. Fix now such a set of attributes.

If Z is a transaction andX is a set of attributes, we say that Z covers X ifX ⊆ Z. A data-
set, as a multi-set of transactions, is formally a mapping from the set of all transactions to the
natural numbers: their multiplicities as members of the data-set (alternative formalizations
exist in the literature). If D is a data-set and X is a set of attributes, we write CD[X ] for
the number of transactions in D that cover X , counted with multiplicity.

A partial or probabilistic implication is made of a pair of finite subsets X and Y of
attributes. We write them as X → Y . If X and Y are sets of attributes, we write XY
to denote their union X ∪ Y . This is fully customary and very convenient notation in this
context. Let X → Y be a partial implication with all its attributes in [n]. If D is a data-
set on the set of attributes [n], and γ is a real parameter in the interval [0, 1], we write
D |=γ X → Y if either CD[X ] = 0, or else CD[XY ]/CD[X ] ≥ γ. Thus, if we think of D as
specifying the probability distribution on the set of transactions that assigns probabilities
proportionally to their multiplicity in D, then D |=γ X → Y if and only if the conditional
probability of Y given X is at least γ.

If X0 → Y0, . . . , Xk → Yk are partial implications, we write

X1 → Y1, . . . , Xk → Yk |=γ X0 → Y0 (1)

if for every data-set D for which D |=γ Xi → Yi holds for every i ∈ [k], it also holds that
D |=γ X0 → Y0. Note that the symbol |=γ is overloaded much in the same way that the
symbol |= is overloaded in propositional logic. In case Expression (1) holds, we say that
the entailment holds, or that the set X1 → Y1, . . . , Xk → Yk entails X0 → Y0 at confidence
threshold γ. If Σ is a set of partial implications for which Σ |=γ X0 → Y0 holds but
Γ |=γ X0 → Y0 does not hold for any proper subset Γ ⊂ Σ, then we say that the entailment
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holds properly. Note that entailments without premises vacuously hold properly when they
hold. The real number γ is often referred to as the confidence parameter.

A linear program (LP) is the following optimization problem: min{cTx : Ax ≥ b, x ≥ 0},
where x is a vector of n real variables, b and c are vectors in R

m and R
n, respectively, and

A is a matrix in R
m×n. The program is feasible if there exists an x ∈ R

n such that Ax ≥ b
and x ≥ 0. The program is unbounded if there exist feasible solutions with arbitrarily small
values of the objective function cTx. If the goal were max instead of min, unboundedness
would refer to arbitrarily large values of the objective function. The dual LP is max{bTy :
ATy ≤ c, y ≥ 0}, where y is a vector of m real variables. Both LPs together are called a
primal-dual pair. The duality theorem of linear programming states that exactly one of the
following holds: either both primal and dual are infeasible, or one is unbounded and the
other is infeasible, or both are feasible and have optimal points with the same optimal value.
See [11] [Corollary 25 and Theorem 23].

3 Related Work and Technical Basis

We review here connected existing work. We describe first the results from [9] on entailments
among partial implications with one or two premises. The study there starts with a detailed
comparison of entailment as defined in Section 2 with the notions of redundancy among
partial implications previously considered in the literature. Here we go directly to the point
and consider entailment as defined in Section 2 from the start. Then, we develop a variant
of a result in [10], adapted to our context and notation, on which our main results are based,
plus additional properties related to that variant.

3.1 Entailment with up to two premises

We discuss here Expression (1) for k ≤ 2. For this subsection and most of the paper
we assume that the confidence parameter γ is strictly positive; otherwise everything holds
everywhere, and strictly below 1; otherwise we fall back to classical implication.

The case of zero premises, i.e. tautological partial implications, trivializes to the classical
case: |=γ X0 → Y0 if and only if Y0 ⊆ X0, at any positive confidence threshold γ. The
first interesting case is thus the entailment from one partial implication X1 → Y1 to another
X0 → Y0. If X0 → Y0 is tautological by itself, there is nothing else to say. Otherwise,
entailment is still characterized by a simple Boolean algebraic condition on the sets X0, Y0,
X1, and Y1 as stated in the following theorem:

Theorem 1 ([9]). Let γ be a confidence parameter in (0, 1) and let X0 → Y0 and X1 → Y1

be two partial implications. Then the following are equivalent:

1. X1 → Y1 |=γ X0 → Y0,

2. either Y0 ⊆ X0, or X1 ⊆ X0 and X0Y0 ⊆ X1Y1.
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Note that the second statement is independent of γ. This shows that entailment at confidence
γ below 1 differs from classical entailment. An example shows this equally well: although it
is obvious that A → B classically entails AC → BC, the entailment fails badly when both
the premise and the conclusion are considered as partial implications at some confidence γ
in (0, 1): any data-set with many ocurrences of AB, only one occurrence of AC, and none
at all of BC, ruins everything. Of course, what fails is that X0Y0 is not included in X1Y1.

The case of two partial implications entailing a third was also solved in [9]. The starting
point for that study was a specific example of a non-trivial entailment:

A → BC, A → BD |=1/2 ACD → B. (2)

Indeed, this entailment holds true at any γ in the interval [1/2, 1). This is often found
counterintuitive. The intuition of many is that combining two partial implications that only
guarantee the threshold γ < 1 would lead to arithmetic operations leading to values un-
avoidably below γ. Classical transitivity as discussed in the introduction is a good example.
However, this intuition is incorrect, as (2) shows. The good news is that a similar statement,
when appropriately generalized, covers all the cases of entailment from two partial implica-
tion premises. We omit the proof of (2) as it follows from the next theorem, which will be
generalized in our main result.

Theorem 2 ([9]). Let γ be a confidence parameter in (0, 1) and let X0 → Y0, X1 → Y1 and
X2 → Y2 be three partial implications. If γ ≥ 1/2, then the following are equivalent:

1. X1 → Y1, X2 → Y2 |=γ X0 → Y0,

2. either Y0 ⊆ X0, or Xi ⊆ X0 and X0Y0 ⊆ XiYi for some i ∈ {1, 2}, or all seven
inclusions below hold simultaneously:

(a) X1 ⊆ X2Y2 and X2 ⊆ X1Y1,

(b) X1 ⊆ X0 and X2 ⊆ X0,

(c) X0 ⊆ X1X2Y1Y2.

(d) Y0 ⊆ X0Y1 and Y0 ⊆ X0Y2,

Indeed, the characterization is even tighter than what this statement suggests: whenever
γ < 1/2, it can be shown that entailment from two premises holds only if it holds from one
or zero premises. This was also proved in [9], thus fully covering all cases of entailment with
two premises and all confidence parameters γ. Note, finally, that all conditions stated in the
theorem are easy to check by an algorithm running in time O(n), where n is the number of
attributes, if the sets are given as bit vectors, say.

The proof of Theorem 2 in [9] is rather long and somewhat involved, although it uses only
elementary Boolean algebraic manipulation. For instance, several different counterexamples
to the entailment are built ad hoc depending on which of the seven set-inclusion conditions
fail. Its intuition-building value is pretty limited, and a generalization to the case of more
than two premises remained elusive. A somewhat subtle point about Theorem 2 is that the
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seven inclusion conditions alone do not characterize proper entailment (even if γ ≥ 1/2, that
is): they are only necessary conditions for that. But when these necessary conditions for
proper entailment are disjuncted with the necessary and sufficient conditions for improper
entailment, what results is an if and only if characterization of entailment. That is why the
theorem is stated as it is, with the two escape clauses at the beginning of part 2. Our main
result will have a similar flavour, but with fewer cases to consider.

Before we move on to larger numbers of premises, one more comment is in order. Among
the seven set-inclusion conditions in the statement of Theorem 2, those in the first item
X1 ⊆ X2Y2 and X2 ⊆ X1Y1 are by far the least intuitive. Discovering the right generalization
of this turned out to be the key to getting our results. This is discussed in Sections 5.1
and 5.3. Before that, however, we need to discuss a characterization of entailment in terms
of linear programming duality. Interestingly, LP will end up disappearing altogether from
the statement that generalizes Theorem 2; its use will merely be a (useful) technical detour.

3.2 Entailment in terms of LP duality

The goal in this section is to characterize the valid entailments as in Expression (1),

X1 → Y1, . . . , Xk → Yk |=γ X0 → Y0,

where each Xi → Yi is a partial implication on the set of attributes [n]. The characterization
can be seen as a variant, stated in the standard form of linear programming and tailored
to our setting, of Proposition 4 in [10], where it applies to deduction rules of probabilistic
consequence relations in general propositional logics. Our linear programming formulation
makes it easy to check a number of simple properties of the solutions of the dual linear
program at play, which are necessary for our application (Lemma 5). Before we state the
characterization, we want to give some intuition for what to expect. At the same time we
introduce some notation and terminology.

Following standard usage in full implications (see e.g. [12]), we say that a transaction
Z ⊆ [n] covers X → Y if X ⊆ Z, and that it violates it if X ⊆ Z but Y 6⊆ Z. If Z covers
X → Y without violating it, that is, XY ⊆ Z, we say that Z witnesses X → Y . For each
partial implication X → Y and each transaction Z we define a weight wZ(X → Y ) that,
intuitively, measures the extent to which Z witnesses X → Y . Moreover, since we are aiming
to capture confidence threshold γ we assign the weight proportionally:

wZ(X → Y ) = 1− γ if Z witnesses X → Y,
wZ(X → Y ) = −γ if Z violates X → Y,
wZ(X → Y ) = 0 if Z does not cover X → Y.

With these weights in hand we give a quantitative interpretation to the entailment in Ex-
pression (1).

First note that the weights are defined in such a way that, as long as γ > 0, a transaction
Z satisfies the implication X → Y interpreted classically if and only if wZ(X → Y ) ≥ 0.
With this in mind the entailment in Expression (1) interpreted classically would read as
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follows: for all Z, whenever all weights on the left are non-negative, the weight on the right
is also non-negative. Of course, a sufficient condition for this to hold would be that the
weights on the right are bounded below by some non-negative linear combination of the
weights on the left, uniformly over Z. What the characterization below says is that this
sufficient condition for classical entailment is indeed necessary and sufficient for entailment
at confidence threshold γ, if the weights are chosen proportionally to γ as above. Formally:

Theorem 3. Let γ be a confidence parameter in [0, 1] and let X0 → Y0, . . . , Xk → Yk be a
set of partial implications. The following are equivalent:

1. X1 → Y1, . . . , Xk → Yk |=γ X0 → Y0

2. There is a vector λ = (λ1, . . . , λk) of real non-negative components such that for all
Z ⊆ [n]

k
∑

i=1

λi · wZ(Xi → Yi) ≤ wZ(X0 → Y0) (3)

Towards the proof of Theorem 3, let us state a useful lemma. This gives an alternative
understanding of the weights wZ(X → Y ) than the one given above:

Lemma 4. Let γ be a confidence parameter in [0, 1], let X → Y be a partial implication, let
D be a transaction multiset, and for each Z ⊆ [n] let xZ be the multiplicity of Z in D, that is,
the number of times that Z appears (as a complete transaction) in D. Then, D |=γ X → Y
if and only if

∑

Z⊆[n]wZ(X → Y ) · xZ ≥ 0.

Proof. Let U denote the set of transactions in D that cover X → Y , let V denote those that
violate X → Y , and W those that witness X → Y . Observe that U = V ∪W and that this
union is a partition. By definition, D |=γ X → Y means that either

∑

Z∈U xZ = 0, or else
(
∑

Z∈W xZ

)

/
(
∑

Z∈U xZ

)

≥ γ. Recalling that V ∪W = U is a partition, this is equivalent to
∑

Z∈W xZ ≥ γ ·
(
∑

Z∈W xZ +
∑

Z∈V xZ

)

. Rearranging we get
∑

Z∈W(1−γ)·xZ−
∑

Z∈V γ ·xZ ≥
0, from which the result follows by recalling that wZ(X → Y ) = 1− γ for each Z ∈ W and
wZ(X → Y ) = −γ for each Z ∈ V, and that wZ(X → Y ) = 0 for every other Z.

This lemma is parallel to the first part of the proof of Proposition 4 in [10]. With this
lemma in hand we can prove Theorem 3. We resort to duality here, while the version in [10]
uses instead the closely related Farkas’ Lemma.

Proof of Theorem 3. The statement of Lemma 4 leads to a natural linear program: for
every Z let xZ be a non-negative real variable, impose on these variables the inequalities
from Lemma 4 for X1 → Y1 through Xk → Yk, and check if the corresponding inequality for
X0 → Y0 can be falsified by minimizing its left-hand side:

P : min
∑

Z⊆[n]wZ(X0 → Y0) · xZ

s.t.
∑

Z⊆[n]wZ(Xi → Yi) · xZ ≥ 0 all i ∈ [k],

xZ ≥ 0 all Z.
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The dual D of P has one non-negative variable yi for every i ∈ [k] and one inequality
constraint for each non-negative variable xZ . Since the objective function of D would just
be the trivial constant function 0 we write it directly as a linear programming feasibility
problem:

D:
∑

i∈[k]wZ(Xi → Yi) · yi ≤ wZ(X0 → Y0) all Z,

y1, . . . , yk ≥ 0

Note that this is really the characterization statement in the theorem that we are trying to
prove, with yi in place of λi. Thus, the theorem will be proved if we show that the following
are equivalent:

(1) X1 → Y1, . . . , Xk → Yk |=γ X0 → Y0,

(2) the primal P is feasible and bounded below,

(3) the dual D is feasible.

(1) ⇒ (2). We prove the contrapositive. Assume that P is unbounded below; it is
certainly feasible since the all-zero vector satisfies all constraints. Let x be a feasible solution
with

∑

Z⊆[n]wZ(X0 → Y0) · xZ < 0. Since the rationals are dense in the reals and linear
maps are surely continuous, we may assume that x has rational components with a positive
common denominator N , while preserving feasibility and a negative value for the objective
function. Then N ·x is still a feasible solution and its components are natural numbers. Let
D be the transaction multiset that has N · xZ copies of Z for every Z ⊆ [n]. By feasibility
we have

∑

Z⊆[n]wZ(Xi → Yi) ·N · xZ ≥ 0 and therefore D |=γ Xi → Yi for every i ∈ [k] by

Lemma 4. On the other hand
∑

Z⊆[n]wZ(X0 → Y0) · N · xZ < 0 from which it follows that

D 6|=γ X0 → Y0, again by Lemma 4.
(2) ⇒ (3). This is a direct consequence of the duality theorem for linear programming:

if P is feasible and bounded below, D is feasible; see the preliminaries and the references
there.

(3) ⇒ (1). Assume D is feasible and let y be a feasible solution. Let D be a transaction
multiset such that D |=γ Xi → Yi for every i ∈ [k]. For every Z ⊆ [n], let xZ be the number
of times that Z appears (alone, as a complete transaction) in D. By dual feasibility of y and
positivity of xZ we get

∑

Z⊆[n]

wZ(X0 → Y0) · xZ ≥
∑

Z⊆[n]

(

∑

i∈[k]

wZ(Xi → Yi) · yi
)

· xZ .

Distributing, exchanging the order of summation, and refactoring, the right-hand side reads
∑

i∈[k]

yi ·
(

∑

Z⊆[n]

wZ(Xi → Yi) · xZ

)

.

Note that this is non-negative since the yi are non-negative and
∑

Z⊆[n]wZ(Xi → Yi) ·xZ ≥ 0

for every i ∈ [k] by the assumption on D and Lemma 4. This proves that
∑

Z⊆[n]wZ(X0 →

Y0) · xZ ≥ 0, from which D |=γ X0 → Y0 follows by one more call to Lemma 4.
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3.3 Properties of the LP characterization

Whenever an entailment as in Expression (1) holds properly, the characterization in Theo-
rem 3 gives a good deal of information about the inclusion relationships that the sets satisfy,
and about the values that the λi can take. In this section we discuss this. Note that, from
now on, the confidence parameter γ is in (0, 1) instead of [0, 1].

Lemma 5. Let γ be a confidence parameter in (0, 1) and let X0 → Y0, . . . , Xk → Yk be a set
of partial implications with k ≥ 1. Assume that the entailment X1 → Y1, . . . , Xk → Yk |=γ

X0 → Y0 holds properly. In particular, Y0 6⊆ X0. Let λ = (λ1, . . . , λk) denote any vector as
promised to exist by Theorem 3 for this entailment. The following hold:

1. λi > 0 for every i ∈ [k].

2. X0Y0 ⊆ X1Y1 · · ·XkYk.

3.
∑

i∈[k] λi ≤ 1.

4. Xi ⊆ X0 for every i ∈ [k].

5. XiYi 6⊆ X0 for every i ∈ [k].

6.
∑

i∈[k] λi = 1.

7. Y0 ⊆ X0Yi for every i ∈ [k].

Proof. The order in which we state them is the one that we deem best to follow smoothly
the flow of proofs, as some of them are proved jointly and/or depend on previous ones. In
what follows, for every Z, define:

UZ = {i ∈ [k] : Z covers Xi → Yi},

VZ = {i ∈ [k] : Z violates Xi → Yi},

WZ = {i ∈ [k] : Z witnesses Xi → Yi}.

Note that UZ = VZ ∪WZ and that this union is a partition.
1. For every i ∈ [k], if λi = 0, then the inequalities in Expression (3) reduce to the same

inequalities for the entailment without the i-th premise, and the remaining λj would still
be a solution. Then, by Theorem 3 itself the entailment would not be proper, as premise i
could be removed without affecting its validity.

2. Consider the inequality in Expression (3) for Z = X1Y1 · · ·XkYk. Obviously Z wit-
nesses every Xi → Yi, so WZ = [k]. Assume for contradiction that X0Y0 6⊆ X1Y1 · · ·XkYk.
Then the inequality reads either −γ ≥ (1− γ) ·

∑

i∈[k] λi or 0 ≥ (1− γ) ·
∑

i∈[k] λi, and both
cases are impossible since the right-side is strictly positive by the previous item and the fact
that γ < 1. Therefore X0Y0 ⊆ X1Y1 · · ·XkYk.

3. Considering still the same inequality, we know now that it reads 1 − γ ≥ (1 − γ) ·
∑

i∈[k] λi. From this we conclude that
∑

i∈[k] λi ≤ 1 since γ < 1.
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4, 5 and 6. Now consider the inequality in Expression (3) for Z = X0. As the entailment
is proper we have Y0 6⊆ X0 = Z and therefore Z violates X0 → Y0. So the inequality reads
−γ ≥ (1− γ) ·

∑

i∈WZ
λi − γ ·

∑

i∈VZ
λi. As λi ≥ 0 we get −γ ≥ −γ ·

∑

i∈VZ
λi and therefore

∑

i∈VZ
λi ≥ 1 since γ > 0. But also

∑

i∈[k] λi ≤ 1 from which it follows that VZ = [k]
since each λi is strictly positive. Thus Z violates every Xi → Yi, so Xi ⊆ Z = X0 and
XiYi 6⊆ Z = X0 for every i. Also

∑

i∈[k] λi = 1 follows.

7. For every i ∈ [k], consider the inequality in Expression (3) for Z = X0Yi. We
proved in item 4 that Xi ⊆ X0. It follows that XiYi ⊆ X0Yi = Z and thus i ∈ WZ . Now
assume for contradiction that Y0 6⊆ Z. Then Z violates X0 → Y0 and the inequality reads
−γ ≥ (1 − γ) ·

∑

j∈WZ
λj − γ ·

∑

j∈VZ
λj. Since i ∈ WZ and λj ≥ 0 for every j ∈ [k], the

right-hand side of this inequality is at least (1− γ) · λi − γ ·
∑

j∈[k]\{i} λj = λi − γ ·
∑

j∈[k] λj .

But this is strictly bigger than −γ since λi > 0 by item 1 and
∑

j∈[k] λi ≤ 1 by item 3. This
contradiction proves that the assumption Y0 6⊆ Z was wrong. Thus Y0 ⊆ Z = X0Yi.

4 Low thresholds

As it turns out, if the confidence parameter γ is too low, then there cannot be any entailment
as in Expression (1) that does not already follow from one of its premises. In such a case
the characterization follows from known ones. This is what the next theorem states:

Theorem 6. Let γ be a confidence parameter in (0, 1) and let X0 → Y0, . . . , Xk → Yk be a
set of partial implications with k ≥ 1. If γ < 1/k, then the following are equivalent:

1. X1 → Y1, . . . , Xk → Yk |=γ X0 → Y0,

2. Xi → Yi |=γ X0 → Y0 for some i ∈ [k],

3. either Y0 ⊆ X0, or Xi ⊆ X0 and X0Y0 ⊆ XiYi for some i ∈ [k].

Proof. The equivalence between 2. and 3. follows from the characterization of entailments
with one premise. We prove the equivalence between 1. and 2., and for that we just need to
argue the implication 1. to 2. since the other one is obvious. Assume 1. and let L ⊆ [k] be
minimal under set inclusion so that {Xi → Yi : i ∈ L} |=γ X0 → Y0. If |L| ≤ 1 we already
have what we want. Assuming |L| ≥ 2 we prove γ ≥ 1/k; this will prove the theorem.

Let λ = (λi : i ∈ L) be a solution to the inequalities in Expression (3) for {Xi →
Yi : i ∈ L} |=γ X0 → Y0 as per Theorem 3. By the minimality of L, the entailment
{Xi → Yi : i ∈ L} |=γ X0 → Y0 is proper. As γ is in the interval (0, 1) and |L| ≥ 1 (indeed
≥ 2), Lemma 5 applies to {Xi → Yi : i ∈ L} |=γ X0 → Y0 and says that Xi ⊆ X0 for
every i ∈ L, by part 4. Consequently, by the fact that |L| ≥ 2, the minimality of L, and the
characterization of entailment with at most one premise (Theorem 1), we have X0Y0 6⊆ XiYi

for every i ∈ L. Now, for fixed i ∈ L, let us look at the inequality in Expression (3) for
Z = XiYi. The above says that Z does not witness X0 → Y0 so wZ(X0 → Y0) ≤ 0. Of course
Z witnesses Xi → Yi, so wZ(Xi → Yi) = 1− γ. Any other weight is at least −γ. Therefore,
the inequality implies the following: 0 ≥ λi · (1− γ)− γ ·

∑

j∈L\{i} λj = λi − γ ·
∑

j∈L λj. By

11



Lemma 5, part 3, we have
∑

j∈L λj ≤ 1. We conclude that λi ≤ γ, and this holds for every
i ∈ L. Adding over i ∈ L we get

∑

i∈L λi ≤ γ · |L|, and the left-hand side is 1 by Lemma 5,
part 6. Thus γ ≥ 1/|L| ≥ 1/k and the theorem is proved.

5 High thresholds

The goal of this section is to characterize entailments from k partial implications when the
confidence parameter γ is large enough, and our proofs will show that (k − 1)/k is enough.
Ideally, the characterization should make it easy to decide whether an entailment holds, or
at least easier than solving the linear program given by Theorem 3. We come quite close
to that. Before we get into the characterization, let us first discuss the key new concept on
which it rests.

5.1 Enforcing homogeneity

We say that a set of partial implications X1 → Y1, . . . , Xk → Yk enforces homogeneity if for
every Z the following holds:

if for all i ∈ [k] either Xi 6⊆ Z or XiYi ⊆ Z holds,
then either Xi 6⊆ Z holds for all i ∈ [k]

or XiYi ⊆ Z holds for all i ∈ [k].

In words, enforcing homogeneity means that every Z that does not violate any Xi → Yi,
either witnesses them all, or does not cover any of them. Note that this definition does not
depend on any confidence parameter. For economy of words, sometimes we refer to a set of
partial implications that enforces homogeneity as being nice.

Note also that the empty set of partial implications vacuously enforces homogeneity; in
fact, sets with less than two elements are trivially nice.

Homogeneity sounds like a very strong requirement. However, as the following lemma
shows, it is at the heart of proper entailments.

Lemma 7. Let X1 → Y1, . . . , Xk → Yk be a set of partial implications with k ≥ 1. If
there exists a partial implication X0 → Y0 and a confidence parameter γ in the interval
(0, 1) for which the entailment X1 → Y1, . . . , Xk → Yk |=γ X0 → Y0 holds properly, then
X1 → Y1, . . . , Xk → Yk enforces homogeneity.

Proof. Fix X0 → Y0 and γ as in the statement of the lemma. We must show that if Z does
not violate Xi → Yi for any i ∈ [k], then either Z witnesses all of them, or Z does not cover
any of them. Fix Z that does not violate Xi → Yi for any i ∈ [k]. In particular, for every
i ∈ [k], either Z does not cover Xi → Yi, or Z witnesses Xi → Yi. Thus wZ(Xi → Yi) ≥ 0
for every i ∈ [k]. If Z does not cover Xj → Yj for any j ∈ [k] we are done. Assume then
that Z covers Xj → Yj for some j ∈ [k]. Since it does not violate it, it witnesses it, which
means that wZ(Xj → Yj) = 1− γ.

12



Now let us take a solution λ = (λ1, . . . , λk) as promised by Theorem 3, and let us
consider the inequality in Expression (3) for our fixed Z. This inequality reads wZ(X0 →
Y0) ≥

∑

i∈[k] λi · wZ(Xi → Yi). Since we proved that wZ(Xi → Yi) ≥ 0 for every i ∈ [k], the

right-hand side is at least λj ·wZ(Xj → Yj), which is λj · (1− γ), for the j from the previous
paragraph. Now, by Lemma 5.1 we have λj > 0 because the entailment is proper. Putting
all this together we get wZ(X0 → Y0) > 0, so Z witnesses X0 → Y0. Thus X0Y0 ⊆ Z. But
we also know that Xi ⊆ X0 for every i ∈ [k] by Lemma 5.4. Thus Xi ⊆ Z for every i ∈ [k].
Since Z does not violate Xi → Yi for any i ∈ [k], it must then be that Z witnesses Xi → Yi

for every i ∈ [k]. Precisely what we were trying to prove.

The next lemma in this section characterizes nicety. For a partial implication X → Y ,
let X ⇒ Y denote its classical counterpart. Naturally, we write Z |= X ⇒ Y if either X 6⊆ Z
or XY ⊆ Z, i.e. if Z satisfies the implication classically. Also, in the context of classical
implications, we use |= to denote classical entailment.

Lemma 8. Let X1 → Y1, . . . , Xk → Yk be a set of partial implications and let U =
X1Y1 · · ·XkYk. Then, the following are equivalent:

1. X1 → Y1, . . . , Xk → Yk enforces homogeneity,

2. X1 ⇒ Y1, . . . , Xk ⇒ Yk |= Xi ⇒ U , all i ∈ [k].

Proof. Assume X1 → Y1, . . . , Xk → Yk enforces homogeneity. Let Z |= Xi ⇒ Yi for all
i ∈ [k]. Then, by homogeneity, either Xi 6⊆ Z for all i ∈ [k], and then it also holds
Z |= Xi ⇒ U for all i ∈ [k], or XiYi ⊆ Z for all i ∈ [k] so that U ⊆ Z, and Z |= Xi ⇒ U for
all i ∈ [k] as well. Therefore, X1 ⇒ Y1, . . . , Xk ⇒ Yk entail every Xi ⇒ U .

Conversely, assume that X1 ⇒ Y1, . . . , Xk ⇒ Yk entail every Xi ⇒ U and let Z |= Xi ⇒
Yi for all i ∈ [k], hence Z |= Xi ⇒ U for all i ∈ [k]. Then either U ⊆ Z and we are done, or,
else, the only way to satisfy all these classical implications is by falsifying all the premises, so
that Xi 6⊆ Z for all i ∈ [k]. Therefore we have proved that X1 → Y1, . . . , Xk → Yk enforces
homogeneity.

This characterization is quite useful. Look at the set of three partial implications B →
ACH,C → AD,D → AB on the attributes A,B,C,D,H . By the lemma this set enforces
homogeneity, but any of its two-element subsets fails to do so. Note also that condition 2.
in the lemma can be decided efficiently by testing the unsatisfiability of all the propositional
Horn formulas of the form (X1 ⇒ Y1) ∧ · · · ∧ (Xk ⇒ Yk) ∧Xj ∧ ¬A as j ranges over [k] and
A ranges over the attributes in U .

5.2 Main result for high threshold

We are ready to state and prove the characterization theorem for γ ≥ (k − 1)/k.

Theorem 9. Let γ be a confidence parameter in (0, 1) and let X0 → Y0, . . . , Xk → Yk be a
set of partial implications with k ≥ 1. If γ ≥ (k − 1)/k, then the following are equivalent:
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1. X1 → Y1, . . . , Xk → Yk |=γ X0 → Y0,

2. there is a set L ⊆ [k] such that {Xi → Yi : i ∈ L} |=γ X0 → Y0 holds properly,

3. either Y0 ⊆ X0, or there is a non-empty L ⊆ [k] such that the following conditions
hold:

(a) {Xi → Yi : i ∈ L} enforces homogeneity,

(b)
⋃

i∈LXi ⊆ X0 ⊆
⋃

i∈LXiYi,

(c) Y0 ⊆ X0 ∪
⋂

i∈L Yi.

Proof. That 1. implies 2. is clear: the family of all sets L ⊆ [k] for which the entailment
{Xi → Yi : i ∈ L} |=γ X0 → Y0 holds is non-empty, as 1. says that [k] belongs to it. Since it
is finite it has minimal elements. Let L be one of them.

From 2. to 3., the index set L will be the same in both statements, unless L = ∅, in which
case Y0 ⊆ X0 must hold and we are done. Assume then that L is not empty. Part (a) we get
automatically from Lemma 7 since {Xi → Yi : i ∈ L} properly entails X0 → Y0 at γ, which
is in the interval (0, 1). Now we prove (b). By Theorem 3, let λ = (λi : i ∈ L) be a solution
to the inequalities in Expression (3) for the entailment {Xi → Yi : i ∈ L} |=γ X0 → Y0.
From the fact that this entailment is proper and the assumptions that |L| ≥ 1 and γ ∈ (0, 1),
we are allowed to call Lemma 5. The first inclusion in (b) follows from that lemma, part 4.
The second inclusion in (b) also follows from that lemma, part 2. Finally, for (c) we just
refer to part 7 and straightforward distributivity.

For the implication from 3. to 1. we proceed as follows. If Y0 ⊆ X0 there is nothing to
prove since then the entailment is trivial. Assume then that L is non-empty and satisfies
(a), (b), and (c). By Theorem 3 it suffices to show that the inequalities in Expression (3)
for the entailment {Xi → Yi : i ∈ L} |=γ X0 → Y0 have a solution λ = (λi : i ∈ L) with
non-negative components. Let ℓ = |L| and set λi = 1/ℓ for i ∈ L. Recall that L is not empty
so ℓ ≥ 1 and this is well-defined. For fixed Z, we prove that the inequality in Expression (3)
for this Z is satisfied by these λi. In the following, let X =

⋃

i∈L Xi and Y =
⋂

i∈L Yi. We
distinguish cases according to whether X ⊆ Z.

First assume that X 6⊆ Z. Then, by the first inclusion in (b), X0 6⊆ Z so Z does not cover
X0 → Y0 and wZ(X0 → Y0) = 0. Also, there exists j ∈ L such that Xj 6⊆ Z. If XiYi 6⊆ Z
for every i ∈ L, then Z does not witness any Xi → Yi, so wZ(Xi → Yi) ≤ 0 for every i ∈ L.
Whence

∑

i∈L λi · wZ(Xi → Yi) is non-positive and then bounded by wZ(X0 → Y0) = 0 as
required. Hence, suppose now that there exists i ∈ L such that XiYi ⊆ Z. We also have a
j ∈ L such that Xj 6⊆ Z. Thus Z witnesses Xi → Yi and fails to cover Xj → Yj , and both
i and j are in L. As {Xi → Yi : i ∈ L} enforces homogeneity, this means that Z violates
Xh → Yh for some h ∈ L. For that h we have wZ(Xh → Yh) = −γ. The rest of weights are
at most 1− γ and therefore

∑

i∈L λi · wZ(Xi → Yi) is bounded above by

−
1

ℓ
· γ +

ℓ− 1

ℓ
· (1− γ) =

ℓ− 1

ℓ
− γ.
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Since ℓ ≤ k, this is at most (k− 1)/k− γ. In turn, this is non-positive and then bounded by
wZ(X0 → Y0) = 0 by the assumption that γ ≥ (k − 1)/k. This proves that the inequalities
corresponding to these Z’s are satisfied.

Assume now instead X ⊆ Z. In this case Z covers Xi → Yi for every i ∈ L. Thus we
split L into two sets, L = V ∪W , where V is the set of indices i ∈ L such that Z violates
Xi → Yi, and W is the set of indices i ∈ L such that Z witnesses Xi → Yi. Of course
wZ(Xi → Yi) = −γ for every i ∈ V and wZ(Xi → Yi) = 1− γ for every i ∈ W . We consider
three subcases.

1. If W = ∅, then every Xi → Yi with i ∈ L is violated and then, using that the λi’s add
up to 1,

∑

i∈L λi · wZ(Xi → Yi) = −γ ·
∑

i∈L λi = −γ ≤ wZ(X0 → Y0); i.e. the inequality
holds.

2. If W = L, then every Xi → Yi with i ∈ L is witnessed. Using (b) we get X0 ⊆
⋃

i∈L XiYi ⊆ Z, and the non-emptiness of L applied to (c) ensures the existence of some
i ∈ L for which Y0 ⊆ X0 ∪ Y ⊆ X0 ∪ Yi ⊆ Z. Thus X0 → Y0 is also witnessed and
∑

i∈L λi ·wZ(Xi → Yi) = (1− γ) ·
∑

i∈L λi = 1− γ = wZ(X0 → Y0); i.e. the inequality holds.
3. We consider now the general case where W 6= ∅ and W 6= L. The fact that W 6= ∅

ensures that there is some i ∈ L such that Yi ⊆ Z. Condition (c) then ensures that
Y0 ⊆ X0 ∪ Y ⊆ X0 ∪ Yi for this i. Altogether X0 → Y0 is either witnessed or uncovered
according to whether X0 ⊆ Z. In both cases wZ(X0 → Y0) ≥ 0. To complete the proof, let
us split

∑

i∈L λi · wZ(Xi → Yi) as follows:

1

ℓ
· (1− γ) · |W | −

1

ℓ
· γ · (ℓ− |W |).

The fact that W 6= L implies |W | ≤ ℓ− 1. Therefore this is at most

1

ℓ
· (|W | − γ · ℓ) ≤

ℓ− 1

ℓ
− γ ≤

k − 1

k
− γ ≤ 0 ≤ wZ(X0 → Y0).

In the middle inequalities we used the fact that ℓ ≤ k and the assumption that γ ≥ (k−1)/k.
We proved what we want; i.e. the inequality holds.

This closes the cycle of implications and the theorem is proved.

5.3 Other properties of nicety

Enforcing homogeneity turned out to play a key role in the main result about the case of
high confidence threshold. In this section we collect a few additional observations about
it. The first one is quite trivial: sets of less than two partial implications are trivially nice.
This does say, however, that every set of partial implications has some nice subset. The case
k = 2 is a bit more interesting. Nicety corresponds exactly to the mysterious conditions in
Theorem 2; cf. the discussion in Section 3.1.

Lemma 10. A set of two partial implications X1 → Y1, X2 → Y2 enforces homogeneity if
and only of both X1 ⊆ X2Y2 and X2 ⊆ X1Y1 hold.
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Proof. Assume X1 6⊆ X2Y2. Then Z = X2Y2 |= X1 ⇒ Y1 and Z |= X2 ⇒ Y2, but this does
not happen homogenously. The same holds if X2 6⊆ X1Y1 by symmetry. Conversely, if both
inclusions hold, consider any Z such that Z |= X1 ⇒ Y1 and Z |= X2 ⇒ Y2. If X1 6⊆ Z,
then X2Y2 6⊆ Z either, hence X2 6⊆ Z is the only way to satisfy the second implication; by
symmetry, we obtain X1 6⊆ Z if and only if X2 6⊆ Z. Thus homogeneity holds.

Finally, a recurrent situation concerns sets of partial implications with a common left-
hand side. The next lemma says that every such set is nice.

Lemma 11. Every set of partial implications of the form X → Y1, . . . , X → Yk enforces
homogeneity.

Proof. This is a direct application of Lemma 8.

6 Intervening thresholds

The rest of the values of γ require ad hoc consideration in terms of the actual partial
implications involved. We start by defining what will end up being the critical confidence
threshold for a given entailment.

6.1 Critical threshold

Let Σ = {X1 → Y1, . . . , Xk → Yk} be a set of partial implications with k ≥ 1 and all its
attributes in [n], and let X ⊆ [n]. Define:

γ∗ = γ∗(Σ, X) := inf
λ
max
Z

∑

i∈WZ
λi

∑

i∈VZ∪WZ
λi

(4)

where

1. Z ranges over all subsets of [n] with X 6⊆ Z,

2. VZ = {i ∈ [k] : Z violates Xi → Yi},

3. WZ = {i ∈ [k] : Z witnesses Xi → Yi},

4. λ ranges over vectors (λ1, . . . , λk) of non-negative reals such that
∑

i∈[k] λi = 1,

and, by convention any occurrence of 0/0 in the definition of γ∗ is taken as 0, and a vacuous
maximum is taken as 0. Note that this last case occurs only if X = ∅ since otherwise there
is always the possibility of taking Z = ∅. Note also that since all λi are non-negative, the
only way the denominator can be zero is by making the numerator also zero. It should be
pointed out that the convention about 0/0 is not an attempt to repair a discontinuity; in
general, the discontinuities of the rational functions inside the max are not repairable. A
final comment on the definition is that we required k ≥ 1. This ensures that the inf is not
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vacuous, which in turn implies 0 ≤ γ∗ ≤ 1: the lower bound is obvious, and for the upper
bound just take λi = 1/k for every i ∈ [k], which is well-defined when k ≥ 1.

Observe that γ∗ is defined for a set of partial inequalities and a single set X of attributes.
Typically X will be the left-hand side of another partial inequality X0 → Y0, but γ

∗(Σ, X0)
is explicitly defined not to depend on Y0. For later reference let us also point out that, with
the notation VZ and WZ from above, the inequalities in Expression (3) for an entailment
X1 → Y1, . . . , Xk → Yk |=γ X0 → Y0 can be written as wZ(X0 → Y0) ≥ (1− γ) ·

∑

i∈WZ
λi −

γ ·
∑

i∈VZ
λi. It is not the first time we use this sort of notation.

6.2 Characterization for all thresholds

The main result of this section is a characterization theorem in the style of Theorem 9 that
captures all possible confidence parameters.

Theorem 12. Let γ be a confidence parameter in (0, 1) and let X0 → Y0, . . . , Xk → Yk be a
set of partial implications with k ≥ 1. The following are equivalent:

1. X1 → Y1, . . . , Xk → Yk |=γ X0 → Y0,

2. there is a set L ⊆ [k] such that {Xi → Yi : i ∈ L} |=γ X0 → Y0 holds properly,

3. either Y0 ⊆ X0, or there is a non-empty L ⊆ [k] such that the following conditions
hold:

(a) {Xi → Yi : i ∈ L} enforces homogeneity,

(b)
⋃

i∈LXi ⊆ X0 ⊆
⋃

i∈LXiYi,

(c) Y0 ⊆ X0 ∪
⋂

i∈L Yi,

(d) γ ≥ γ∗({Xi → Yi : i ∈ L}, X0).

Proof. That 1. implies 2. is clear, as in Theorem 9. From 2. to 3., we may assume that L
is non-empty as in Theorem 9. Let λ = (λ1, . . . , λk) be a vector of non-negative reals that
satisfy the inequalities in Expression (3) as per Theorem 3. Then properties (a), (b), and (c)
just follow from Lemma 5 in the same way as in Theorem 3. It remains to argue (d). To see
this first note that for every Z such that X0 6⊆ Z we have wZ(X0 → Y0) = 0 and therefore the
inequality in Expression (3) for this Z reads as 0 ≥ (1−γ)·

∑

i∈WZ
λi−γ ·

∑

i∈VZ
. Rearranging

we get γ ≥
(
∑

i∈WZ
λi

)

/
(
∑

i∈VZ∪WZ
λi

)

, where 0/0 is interpreted as 0. In particular, the
maximum of the right-hand side over all Z such that X0 6⊆ Z is bounded by γ, and thus γ∗

is also bounded by γ. Note that this also covers the case of empty X0 since in that case the
max in γ∗ is vacuous, which we conveyed to define as 0.

Now we prove that 3. implies 1. Assuming (a) through (d), it is enough to find a solution
to the inequalities in Expression (3) for the entailment {Xi → Yi : i ∈ L} |=γ X0 → Y0.
What we show is that for every positive real ǫ > 0 there is a vector λ = (λi : i ∈ L) with
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non-negative real components such that the following inequality holds uniformly for every
Z ⊆ [n]:

∑

i∈L

λi · wZ(Xi → Yi) ≤ wZ(X0 → Y0) + ǫ. (5)

By basic real analysis this will be enough (it is worth pointing out that a more direct continu-
ity argument to replace inf by min would not work here; as stated earlier, the discontinuities
of the rational functions at 0/0 are, in general, not repairable). Fix then a positive real
ǫ > 0 and let λ = (λi : i ∈ L) be such that the max in the definition of γ∗ is at most γ∗ + ǫ.
For fixed Z, we prove Expression (5) by cases:

1. First assume that X0Y0 ⊆ Z. Then, Z witnesses X0 → Y0 and wZ(X0 → Y0) = 1− γ.
The left-hand side in Expression (5) can be written as (1 − γ) ·

∑

i∈WZ
λi − γ ·

∑

i∈VZ
λi.

Using λi ≥ 0 and
∑

i∈L λi = 1 this is at most (1 − γ) ·
∑

i∈L λi = (1 − γ) = wZ(X0 → Y0),
which in turn is at most the right-hand side in Expression (5); i.e. the inequality holds.

2. From now on, we assume that X0Y0 6⊆ Z. For this case assume additionally that
X0 ⊆ Z. In particular Y0 6⊆ Z and Z violates X0 → Y0, so wZ(X0 → Y0) = −γ. By (b)
we have Xi ⊆ X0, whereas, by (c) we know that Y0 ⊆ X0Yi for every i ∈ L. Since X0 ⊆ Z
and Y0 6⊆ Z, this means that Xi ⊆ Z but Yi 6⊆ Z for every i ∈ L. It follows that Z violates
Xi → Yi and wZ(Xi → Yi) = −γ for every i ∈ L. Using

∑

i∈L λi = 1, the left-hand side in
Expression (5) is −γ ·

∑

i∈L λi = −γ = wZ(X0 → Y0), which is at most the right-hand side
in Expression (5); i.e. the inequality holds.

3. Given the previous cases, we can assume now X0 6⊆ Z, so Z does not cover X0 → Y0

and wZ(X0 → Y0) = 0. The choice of (λi : i ∈ L) implies that the ratio inside the max in the
definition of γ∗ is at most γ∗+ǫ for our Z; since we are in the case X0 6⊆ Z, the ratio for our Z
is in the max. By (d) it is also at most γ+ǫ. It follows that (γ+ǫ)·

∑

i∈VZ∪WZ
λi ≥

∑

i∈WZ
λi by

non-negativity of the λi. Rearranging we get (1−γ)·
∑

i∈WZ
λi−γ ·

∑

i∈VZ
λi ≤ ǫ·

∑

i∈VZ∪WZ
λi.

Since λi ≥ 0 and
∑

i∈L λi ≤ 1, the right-hand side is at most ǫ, which is precisely wZ(X0 →
Y0) + ǫ since Z does not cover X0 → Y0 and wZ(X0 → Y0) = 0. This is the right-hand side
in Expression (5); i.e. the inequality holds.

This closes the cycle of implications and the proof.

6.3 An interesting example

In view of the characterization theorems obtained so far, one may wonder if the critical γ of
any entailment among partial implications is of the form (k − 1)/k. This was certainly the
case for k = 1 and k = 2, and Theorems 9 and 12 may sound as hints that this could be the
case. In this section we refute this for k = 3 in a strong way: we compute γ∗ for a specific
entailment for k = 3 to find out that it is the unique real solution of the equation

1− γ + (1− γ)2/γ + (1− γ)3/γ2 = 1. (6)

Numerically [13], the unique real solution is

γc ≈ 0.56984 . . . .
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Consider the following 5-attribute entailment for a generic confidence parameter γ:

B → ACH, C → AD, D → AB |=γ BCDH → A.

Let us compute its γ∗(Σ, X) where Σ is the left-hand side, and X = BCDH . In other words,
we want to determine a triple λ = (λ1, λ2, λ3) that minimizes

max
Z

∑

i∈WZ
λi

∑

i∈VZ∪WZ
λi

as Z ranges over the sets that do not include X = BCDH , and subject to the constraints
that λ1, λ2, λ3 ≥ 0 and λ1 + λ2 + λ3 = 1. There are 25 = 32 possible Z’s out of which two
(ABCDH and BCDH) contain X and therefore do not contribute to the maximum. Some
others give value 0 to the ratio and therefore do not contribute to the maximum either.
Note that if either |Z| ≤ 2, or |Z| = 3 and A 6∈ Z, then WZ = ∅, so the numerator is 0 and
hence the ratio is also 0 (recall the convention that 0/0 is 0). Thus, the only sets Z that
can contribute non-trivially to the maximum are those of cardinality 4 or 3 that contain the
attribute A. There are four Z of the first type (ABCD, ABCH , ABDH and ACDH) and
six Z of the second type (ABC, ABD, ABH , ACD, ACH and ADH). The corresponding
ratios are

λ2 + λ3

λ1 + λ2 + λ3
,

λ1

λ1 + λ2
,

λ3

λ1 + λ3
,

λ2

λ2 + λ3
,

0

λ1 + λ2
,

λ3

λ1 + λ3
,
0

λ1
,

λ2

λ2 + λ3
,
0

λ2
,
0

λ3
.

Those with 0 numerator cannot contribute to the maximum so, removing those as well as
duplicates, we are left with

λ2 + λ3

λ1 + λ2 + λ3

,
λ1

λ1 + λ2

,
λ3

λ1 + λ3

,
λ2

λ2 + λ3

.

Since all λi are non-negative, the first dominates the third and we are left with three ratios:

λ2 + λ3

λ1 + λ2 + λ3

,
λ1

λ1 + λ2

,
λ2

λ2 + λ3

. (7)

We claim that a λc that satisfies the constraints and minimizes the maximum of the three
terms in (7) is

λc,1 = 1− γc
λc,2 = (1− γc)

2/γc
λc,3 = (1− γc)

3/γ2
c

where γc is the unique real solution of the equation in Expression (6). Clearly this choice of
λc satisfies the constraints of non-negativity, and they add up to one precisely because their
sum is the left-hand side in Expression (6). By plugging in, note also that this λc makes all
three terms in (7) equal to γc; that is,

λc,2 + λc,3

λc,1 + λc,2 + λc,3
=

λc,1

λc,1 + λc,2
=

λc,2

λc,2 + λc,3
= γc. (8)
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For later reference, let us note that the left-hand side of (6) is a strictly decreasing
function of γ in the interval (0, 1) (e.g. differentiate it, or just plot it) and therefore

1− γ0 + (1− γ0)
2/γ0 + (1− γ0)

3/γ2
0 > 1 (9)

whenever 0 < γ0 < γc.
In order to see that λc minimizes the maximum of the three terms in (7) suppose for

contradiction that λ satisfies the constraints and achieves a smaller maximum, say 0 < γ0 <
γc. Since γ0 is the maximum of the three terms in (7) we have

γ0 ≥ (λ2 + λ3)/(λ1 + λ2 + λ3)
γ0 ≥ λ1/(λ1 + λ2)
γ0 ≥ λ2/(λ2 + λ3).

Using λ1, λ2, λ3 ≥ 0 and λ1 + λ2 + λ3 = 1, and rearranging, we get

λ1 ≥ 1− γ0
λ2 ≥ λ1 · (1− γ0)/γ0 ≥ (1− γ0)

2/γ0
λ3 ≥ λ2 · (1− γ0)/γ0 ≥ (1− γ0)

3/γ2
0 .

Adding all three inequalities we get

λ1 + λ2 + λ3 ≥ 1− γ0 + (1− γ0)
2/γ0 + (1− γ0)

3/γ2
0 .

But this is a contradiction: the left-hand side is 1 since λ satisfies the constraints, and the
right-hand side is strictly bigger than 1 by (9). This proves the claim.

Finally, this example also shows that for γ midway through 1/k and (k−1)/k, the vector
solution to the inequalities in Expression (3) could be very non-uniform. In this example
with γ = γc, the solution is λc ≈ (0.43016, 0.32472, 0.24512). In contrast, for γ ≥ (k − 1)/k,
the proof of Theorem 9 shows that it is always possible to take λi = 1/|L| for i ∈ L and
λi = 0 for i ∈ [k]\L. In this case, the vector (λ1, λ2, λ3) = (1/3, 1/3, 1/3) works for γ ≥ 2/3,
but fails otherwise. To see that it fails when γ < 2/3, take the inequality for Z = ABCD in
Expression (3).

By the way, it is easy to check that conditions (a), (b) and (c) hold for this example,
thus Theorem 12 says that γc ≈ 0.56984 is the smallest confidence at which the entailment
holds.

7 Closing remarks

Our study gives a useful handle on entailments among partial or probabilistic implications.
The very last comment of the previous section is a good illustration of its power. However,
there are a few questions that arose and were not fully answered by our work.

For the forthcoming discussion, let us take γ = (k − 1)/k for concreteness. The linear
programming characterization in Theorem 3 gives an algorithm to decide if entailment holds
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that is polynomial in k, the number of premises, but exponential in n, the number of at-
tributes. This is due to the dimensions of the matrix that defines the dual LP: this is a 2n×k
matrix of rational numbers in the order of 1/k (for our fixed γ = (k − 1)/k). On the other
hand, the characterization theorem in Theorem 9 reverses the situation: there the algorithm
is polynomial in n but exponential in k. In order to see this, first note that condition (a)
can be solved by running O(nk) Horn satisfiability tests of size O(nk) each, as discussed at
the end of Section 5.1. Second, conditions (b) and (c) are really straightforward to check
if the sets are given as bit-vectors, say. So far we spent time polynomial in both n and
k in checking the conditions of the characterization. The exponential in k blow-up comes,
however, from the need to pass to a subset L ⊆ [k], as potentially there are 2k many of those
sets to check. It does show, however, that the general problem in the case of γ ≥ (k−1)/k is
in NP. This does not seem to follow from the linear programming characterization by itself,
let alone the definition of entailment. But is it NP-hard? Or is there an algorithm that is
polynomial in both k and n? One comment worth making is that an efficient separation
oracle for the exponentially many constraints in the LP of Theorem 3 might well exist, from
which a polynomial-time algorithm would follow from the ellipsoid method.

It is tempting to think that the search over subsets of [k] can be avoided when we start
with a proper entailment. And indeed, this is correct. However, we do not know if this gives
a characterization of proper entailment. In other words, we do not know if conditions (a),
(b) and (c), by themselves, guarantee proper entailment. The proof of the direction 3. to 1.
in Theorem 9 does not seem to give this, and we suspect that it does not. If they did, we
would get an algorithm to check for proper entailment that is polynomial in both n and k.

From a wider and less theoretical prespective, it would be very interesting to find real-
life situations in problems of data analysis, say, in which partial implications abound, but
many are redundant. In such situations, our characterization and algorithmic results could
perhaps be useful for detecting and removing such redundancies, thus producing outputs of
better quality for the final user. This was one of the original motivations for the work in [9],
and our continuation here.
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