
SLOVAK UNIVERSITY OF TECHNOLOGY IN 
BRATISLAVA 

Faculty of Chemical and Food Technology 

PHOTOCATALYTIC REDUCTION OF CO2 

BACHELOR / Thesis 

 

 

 

 

 

 

 

Author: Cristina Torres Hurtado 

Tutor: prof. Ing. Gabriel Čík, CSc.  

Supervisor: Ing. Jana Jokrllová 

STU, FCHPT, Department of Environmental Engineering 

Spring semester 2015 

Bratislava, Slovakia 

 

 



2 Photocatalytic reduction of CO2 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Photocatalytic reduction of CO2 3 

 

 

  

Acknowledges 

I would like to thank my tutor Jana Jokrllová and all the environmental department of 

STU Bratislava for all the help and support given and for giving me the opportunity of 

develop my Bachelor’s thesis in Bratislava.   

I would like also to thank all the new people I met here for being there every day and 

to all those people who being close or far have contributed their bit.  



4 Photocatalytic reduction of CO2 

  

 

Summary 

The concentration of CO2 in the atmosphere is nowadays a worldwide problem, because is 

one of the gases contributing to global warming. It is a fact that CO2 is increasing every 

time more and more in the atmosphere due to several industrial activities and  the own 

carbon cycle. From this point of view, it is wanted to suggest the photoreduction of CO2 in 

water with natural zeolites (in this case clinoptilolite) as a possible solution.  

In this research two different types zeolites were tested, the difference was the particle 

size, and also two different modifications of them. In order to catch as much CO2 as 

possible it was experimented with the solubility of CO2 in water and to convert as much as 

CO2 into organic compounds several photoreduction were developed.  

The results show that it is possible to convert CO2 into organic matter performing a 

photoreduction with clinoptilolite. It was found out that the best conditions for a more 

efficient photoreduction are with 0,1 g of zeolites as catalyst, although there is not a big 

difference between the particle size of zeolites,  the better working photocatalyst was the 

zeolites with particle size less than 0,25 mm. About the temperature of the photoreduction 

can be achieved same results with cold and warm water, but depends on the speed 

wanted for the reaction, cold reaction are slower than warm reactions.  
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1. List of abbreviation and symbols  

Ag2SO4: Silver sulphate  

CaCO3: Calcium carbonate 

CAS: Chemical Abstract Service 

CaO: Calcium oxide (quicklime)  

Ca(OH)2: Calcium hydroxide 

CCS: Carbon Capture and Storage 

CdS: Cadmium sulphide  

CdSe: Cadmium selenide  

CeO2: Cerium dioxide  

CFC: Chlorofluorocarbon  

CH4: Methane  

CHCl3: Chloroform 

CO2: Carbon dioxide 

COD: Chemical Oxygen Demand 

Cu2O: Copper oxide   

DAC: Direct Air Capture 

Ea: Activation energy 

EPA: Environmental Protection Agency (USA)  

ESRL: Earth System Research Laboratory   

FeCl3: Iron chloride  
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Fig. : Figure  

GCMS: Gas Chromatography with Mass Spectrophotometer  

GHG: Greenhouse Gases 

H2CO3: Carbonic acid  

HFC: Chlorofluorocarbon   

Hg: Mercury 

HgSO4: Mercury sulphate   

H2SO4: Sulphuric acid  

IGCC: Integrated Gasification Combined Cycle  

IUPAC: International Union of Pure and Applied Chemistry 

k: Kinetic constant 

K2Cr2O7: Potassium dichromate  

Mo: Molybdenum 

Na: Sodium 

Na2CO3: Sodium carbonate 

NaOH: Sodium hydroxide  

NIOSH: National Institute for Occupational Safety and Health 

N2O: Nitrogen oxide   

PbS: Lead (II) sulphide or also known as galena   

PFC: Prefluorinated compounds  

ppm: Parts per million 

ppmv: Parts per million per volume  
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PT: Polythiophene  

Os: Osmium  

OSHA: Occupational Health and Safety Administration 

Re: Rhenium  

Rh: Rhodium  

Ru: Ruthenium  

SF6: Sulphur hexafluoride   

SiO2: Silicon dioxide 

TiO2: Titanium dioxide  

TOC: Total organic carbon 

TWA: Permissible exposure limit for an employee to a chemical substance or physical 

agent 

UNFCCC: United Nation Framework Convention on Climate Change 

UV: Ultraviolet  

V: Vanadium  

ZnO: Zinc oxide  

ZrO2: Zinc dioxide 

ZnS: Zinc sulphide   
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2. Glossary 

Adsorption: adhesion of atoms, ions or molecules from gas, liquid or dissolved solid to a 

surface. It is a surface-based process, where it is created a film of the adsorbate on the 

surface of the adsorbent. 

Absorption: separation process in which gaseous component is separated from a gas 

stream by the use of a liquid. The gaseous component comes into contact with the liquid 

and is absorbed from the gas phase into the liquid phase.  

Absorbent or solvent: liquid used for absorption.  

Activated carbon: material which is characterized for having a large number of 

microporous.  

Anatase: one of the three minerals formed of titanium dioxide, it crystallizes in tetragonal 

system.  

Calcination: heating to high temperatures in air or oxygen. (IUPAC)   

Catalysis: a modification and especially increase in the rate of a chemical reaction 

induced by material unchanged chemically at the end of the reaction.   

Catalyst: substance that accelerates a chemical reaction without being consumed as a 

reactant. 

Causticization: process used for converting a solution of soda (sodium carbonate) with 

lime (calcium hydroxide) into sodium hydroxide and calcium. 

Chalcogenide: chemical compound consisting of at least one chalcogen anion and at 

least one more electropositive element, group 16 of the periodic table.  

Chlorophyll: term used for several closely related green pigments found in cyanobacteria 

and the chloroplasts of algae and plants.  

COD: commonly used to indirectly measure the amount of organic compounds in water. 

The bases of COD is that nearly every organic compound.  

http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Titanium_dioxide
http://en.wikipedia.org/wiki/Titanium_dioxide
http://en.wikipedia.org/wiki/Titanium_dioxide
http://en.wikipedia.org/wiki/Titanium_dioxide
http://en.wikipedia.org/wiki/Chalcogen
http://en.wikipedia.org/wiki/Chalcogen
http://en.wikipedia.org/wiki/Anion
http://en.wikipedia.org/wiki/Anion
http://en.wikipedia.org/wiki/Electropositive
http://en.wikipedia.org/wiki/Electropositive
http://en.wikipedia.org/wiki/Pigment
http://en.wikipedia.org/wiki/Pigment
http://en.wikipedia.org/wiki/Cyanobacteria
http://en.wikipedia.org/wiki/Cyanobacteria
http://en.wikipedia.org/wiki/Chloroplast
http://en.wikipedia.org/wiki/Chloroplast
http://en.wikipedia.org/wiki/Alga
http://en.wikipedia.org/wiki/Alga
http://en.wikipedia.org/wiki/Plant
http://en.wikipedia.org/wiki/Plant
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Water
http://en.wikipedia.org/wiki/Water
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Conduction band: quantifies the range of energy required to free an electron from its 

bond to an atom. 

Conjugated polymers: organic macromolecules which consist at least of one backbone 

chain of alternating double- and single-bonds.  

Crystal system: minerals crystallize according to one of seven motifs, known as crystal 

systems. 

Desorption: the opposite of sorption, is a phenomenon whereby a substance is released 

from or through a surface.  

Erythrosine: organic compound, specifically a derivative of fluorine. It is cherry-pink 

synthetic, primarily used for food colouring.   

Exothermic reaction: Reaction which one emerges heat while is occurring.  

Greenhouse gas: gas which absorbs and emits radiation within the thermal infrared range 

and contributes to climate change. These gases are water vapour, methane, carbon 

dioxide, nitrous oxide, ozone and CFC.    

Ion exchange capacity: measure of the ability of an insoluble material to undergo 

displacement of ions previously attached and loosely incorporated into its structure by 

oppositely charged ions present in the surrounding solution. 

Photosynthesis: process used by plants and other organisms to convert light energy, 

normally from the Sun, into chemical energy that can be later released to fuel the 

organisms' activities.  

Photon: elementary particle, the quantum of light and all other forms of electromagnetic 

radiation.  

Porosity: fraction of volume of holes over the total volume of the material.  

Redox: chemical reaction which one or more electrons are transferred between the 

reagents, inducing a change in the oxidation states.   

http://en.wikipedia.org/wiki/Fluorone
http://en.wikipedia.org/wiki/Food_coloring
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Sun
http://en.wikipedia.org/wiki/Sun
http://en.wikipedia.org/wiki/Cellular_respiration
http://en.wikipedia.org/wiki/Cellular_respiration
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Rose bengal: organic compound. Its sodium salt is commonly used in eye drops and and 

thereby identify damage to the eye. 

Rutile: mineral composed primarily of titanium dioxide, the most common natural form of 

TiO2. 

Slaker: process which lime reacts with water or moist air producing CaOH.  

Specific gravity: ratio of the density of a substance to the density (mass of the same unit 

volume) of a reference substance. The usual standard of comparison for solids and liquids 

is water at 4° C which has a density of 1000 kg/l.  

Surfactant: compound that lower the surface tension. 

Syngas: gaseous fuel obtained from substances rich in carbon subjected to a chemical 

process at high temperature. Contains varying amounts of CO and H2.    

Stripping column: physical separation process where a liquid stream is removed by a 

vapour stream. The liquid and the vapour stream can have concurrent or countercurrent 

flows.   

Thionin: family of small proteins found solely in plants. 

http://en.wikipedia.org/wiki/Eye_drop
http://en.wikipedia.org/wiki/Human_eye
http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Titanium_dioxide
http://en.wikipedia.org/wiki/Titanium_dioxide
http://en.wikipedia.org/wiki/Titanium_dioxide
http://en.wikipedia.org/wiki/Titanium_dioxide
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Higher_plants
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3. Objectives  
The main objective of this research is to know if it is possible to develop a photoreduction 

with natural zeolites, more specifically with Clinoptilolite, in order to reduce the CO2 

concentration in air and convert it into organic compounds such as methane, methanol, 

ethane, etc. 

Secondary objectives are:  

• Figure out the best conditions to dissolve CO2 in water, temperature, pH and 

bubbling time. 

• Find the best conditions to perform photoreduction and to known the parameters 

which affects photoreduction with Clinoptilolite. 

• Study the kinetics of the photoreduction with different types of zeolites, order and 

rate of the reaction. 

• Find the activation energy of the photoreduction performed with different types of 

zeolites. 
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4. Background 
As it is known nowadays we are living in a world which one depends on fossil fuels, not 

only for energy also for all the plastic industry, coatings, paintings, cosmetics and many 

other sectors. Since the industrial revolution we are consuming these fuels in such frantic 

pace that we are extinguishing these sources. Human influences are expected to continue 

changing the atmospheric composition through the 21st century. Greenhouses gases such 

as CO2, CH4, N2O, SF6... are the main cause of global warming. The GH gas representing 

the largest contribution of human activities is CO2, emissions from fossil fuel combustions, 

inducing the increase of CO2 in the atmosphere concentration.  

The assessment of total CO2 emissions is approximately 23Gt per year worldwide [1]. 

Emissions from transport are increasing the last few years, more than emissions from 

industry or other sectors; actually transport sector is the second larger sector which emits 

more CO2. Transport emissions are mainly generated by a multiplicity of small and 

distributed sources, which implies the possibility of capture and storage of carbon dioxide 

easily.    

But the main consequence is the CO2 that we are releasing into the atmosphere due to the 

burning of fuel. This CO2 is causing to the earth serious problems such as the global 

warming, hereby researchers are trying to find the way to mitigate this problem and to 

decrease the concentrations of CO2 in the atmosphere. 

So back to nature, it can be observed that plants are able to do the process what we are 

seeking, convert the CO2 in organic matter, with solar light. So based on plants, 

researchers are trying to perform a process similar to photosynthesis, instead of 

chlorophyll with different catalyst and also with solar light.     

In this research it is wanted to promote a little more in this field and contribute to the 

development of a more sustainable world.  
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5. Introduction 

5.1. Carbon dioxide 

Carbon dioxide is a chemical compound formed by two atoms of oxygen attached 

symmetrically to an atom of carbon by two double bonds (O=C=O). Carbon dioxide is the 

main gas which contributes to the atmosphere pollution, greenhouse gas, as it is the result 

of several processes of fermentation (wine, beer…) and the main component in the 

combustion gases.  

 
Fig.  5.1: Molecule of CO2 (black atom is the C and red ones are O) [2] 

 
5.1.1. Properties  

Table 5.1: Properties of CO2 [3]  

CAS No.  124-38-9  

Formula CO2 

Appearance  Colourless, odourless gas. 

Stability Stable. Incompatible with chemically active metals, such as alkali metals. 

Exposure 
levels  

NIOSH REL: TWA 5000 ppm (9000 mg/m3) ST 30,000 ppm (54,000 
mg/m3)  
OSHA PEL: TWA 5000 ppm (9000 mg/m3)  
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Physical properties 
Table 5.2: Physical properties of CO2  [3] 

Molecular weight 44,01 g/mol 

Experimental melting point  -56.5 °C 

Experimental boiling point -78 °C (Sublimes) 

Experimental vapour pressure  56.5 atm (42940 mmHg) 

Solubility in water (ml/100 ml at 20°C) 88 

5.1.1.1. Solubility in water  
The solubility of CO2 in water is one of the most studied phenomena in all the physical 

chemistry. The system carbon dioxide-water is complex and very important for the 

biological life in earth.  

First the CO2 dissolves into water according the reaction (Eq. I) 

𝐶𝑂2(𝑔) + 𝐻2𝑂 ⟺ 𝐶𝑂2(𝑙) + 𝐻2𝑂 Eq. (I)  

Once the CO2 is dissolved in water, begins the equilibrium between the carbonic acid and 

the carbon dioxide dissolved.  

 𝐶𝑂2(𝑙) + 𝐻2𝑂 ⟺𝐻2𝐶𝑂3 Eq. (II)  

This reaction is kinetically slow, actually almost all the CO2 remains as solvated molecular 

CO2 only a small fraction of CO2 is converted to H2CO3.  

𝐾 =
[𝐻2𝐶𝑂3]

[𝐶𝑂2]
≅ 1,7 · 10−3𝑠−1 Eq. (III)  

The equilibrium condition is quantified by the molar solubility K0 (Henry’s law), where the 

partial pressure of CO2 has to be in atm, K0 is the solubility in mol·l-1·atm-1 and [H2CO3] is 

the concentration of CO2 dissolved in mol/kg of water. [4] 

𝐾0 =
[𝐻2𝐶𝑂3]
𝑝𝐶𝑂2

 
Eq. (IV)  
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The dissociation of carbonic acid runs in two steps due to the fact that it is a weak acid:  

𝐻2𝐶𝑂3 + 𝐻2𝑂 ⇔ 𝐻3𝑂+ + 𝐻𝐶𝑂3−              pKa1(25°C) = 6,352 
Eq. (V)  

𝐻𝐶𝑂3− + 𝐻2𝑂 ⇔ 𝐻3𝑂+ + 𝐶𝑂32−             pKa2(25°C) =10,329 
Eq. (VI)  

Where the pKax=-logKax. In the graph 5.1 it can be seen how the fraction (α) of each 

compound change in relation of the pH.  

 
Graph 5.1: Equilibrium diagram of carbonic acid [5] 

These carbonate anions can easily form precipitates reacting with anions such as Ca2+ or 

Mg2+ which can pull the equilibrium more to the right resulting in the acidification of the 

water. [6, 7, 8] 

The solubility of CO2 depends also on the pressure and temperature, about pressure it is 

not going to be detailed because it is not interesting in this research; it is going to be 

working always with atmospheric pressure so it is going to give all the graphs and data for 

1atm of pressure. About temperature, it can be said that at high temperatures the solubility 

decreases because of the movement of the atoms and at low temperatures the molecules 

are quite and it is easier to dissolve other molecules.  

 

pKa

 

pKa
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Graph 5.2: Evolution of solubility of CO2 in water in relation to water temperature (ºC) [9]   

In table 5.3 it can be seen how the solubility of CO2 changes in relation of the pH and the 

temperature. It can be seen that the best conditions for dissolving CO2 in water are neutral 

pH and cold water.  

Table 5.3: Relation between pH, temperature and solubility of CO2 [10] 
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5.1.2. CO2 in the atmosphere  
Carbon dioxide is naturally part of the atmosphere but human activities are altering the 

carbon cycle by adding more CO2, both by adding CO2 to the atmosphere and by the 

ability of natural sinks, link forest, to remove CO2 from the atmosphere.     

The concentration of CO2 in the atmosphere has been measured continuously since 1958, 

it has been discovered that follows an oscillating line known as the "Keeling Curve" due to 

Dr. Charles David Keeling, professor at Scripps Institution of Oceanography. Keeling was 

the first who measure carbon dioxide and he figured out that atmospheric CO2 

concentrations were increasing. Before industrial era (1800s) atmospheric CO2 

concentration was between 275 and 280 ppm, in 1958 Dr. Keeling measured 315 ppm and 

nowadays it was registered 400,14 ppm in January 2015 as ESRL reported.     

 
Graph 5.3: Evolution of the atmospheric concentration (ppm) of CO2 in the last years [11]  

5.1.3. The greenhouse effect 
The greenhouse effect is a natural process that consists in the absorption and re-radiated 

of some part of sun’s energy by greenhouse gases leaving the radiation stucked which 

induces an increase of temperature of the earth’s surface. Although a finite amount of CO2 

is stored in the sea, fossil fuels, living matter and atmosphere the poles are melting and 

the global temperature is still increasing more and more every year.   
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The greenhouse effect consists in 6 basic steps, as it can be seen in fig 5.4 the problem 

we are facing nowadays is that human activities are increasing the concentration of 

greenhouses gases.  

 

 
Fig. 5.2: Scheme of greenhouse effect [12]  

5.1.3.1. KYOTO Protocol 
The Kyoto protocol about the climate change is a protocol and an international agreement 

which aims the reduction of the emission of the six main greenhouse gases: CO2, CH4 and 

N2O and industrial fluorinated gases HFC, PFC and SF6.  

On 11th of December of 1997, industrial countries pledged to reduce the greenhouses 

emissions. Governments agreed reducing 5% of the global emissions between 2008 and 

2012, taken by reference the data in 1990. It does not mean that every country which take 

part of the Kyoto protocol have de reduce its emission one 5%, each country has its own 

percentage, but the global emission has to be 5% reduced. Recognizing that developed 

countries are the most responsible of the emissions of GHG in the atmosphere because of 

the 150 years of industrial activity, the Protocol burden them more under the principle of 

"common but differentiated responsibilities".[13] 



22 Photocatalytic reduction of CO2 

  

 

If it is taken the example of Slovakia and Spain it can be seen in table 5.3 the data of the 

emission of both countries of CO2, and the protocol target, seen that Spain doesn’t pledge 

with the Kyoto Protocol and Slovak Republic does.  

Table 5.4 Different year data of the emission of CO2 in Slovakia and Spain [14] 

 1990 (Mt  of 
CO2) 

2010 (Mt of 
CO2) 

% changed Kyoto Protocol 
target (%) 

Slovak Republic 56,7 31,9 -43,8 -8 

Spain 205,2 266,6 29,9 -15 

5.1.4. Carbon dioxide capture 
Since every time it is taking more awareness about climate change, researchers are doing 

high progresses in carbon dioxide capture field. Nowadays exist different technologies for 

this purpose in two directions, depending on where CO2 comes from the two approaches 

are capture of atmospheric CO2 and capture of CO2 from fossil fuel power plants. 

5.1.4.1. Carbon dioxide capture from fossil fuel power plants  
Roughly 40% of all CO2 emissions come from fossil fuel burning power plants, these plants 

are an easy target for CO2 capture. But this sort of capture presents several disadvantages 

such as how to handle impurities in the flue gas stream or how to handle large quantities 

of CO2 formed in the fuel combustion. [15][16] 

 Carbon capture and storage (CCS) systems are generally a three step process:  

1. Capture and compression from combustion exhaust (This step is the one that could 

account for 70-90% of the totalling operating costs of a CCS system)  

2. Transportation (usually via pipeline)  

3. Utilization  

The most common approaches for capture of CO2 are explained below:  

1. Post-combustion: capture of CO2 from flue gases created during fuel combustion 

with air. Can be treated with:  

a. Chemical absorption: is the preferred method to capture CO2 from post 

combustion CO2 flue gas streams. It is need at the beginning a 



Photocatalytic reduction of CO2 23 

 

 

pretreatment step in order to remove as much impurities as possible, after 

this step the gas is cooled and sent it to the absorption column employing 

alkaline solvents to neutralized the absorbed CO2. After that, the CO2 goes 

to a stripping column where it is heated to break down the intermediate 

compounds. [15] 

 

Graph 5.4: Scheme of chemical absorption 

b. Adsorption: it is particularly important to dry the flue gas before adsorption, 

thus first step is pretreatment where the impurities has to be removed, after 

pretreatment, the gas should be cooled to around room temperature. The 

gas is sent to an adsorption column and after that to a desorption step.  

Adsorbents approaches are (1) zeolites, (2) activated carbon, (3) amine 

functionalized adsorbents and (4) metal organic frameworks (MOFs). [15] 

 

Graph 5.5: Scheme of adsorption 

c. Membrane separation: this process is currently available; the stream is at 

atmospheric pressure which is the main difference between the other 

processes. The membrane acts like a filter to remove one or more gas 

components because of the different pressure between the feed side and 
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the permeable side. This method needs also a step of pretreatment to 

remove impurities.  

 
Graph 5.6: Scheme of a membrane separation process 

The two approaches of this process are the organic membranes, the 

inorganic and the mixed ones. Permeability and selectivity are the 

properties who rule this separation process.  

d. Cryogenic distillation: this technology has been used for years to separate 

the compounds of the air, but it’s relatively new the idea for post combustion 

capture of CO2.     

2. Pre-combustion: capture of CO2 from a synthesis gas (syngas) before fuel 

combustion. It applies to integrated gasification combined cycle (IGCC) power 

plants. The primary fuel is first ‘gasified’ in order to produce syngas, then the 

syngas is converted to CO2 and H2 from which CO2 is separated. 

  

Graph 5.7: Scheme of pre-combustion carbon dioxide capture 

5.1.4.2. Atmospheric carbon dioxide capture  
On the other hand, there is also the approach to capture atmospheric CO2, the difference 

between this air and the latter one rely on the concentration of CO2, atmospheric air has 

less concentration of CO2 than the ones which provides a fuel power plant.   
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Atmospheric CO2 can be captured via different methods one of them, the most popular 

nowadays is the capture using sodium hydroxide spray. The CO2 and the NaOH reacts and 

it is converted to Na2CO3, after 4 steps (1) abortion, (2) causticization, (3) calcination and 

(4) a mixed step with a slaker and a causticizer. In the third step, CaCO2 is converted in 

CaO and CO2 through a calcination process, making possible that CO2 released at a 

pressure close enough to atmospheric pressure and allowing the sequestration of it. [17] 

 

Graph 5.8: Scheme of atmospheric CO2 capture using NaOH 

5.2. Photocatalytic reduction 

Photocatalytic reduction is an innovative technology which is based on the double aptitude 

of the catalysts to adsorb both reactants and efficient protons. The difference between 

photocatalytic reduction and classic catalysis lies in the activation mode, while classic 

catalysis has a thermal activation, photocatalytic reduction is activated by photons.  

There are two types of: heterogeneous and homogeneous. The first one has the catalyst 

and the reactants in a different phase form, whereas the second one has the reactants and 

the photocatalysts exist in the same phase. 

5.2.1. Principles of heterogeneous photocatalytic reduction  
Heterogeneous photocatalytic reduction can be carried out in various media: gas, pure 

organic phase or aqueous phase.     

The overall process can be decomposed into five different steps: 
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Graph 5.9: Scheme of Photocatalytic reduction process 

There is also a step of activation, which is not considered in the previous scheme but now 

is going to be detailed. The photocatalytic activity is initiated by the absorption of light 

energy equal or higher than the band gap energy by semiconductors catalysts of the 

chalcogenide type (oxides, for instance TiO2, ZnO, ZrO2, CeO2...or sulphides like CdS or 

ZnS for example). Unlike metals which have continuum electronic states, semiconductors 

have a gap of energy where there are no energy levels available to promote recombination 

of an electron and hole produced by photoactivation in the solid. The void, which extends 

forms the top of the filled valence band to the bottom of the vacant conduction band, is 

called band gap. When excitation occurs across the band gap, there is a sufficient lifetime 

in the nanosecond scale, for the created electron-hole undergo charge transfer to 

adsorbed species on the semiconductor surface from solution or gas phase contact. If the 

semiconductor remains intact and the charge transfer to the adsorbed species is 

continuous and exothermic the process is called heterogeneous.[18]  

 
Fig 5.3: Scheme of conduction and valence band in different sort of materials [19] 
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At the same time occurs a spontaneous adsorption, according to the redox potential of 

each adsorbate, in the fluid phase. A electronic transfer proceeds towards acceptor 

molecules and photoholes are transferred to donor molecules. [20]  

 
Graph 5.10: Scheme of photocatalytic reduction process in a molecular level [20] 

In fig. 5.4 it is the reactions of the photocatalytic reduction and the respective reduction 

potentials: 

 
Fig. 5.4: Reaction of CO2 in photocatalytic reduction and the respective reduction potentials [21] 

Photocatalytic reduction has several applications, including sterilization of surfaces, 

photocatalytic reduction with TiO2 can kill bacteria and other pathogens, cancer treatment, 
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is one of the most important topics that is associated with photoreduction, cleaning odours, 

cleaning atmosphere are the main applications. [22] 

5.2.2. Photoreduction of CO2 with TiO2 
Titania has been used as a photocatalyst because of its many advantages including low 

price, high photostability, no toxicity and superior redox ability.[23] The earliest work that it 

has been found it was reported by Renz, at University of Lugano (Switzerland), who 

reported in 1921 that titania is partially reduced during illumination with sunlight in the 

presence of an organic compound such as glycerol. The proposed reaction was: [24] 

𝑇𝑖𝑂2 +  𝑙𝑖𝑔ℎ𝑡 → 𝑇𝑖2𝑂3 𝑜𝑟 𝑇𝑖𝑂 Eq. (VI)  

 

Titania is still the preferred because of several advantages such as its low toxicity, ability to 

resist photo-corrosion, versatility in terms of applications and especially for the abundant 

availability and quantum yield. Several investigations are making great discoveries about 

the modification or sensitize TiO2 in order to operate under irradiation of much larger 

visible light regions under sunlight. [25, 26] 

5.2.2.1. The need for modifications  
Unlike natural photosynthesis, photoreduction of CO2 with TiO2 use only 3-4% of the solar 

light that reaches earth, necessitating the use of a UV light source. For this reason, 

significantly investigations are underway to modify or sensitize TiO2 to operate under 

irradiation of much larger visible light regions of sunlight. [25]  

Apart of the needed of other regions of the spectrum, the life of the electron-holes pares is 

very short and the efficiency of the reaction decrease. Nobel metals have been reported to 

be very effective for enhancement of TiO2 photoreduction, greatly reducing the possibility 

of electron-hole recombination, resulting in efficient separation and stronger photocatalytic 

reaction. [27] 
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Table 5.5: Characteristics of different modifications in titania [28] 

Modifications Characteristics Examples  

Doping of 

metals/ metal 

ions 

• Increase the photocatalytic activity for both oxidation and 

reduction reactions 

• Acts as electron traps and facilitates carrier separation, 

photoreactivity increases  

• Introduces impurity states and induce visible light absorption 

Fe3+, Mo5+, 

Ru3+, Os3+, 

Re5+, V4+ 

and Rh3+ 

Doping of ani-

ons  

• Narrowing of a band gap due to mixing of p states of dopants 

(N, S) with O 2p states in the valance band of TiO2 

• Introduces impurity states above the valance band of titania 

• Induces visible light absorption 

N, S30,31, 

C32,23, F34,35 

and B36,37 

Coupling with 

semi-

conductors 

• A narrow band gap semiconductor, with appropriate energy 

levels, absorbs visible light and transfers excited electrons 

into the conduction band of titania  

• UV light source not needed 

Cu2O, PbS, 

CdS and 

CdSe 

Sensitization 

with light har-

vesting com-

pounds/ dyes 

• Certain organic dyes can absorb visible light and inject 

photo-excited electrons into the conduction band of titania 

• Besides visible light activity, effective separation of charge 

carriers is achieved 

Chlorophyll, 

erythrosine 

B, thionin or 

rose bengal 

5.2.2.2. Materials and Methods  
Due to the big amount of different types of TiO2 is going to be detailed the method to 

prepare RM-TiO2 as a representative example.  

Preparation of catalysts: 

RM-TiO2 was prepared by sol-gel method, by slow drop wise addition of titanium 

isopropoxide into the hydrolysis medium consisting of cyclohexene, anionic surfactant 

(Triton-X-114) and distilled water. Molar ratio of cyclohexene: Triton:water:titanium 

isopropoxide was 11:1:1:1. The solution was stabilized for 15 minutes and then allowed to 

gel at ambient temperature for 24 hours, followed by calcination in air at 400ᐤC for 4 hours 

to obtain RM-TiO2.  
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Photocatalytic reaction: 

The photocatalytic reactor (Fig. 5.1) was used to follow the reduction of CO2 under 

radiation in UV-visible range 300-700 nm from a Hg lamp.  

 
Fig.  5.5: Scheme of the photoreduction process made by Jeyalakshmi, V. Mahalakshmy, R. 

Krishnamurthy, K.R. Viswanathan, B published in Indian Journal of Chemistry[28] 

Aqueous alkaline solution (at pH-13.0) was then saturated with pure CO2 by continuous 

bubbling for 30 minutes after which the pH turned 8.0. After every two hours, gas samples 

were taken out and analysed by gas chromatography. Blank experiments were also done 

in order to ensure that the product formed was due to the photoreduction of CO2. [28] 

5.2.2.3. Experimental results with TiO2 

As there is a lot of modified TiO2 is going to be shown some representative results of TiO2 

based photocatalysts. 

K. Rajalakshmi, V. Jeyalakshmi, K.R. Krishnamurthy and B. Viswanathan published on 13th 

of January of 2012 in the Indian Journal the article ‘Photocatalytic reduction of carbon 

dioxide by water on titania: Role of photophysical and structural properties’. In table 5.1 is 

shown the physico-chemical characteristics of the catalysts and in table 5.2 is shown the 

results achieved. They research was about photoreduction with three materials as 

photocatalysts, P-25, hydrophilic fumed titanium dioxide [29], Hombikat which is a  

nanocrystalline anatase titanium dioxide developed for photocatalytic applications [30] and 

RM-TiO2 which is based on coarse rutile titanium dioxide powder [31].  
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Table 5.6: Results published in 2012 by K. Rajalakshmi and co, physic chemical characteristics [32]  

 

Table 5.7: Results published in 2012 by K. Rajalakshmi and co. [32] 

 

 As it can be seen in table 5.7, methane and methanol is the major product formed for the 

three photocatalysts. The most effective catalyst is P25 which has the bigger crystal size 

and the smallest band gap among the three photocatalysts.  

The same authors of the last article wrote ‘Titania based catalysts for photoreduction of 

carbon dioxide: Role of modifiers’ on 12 June 2012. They publish the results of some 

photoreduction of CO2 by water on metal doped semiconductor oxides (table 5.7).  

Table 5.8: Results published on 2012 by K. Rajalakshmi and co. [28] 
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It can be seen that the most effective catalyst is Pt/TiO2, because what is wanted the major 

amount of methane or hydrocarbons possible, the H2 formation is not due to the CO2 

photoreduction is because of water hydrolysis and CO is not the most valuable product it 

can be obtained.  

Regarding reaction time, in 1999 Yang, H.-C.; Lin, H.-Y.; Chien, Y.-S.; Wu, J.C.-S.; Wu, H.-

H. published their investigation about photoreduction of CO2. They publish some results 

with different catalysts and different times of irradiation.  

They experiment with different doped titanium dioxide and they performed the 

photoreduction with a peak light intensity at 365 nm mounted on an inner irradiation quartz 

cell. The photoreduction of CO2 with water was performed in 550 ml aqueous 0.1 N NaOH 

solution containing about 0.05 g catalyst at 42°C. The initial pH value of 0.1 N NaOH 

solution was approximately pH 13. Then, CO2 was bubbled through the reactor for at least 

30 min to purge air and to saturate the solution. The pH value of the CO2-saturated NaOH 

solution was nearly pH 7. To maintain CO2 saturation during the reaction, CO2 gas was 

bubbled into the reactor continuously, and the pH value of the solution was kept near pH 7 

during the reaction. [33] 

 
Graph 5.11: Relation between the methanol production and the reaction time [33] 
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It can be seen in the graph 5.11 the clear relation of the time, at more time higher 

production of CO2 with all the catalysts.  

About kinetics, various photocatalytic processes have been described by different kinetic 

models such as pseudo zero order, pseudo first order and second order models. The 

reason of pseudo relays in the kinetics constant, as it is needed a lot of simplifications, the 

k is called apparent kinetic constant. 

The commonest decay models that are observed in photoreduction studies are the zero 

and the first order rate laws. Normally, the zero order is observed at surface saturation. 

Basically, the rate of a zero order reaction does not vary with concentration. Consistence 

of photocatalytic degradation reactions with second order model is not expected but this 

unusual case was reported in the photocatalytic degradation of Auramine O aqueous 

solutions over ZnO catalyst owing to constraints in fitting the kinetic data to other than the 

second order kinetics. [34] 

About the activation energy is 0 or almost zero, about a few kilojoules. It depends on the 

range of temperatures, about -44 to 0ºC the activity is decreasing and the Ea becomes 

positive, for temperatures between 20 and 80ºC the Ea is very small (few KJ) and for high 

temperatures Ea becomes negative, the exothermic adsorption of the reactive becomes    

favoured and it is limiting the reaction. [35] 

5.3. Zeolites 

Zeolites are crystalline solid structures composed of pores and corner-sharing 

aluminosilicate (AlO4 and SiO4) tetrahedrons. The pores structure is characterized by 

cages approximately 12 Å in diameter, which are interlinked through channels about 8 Å. 

This structure give special properties to zeolites, adsorption, ionic-exchange, molecular 

sieve and catalytic properties, which make them ideal for the development of task such as 

filtering, odour removal, water softener or gas absorption. [36]   
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Fig. 5.6: Basic structure of zeolites [37] 

Zeolites are able to absorb large amount of CO2 due to the presence of alumina in the 

silica structure which induces a negative framework charge which is compensated for with 

exchangeable cations in the pore space. These alkali cations enable zeolites to absorb 

acid gases such as CO2.       

     

To date more than 150 zeolites have been synthesized (some of the most common 

artificial are zeolites A, X, Y and ZMS-5) and more than 40 types of natural zeolites have 

been reported (some of the most common clinoptilolite eronit, chabazite, mordenite and 

philipsite). [36] 

5.3.1. History  
In 1756, Fredrich Cronstet discovered the zeolites. He called the material ‘Zeolites’ from 

the Greek ζέω (zéō) and λίθος (líthos), meaning boiling stone, because he observed that 

after heating the material about 200°C it produced steam of water that have been 

absorbed before by the zeolite. From 1770s to 1800s several authors worked describing 

the properties of zeolites, in 1840 Damour observed that zeolites could be reversibly 

dehydrated without an apparent change in their transparency or morphology and in 1862 

St. Claire Devill reported the first hydrothermal synthesis of levynite zeolite.    

Friedel in 1896 observed that liquids like alcohol, benzene and chloroform were occluded 

by dehydrated zeolites thus he developed the idea that the structure of dehydrated zeolites 

consists of open spongy frameworks.  

Weigel and Steinhoff in 1925 reported the first molecular sieve effect and in 1960s was 

when the commercial production began. [34, 36]  
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5.3.2. Natural zeolites 
During the development of the earth layers of volcanic ash were exposed to high 

temperatures and pressure which provided the perfect conditions to create diverse groups 

of zeolites. The advantage of these groups of zeolites rely on its origin as it is a natural 

mineral it has a low toxicity, minimum biological risk and high stability. Because of its 

properties it can be used for agriculture and human and animal health, for instance several 

products has been developed using Clinoptilolite for a people who have diabetes and 

vascular diseases. [39]     

Cuba, USA, Russia, Japan, Italy, South Africa, Hungary and Bulgaria have important 

resources of these minerals. 

5.3.3. Artificial zeolites  
Zeolites were first synthesized in the 1930s, but it was not until the 1960s when synthetic 

zeolite market materialized, when their large-scale began use for catalytic cracking in the 

petroleum refining. 

Zeolites can be manufactured from kaolinitic clays thermally converted and suspended 

with sodium hydroxide and adding SiO2. The main advantage of the synthetic zeolites is 

that controlling the process optimizes the zeolites for different applications. Higher SiO2 

generally gives greater hydrothermal stability, stronger-acid catalytic activity and greater 

hydrophobicity as adsorbents whereas lower SiO2 gives greater cation exchange capacity 

and higher absorbance for polar molecules. 

Artificial zeolites also have the advantage of the purity, impurities are costly to remove and 

natural zeolites have variable phase of purity and also chemical impurities which can make 

synthetic zeolites more attractive for specific applications.[38] 

5.3.4. Clinoptilolite 
In this research it has been working with the zeolite Clinoptilolite, it is a natural zeolite that 

belongs to a group called heulandite. Due to the high amount of pore spaces, high 

resistance to extreme temperatures and chemically neutral basic structure is suitable for 

several applications such as chemical sieve, feed and food additive and gas odour 

absorber.   
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It is a white, green, orange to red or colourless mineral, but the colour can change as 

function of the composition (see table 5.4). It is a serie of three minerals with the same 

name: clinoptilolie-Ca, Clinoptilolite-K and clinoptiolite-Na the mix of these three minerals 

form the actual clinoptilolite, however the composition of Na, Ca and K can vary depending 

on the place and on the age of the rock. 

Table 5.9: Pictures of clinoptilolites from different places [37] 

   

Clinoptilolite-K 
Richardson’s Ranch north of 

Madras, Jefferson County, Oregon, 
USA. Width of view 5 mm. 

Clinoptilolite-Ca 
Cape Lookout, Tillamook Co., 

Oregon, USA 
 

Clinoptilolite-Na 
Rodalquilar, Níjar, Almería, 

Andalucia, Spain 

  

5.3.4.1. Properties 
Clinoptilolite has properties such as ion exchange capacity, high absorption level, 

dehydration activity and easily shapeable features which make it very important in plant 

production. The chemical composition and some properties of Clinoloptilolite are detailed 

below in table 5.5.  
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Table 5.10: Properties of clinoptilolite and location in central Europe [37] 

Chemical formula (Ca,Na,K)2-3Al3(Al,Si)2Si13O36•12(H2O) 

Empirical formula Ca1.9Na1.76K1.05Mg0.17Al6.72Si29.2O72•23.7(H2O)  

Composition Potassium: 1,50% 
Sodium: 1,48% 
Calcium: 2,78% 
Magnesium: 0,15% 
Aluminium: 6,61% 
Silicon: 29,91% 
Hydrogen: 1,74% 
Oxygen: 55,84% 

Crystal system Monoclinic-prismatic  C2/m 

Porosity  34% 

Specific gravity  2,15-2,25 g/cm3 

Bulk density 1,15 g/cm3 

Ion exchange capacity 2,16 meq/g 

Location in central Europe  
[40] 
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Table 5.11: Structure of clinoptilolite from different sides [37]  

Framework structure 

Top side Front side Left side 

   

5.3.4.2. Applications  
As it has been said before, clinoptilolite has several applications; one of the most important 

is in the field of agriculture. Clinoptilolite improves the efficiency of used fertilizers, 

promotes better plant growth and enhances the yield, helps to retain nutrients and 

improves the long term soil quality.  

This zeolite also has properties of gas absorber thus can be used as control odours or 

collecting them. For instance clinoptilolite is used in intensive animal husbandry sheds in 

order to reduce the content of ammonia and sulphuric acid. It can be used in filtration 

systems or simply over the water surface being that is totally harmless to water life.  

Water absorption is also one of the important properties of clinoptilolite. Zeolites can hold 

water up to 60% of their weight due to his high porosity of the crystalline structure. Water 

molecules in the pores could easily evaporate without damage to such structures. This 

property makes also clinoptilolite the best candidate for carry agricultural pesticides. [36]    

Clinoptilolite absorb toxins which can be dangerous to animals, it is demonstrated that the 

use of this zeolite as animal feed additive improves the weight gain and increases feed 

conversion ratios. Clinoptilolite application is not restricted to animals but an anti-diarrheic 

drug (ENTEREX) has also been developed for humans. [41]  
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6. Experimental part 

6.1. Materials, reagents and equipments  

6.1.1. Tiophene and polythiophene  
One of the materials used for doping the clinoptilolite is tiophene, it is a cyclic compound 

which its molecular formula is C4H4S and its molecular weight 84,14g/mol. [42] It is one of 

the simplest aromatic compounds and it shares some chemical properties with benzene. 

At room temperature it is colourless, liquid and with an odour reminiscent of benzene. [43]    

 
Fig. 6.1: Molecule of tiophene [44] 

The boiling point of tiophene is 84ºC (Oxford University Chemical Safety Data), the melting 

point is -38ºC (Oxford University Chemical Safety Data) its density is 1,065g/l at 20ºC and 

it is miscible in ethanol, ether, benzene and acetone [44]. Tiophene is a chemically stable 

compound it does not undergo the oxidation of typical a sulphides, but it undergoes 

electrophilic substitution: nitration, halogenation and sulfonation. [43]   

If tiophene is polymerized, polythiophene (PT), it can act like an organic semiconductor 

material, PT is an environmentally stable conjugated polymer which gives rise to cation 

radicals through photoactivation when rapid subsequent reactions are stimulated by a 

released electron. [45]  

There are three approaches for polymerization of tiophene: (1) electropolymerization, (2) 

metal-catalyzed coupling reactions and (3) chemical oxidative polymerization. [46] In this 

research it is going to be used the third approach, because it is wanted to polymerize the 

tiophene in the cavities of the zeolites in the laboratory, hereby chemical oxidation is the 

fastest and easiest way to do it. Chemical oxidative polymerization consists in adding a 

salt of a transition metal with the same oxidative potential of the monomer in a solution of 



40 Photocatalytic reduction of CO2 

  

 

chloroform or pyrrole with the monomer, in this research it is going to be used Fe3+ as the 

transition metal and chloroform.    

 
Fig. 6.2: Reaction of polymerization of tiophene [47] 

It can be seen in fig. 6.2 the reaction of polymerization of PT, which is a three step chain 

reaction. First stage consists of an oxidation breaking a double bond and adding a charge 

in one carbon, the second step consist of a combination where couple of molecules are 

joined, then a third step is running by forming again the double bond before broke it by 

deprotonation.  The process is repeated until one of the reagents is wasted.   

In this research the important characteristic of PT is the absorption spectrum because on 

this will depend the lamp, and if it is running or not with only solar light 

.In fig. 6.3 it can be seen also the relation between the temperature and PT absorption 

parameter. It can be seen that if the temperature increases the wavelength rises and the 

absorption decreases.   
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Fig. 6.3: Absorption spectrum of polythiophene and dependence on temperature 

 
Fig. 6.4: Light spectrum [48] 

It can be seen in fig. 6.3 that PT absorbs light from a little less than 400nm to 500nm 

approximately, corresponding to UV and visible light as it can be seen in fig. 6.4. The 

spectrum of solar light is from 300 nm up to 2000 nm with the biggest energetic part 

between 300 nm and 1000 nm [49], so it means that PT is a optimal polymer for 

photoreduction because its absorption spectra is within the border which sun emits. 
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6.1.2. Iron chloride 
Iron chloride or ferric chloride (FeCl3) is an inorganic compound formed by three atoms of 

chlorine attached into one atom of iron. Its molecular weight is 162,204 g/mol, it is dark 

brown [50]. The melting point of the FeCl3 is 37ºC [51] that is the reason this compound 

should be saved in the fridge.    

Iron chloride is used in order to induce the redox reaction and to help the polymerization of 

tiophene by oxidation. Polymerization with FeCl3 is more suitable in this research because 

it is no essentially to have the pure monomer of tiophene, it is better for large scale and 

gives high weight monomers. [52] 

6.1.3. Chloroform 
Chloroform CHCl3 is a chemical reagent which molecular weight is 119.37764 g/mol it is 

liquid at room temperature colourless and it has a characteristic smell. [53] 

 
Fig. 6.5: Molecule of chloroform 

It is used chloroform in this research because tiophene is soluble in that.  

6.1.4. Reagents  

• NaOH solution 0,1M: Solution made from solid NaOH pellets, it was weighted 1 g 

of NaOH and it was placed into a volumetric flask and filled with distilled water until 

the meniscus line (100 ml).    

 

• HCl solution 0,1M: Solution made from a concentrated solution of HCl (36%). It 

was placed with a pipette 2,15 ml of the previous solution into a volumetric flask 

and filled with distilled water until the meniscus line (100 ml).    



Photocatalytic reduction of CO2 43 

 

 

6.1.5. Equipment 

• General volumetric material of laboratory such as funnel, spatula, Erlenmeyer 

flasks, beakers, etc.  

• Precision balance METTLER 

• Magnetic stirrer  

• Ultrasonic mixer SILVERCREST 

• Lamp which the following spectrum 

 
Fig. 6.6: Lamp spectrum 

• Thermometer  

• Spectrophotometer for COD  

6.2. Methods 

6.2.1. Measurement of the CO2 and HCO3
- dissolved in water 

In order to know the conditions for dissolving the maximum amount of CO2 in water, it has 

been made several experiences changing the conditions. The methodology was almost 

the same, only some parameters detailed below were changed.  
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Fig 6.7: Process scheme of the titrations 

 

6.2.2. Modification of the zeolites  

Clinoptilolite was modified polymerizing tiophene with FeCl3 at room conditions. First 5 g of 

zeolites were weighted with the precision balance and placed into a flask, in the next step 

50 ml of chloroform were added too and a magnetic bar in order to mix it with the 

ultrasonic mixer and afterwards with a magnetic mixer (except the first zeolites, which 

didn’t remain on the magnetic mixer). The solution was mixed 30 min and 1 g of FeCl2 was 

added. After 1 hour mixing the tiophene was added, passed 1 hour and 30 minutes after 

adding the first millilitre of tiophene if the solution is not dark enough another millilitre it is 

100 ml were 
placed in a flask  

The CO2 air hose was 
connected to the flask 

let it bubbling for 
certain time 

50 ml were titrated 
with the 0,1 M HCl 

solution and orange 
metil 

Amount of 
HCO3

- 

50 ml were titrated 
with the 0,1M NaOH 

solution and 
phenolphthalein  

 Amount of 
CO2 

   
Bubbling CO2 After titration with orange 

metil 

After titration with phenol-

phthalein 

Fig. 6.8: Pictures of the different steps of the process 
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added. The mixture was left 4 hours in the ultrasonic mixer and then it was placed in the 

magnetic stirrer and was mixed all the night and part of the morning, 10 hours in total.  

Next step was filtration of the mixture with distilled water, a funnel and filtration paper, until 

the water of the filtration was totally transparent. Then the zeolites were putted in the oven 

at 100ºC and let it dry for 1h. When the zeolites were totally dry they were placed into a jar.    

 
Fig. 6.9: Process scheme for doping the zeolites 

5 g of clinoptilolite 
in the flask 

Addition of 50 ml 
of chloroform and 

a magnetic bar 

After 30 min in the 
ultrasonic mixer, 
addition of 1 g of 

FeCl3 

After 1 h mixing 
addition of 1 ml of 

tiophene 

After 1 h and 30 
min addtion of 1 

ml more of 
tiophene 

4 hours mixing in 
total 

Magnetic stirrer 
for 10 h 

Filtation of the 
zeolites  

Zeolites drying in 
the oven  (1 h at 

100ºC) 

After 1 h the 
zeolites were 

placed into a jar 
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Ultrasonic mixer Magnetic stirrer  Filtration  Oven 

Fig. 6.10: Pictures of the different steps of doping the zeolites 

6.2.2.1. Types of zeolites 

In this research it has been working with two types of zeolites, the first one is a kind of 

zeolite which one has smaller particles and other ones that has bigger size of particles. 

Among the first group it is also a difference between the doping of the zeolites, below it is 

shown the characteristics of each one.  

Table 6.1: Characteristics of the different types of zeolites 

1st zeolites 
Particles size: <0,25 mm 

Type of modifying:  As it is explained in 6.2.2 but without the 
step of magnetic mixer for 10 h.  

2nd zeolites 
Particles size: <0,25 mm 

Type of modifying:  Standard procedure (6.2.2) 

3rd zeolites 
Particles size: 0,3 - 1 mm 

Type of modifying:  Standard procedure (6.2.2) 
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Fig. 6.11: Picture of the different zeolites, from fist zeolites to third zeolites starting from left 

6.2.3. Evaluation of the relation between the pH and CO2 dissolved in water 

For the study of the relation of pH in the solubility of CO2 it was done a series of 

experiments like the one explained in the part 6.2.1, but only measuring the CO2 and 

changing the pH of the water adding NaOH for basic water and HCl for acid water.  

 

Fig. 6.12: Scheme of the process for changing the pH 

After having the desired pHs CO2 was bubbled for 20min and following the method 

explained in part 6.2.1 it was determinate the amount of CO2 dissolved.  

6.2.4. Evaluation of the relation between the temperature and the CO2 

dissolved in water 

In this case the experiment explained in the 6.2.1 part was repeated again only measuring 

the CO2. It was also performed by a series of beakers with distilled water at different 

temperatures and it was bubbled CO2 and then titrated.  

8 beakers were filled with 
water 

For acid medium it was 
added few drops of HCl 

For basic medium it was 
added few drops of NaOH 
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6.2.5. Photocatalytic reduction of CO2 

The photoreduction was performed as the scheme 6.7 represents, first certain amount of 

the modified zeolites were weighted and placed into a flask filled with 100 ml of distilled 

water. The water with the zeolites was bubbled with CO2 for 20 min, and after that the lamp 

was switched on and the really photoreduction started. From time to time the samples 

were taken. The total duration of the experiment was 4 hours.   

 
Fig. 6.13: Photoreduction scheme 

  
 

Photoreduction  Photoreduction flask Samples 
Fig. 6.14: Photoreduction pictures 

X g of the modified 
zeolites in a flask 

with a magnetic bar 

Filling with 100ml of 
distilled water 

 CO2 bubbling for 20 
min 

After 20 min switch 
on the lamp 

After 4 h switch off 
the lamp 
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Fig. 6.15: Scheme of the experiment 

6.2.5.1. Photocatalytic reduction with cold water 

In order to perform the experiment with cold water, the photoreduction flask was placed 

into a cooling bath. A bigger flask was filled with cold water and ice and the flask with the 

zeolites and the water was settled inside.    

 
Fig.  6.16: Picture of the equipment for cold photoreduction 

  

6.2.6. Measurement and calculation of the COD 

For the determination of COD it was used the dichromate method. In order to proceed it is 

needed an oxidant solution, in this case it was prepared following the next steps: 

1. It was added 10,2148 g of dry K2Cr2O7, 167 ml of H2SO4 concentrated and 33 g 

of HgSO4, into a beaker with 500 ml of distilled water. 
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2. The mixture was cooled down carefully and placed into a 1000 ml volumetric 

flask and filled it up with distilled water.  

3. 10 g of Ag2SO4 were added into 1000 ml of concentrated H2SO4. The mixture 

was agitated couple of times and it was let dissolved slowly for approx. 24 

hours.  

Once the oxidant solution is ready, 2 ml of the sample which is wanted to analyse is placed 

onto this solution, it is mix it carefully, because is an exothermic reaction and the tub 

becomes very hot. The test tubes are placed in an over and they are heated at 148ºC for 2 

hours. When the test tubes are ready the absorbance can be measured with the 

spectrophotometer at a wave length of 600 nm.   

Once the absorbance value is known, the COD value has to be calculated with the 

calibration curve of the machine which is:  

𝐸 = 𝑎𝑐 + 𝑏 
Eq. (VII)  

Where E is the absorbance measured minus the absorbance of the blank, a and b are 

constants 0,0004 and 0,0069 respectively and c is the COD expressed in mg/l or ppm.   

 
Fig. 6.17: Scheme of the measurement of COD 

Mixing of the 
oxidation reagent  

Placing 2 ml of the 
sample into the Hg 

solution 

Mixing of the Hg 
solution and the 

sample 

Cooking for 2 h at 
148ºC 

Measurment with 
spectrophotometer  
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Oxidant reagent Baker Spectrophotometer  
Fig. 6.18: Pictures of the differents steps for the COD procedure 

6.2.7. Kinetics  

To determine the speed of the reaction (k) and the order of that, it was used the procedure 

explained in part 6.2.5. Samples were taken from time to time and titrated with the solution 

of NaOH and phenolphthalein, to know the amount of CO2 reacted.  

As there are a lot of reactions occurring at the same time in photoreduction it was decided 

to simplify the reaction as much as possible (Eq. VI).  It was determined the 

disappearance of CO2, counting all the organic compounds as one because the 

stoichiometry of every reaction is one (see fig. 5.4) and calculating all the constants of 

every reaction will be hard work, and it is only pretended to known the trend of the reaction 

in general [54]. It was also assumed that it is a one step reaction and that it is occurring on 

a uniform surface area.  

𝐶𝑂2
𝑘
→ 𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 Eq. (VIII)  

6.2.7.1. Order and rate of the reaction 

The order of the reaction helps to know the dependence on the reactants in the speed of 

the reaction. The rate of the reaction links the concentration or the pressure (if the 

reactant/s is/are gasses) with the kinetic constant.  
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The typical rate equation is:  

𝑟 = 𝑘[𝐴]𝑥[𝐵]𝑦 … Eq. (IX)  

Where r is the rate of the reaction (dm3·s-1), k is the kinetic constant (units for the kinetics 

constant: order 0 mol·l-1·s-1, order 1: s-1 and order 2 l·mol-1·s-1), [A], [B]... are the 

concentration of the reagents and x, y are the stoichiometric coefficients of the reaction. If 

a mass balance it is applied in the case of photoreduction being N the reagents:  

𝑟𝑖 =
𝑑[𝑁𝑖]
𝑑𝑡

 Eq. (X)  

Other parameter that is interesting is the half time reaction (t1/2); it measures the time it 

takes for the concentration of the substance to fall to half of its initial value.  

There are several methods to calculate these parameters, in this research is going to be 

used the integrated form for the calculation of the kinetic constant and the differential form 

to calculate the rate of the reaction.  

 
Fig. 6.19: Equations to calculate the order of the reaction [55] 



Photocatalytic reduction of CO2 53 

 

 

 
Fig. 6.20: Equations to calculate the half time [55] 

In this research to know the order of the reaction was plotted the concentration of CO2 

against the reaction time, ln[CO2]/[CO20] against the time and 1/[CO2] against time too. 

After having the curves it was checked the parameter R2 and determining the order 

according to the curve which was better adjusted.  

As it is said before, when we are talking about kinetics of photoreduction with that amount 

of simplifications what is calculated is the apparent k.  

6.2.7.2. Measurement and calculation of the activation energy 

The activation energy is the difference between the reactant and the transition states and 

describes the temperature dependence of the overall reaction rate. The higher activation 

energy means the higher dependence on the temperature and if the reaction has zero 

activation energy it means that has no relation between the temperature and the rate.  

 
Graph 6.1: Activation energy 
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It was followed the same procedure of 6.2.7.1 with different temperatures. Once the kinetic 

constants were calculated it was applied the Arrhenius equation:  

𝑘 = 𝐴𝑒𝑥𝑝 �−
𝐸𝑎
𝑅𝑇�

    𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦    𝑙𝑛𝑘 = ln𝐴 −
𝐸𝑎
𝑅𝑇

 Eq. (XI)  

Where Ea is the activation energy, A is the Arrhenius constant and R is the constant of the 

gasses which is 8,3144 J/(mol·K). It was plotted the lnk against 1/T, the intercept is lnA and 

the slope is Ea/R.  

If there is a limited amount of data, the case of this research, the equation can be 

simplified:  

   ln 
𝑘1
𝑘2

=
𝐸𝑎
𝑅 �

1
𝑇1
−

1
𝑇2
� Eq. (XII)  

In this case the reaction is photoreduction so it can be expected that the rate of the 

reaction will be high and the energy reaction low due to the job of a catalyst is reducing the 

activation energy.  

 

6.3. Results and discussions  
6.3.1. Solubility of CO2 in water 

Several experiments were performed in order to figure out the relation between the 

temperature and the pH, and find the optimal conditions for dissolved the maximum 

amount of CO2 in water to get the best possible yield.   

6.3.1.1. Temperature and bubbling time dependence   

It was followed the procedure explained in 6.4.1, first the experiment was performed 

without any zeolite inside the flask and after zeolites were placed inside and the 

experiment was repeated to compare solubility.   

The first parameter that was changed was the bubbling time; it was wanted to know the 

relation between the solubility of CO2 and HCO3
- and this variable.  
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Table 6.2: Results of the first experiment changing the bubbling time and without zeolites 
bubbling time (min) V NaOH (ml) V HCl (ml) g CO2/l g HCO3

-/l 
10 4 0,5 0,352 0,061 
20 7 0,3 0,616 0,0366 
20 3,8 0,2 0,3344 0,0244 
20 4,1 0,2 0,3608 0,0244 
20 4,8 0,2 0,4224 0,0244 
30 7,2 0,3 0,6336 0,0366 
15 6,6 0,2 0,5808 0,0244 

 
Graph 6.2: Relation between the bubbling time and the solubility of CO2 and HCO3

- without zeolites 

It can be seen a slight trend for both compounds, but the opposite relation. For CO2, it can 

be seen that as longer bubbling time more CO2 dissolved. For HCO3
- is the opposite, the 

longer bubbled less solubility of this compound. 

This decreasing relation of the solubility of HCO3
- can be due to pH, as graph 5.1 shows 

the equilibrium of HCO3
- changes with the pH, it can happen that as long as CO2 is 

bubbled other compounds are forming and they change a bit the pH moving the 

equilibrium.     

One drawback of this experiment is the volatility of CO2, it can happen that part of the CO2 

dissolved in water is again converted into gas before titration not being able to measure all 

the amount of CO2 dissolved.   
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The second parameter to change was the temperature, as it is shown in graph 5.2 it was 

wanted to know if in this case was also the same the higher temperature the less solubility 

and for lower temperatures the opposite.   

Table 6.3: Solubility for different temperatures 
T (°C) V HCl (ml) V NaOH (ml) g HCO3

-/l gCO2/l 
13 0,3 6 0,0366 0,528 
14 0,3 5 0,0366 0,44 
33 0,2 5,2 0,0244 0,4576 
43 0,2 6 0,0244 0,528 
53 0,2 4,7 0,0244 0,4136 

 
Graph 6.3: Relation between the bubbling time and the solubility of CO2 and HCO3

- without zeolites 

Data reveal that there is not outstanding relationship between the temperature and the 

solubility, at least in these experiments. It can be seen in both compounds a low trend for 

decreasing the solubility at high temperatures but it cannot be said something clear. 

Perhaps it is needed more range of temperature to verify this relation or a constant 

temperature in all the experiments, in this case the temperature suffered small fluctuations.  

After these experiments, all the zeolites were tested with the same procedure explained 

before. The experiments were performed with 0,15 g of zeolites, with different 

temperatures, warm water, which  means from 20 to 23ºC and cold water, which means 

from 13 to 16,5ºC  and changing the bubbling time. 
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Graph 6.4: Plots of the amount of CO2 dissolved with different zeolites, bubbling times and warm water 

Table 6.4: Results for the CO2 dissolved in warm water with different zeolites 
Warm water 

 1st zeolites 2nd zeolites 3rd zeolites 
time bubbling 

(min) g of CO2 /l water g of CO2 /l water g of CO2 /l water 

10 0,9152 0,6864 0,968 
20 0,968 1,144 1,1572 
30 1,122 1,2628 1,2188 

It can be seen in graph 6.4 the different between the zeolites with warm water. For 10 min 

bubbling the zeolites which dissolves more CO2 are the third ones very close to the first 

ones and the worst for that time are the second one. But for 20 min it changes, now the 

zeolites which absorb less amount of CO2 are the first ones and the third and the seconds 

are able to dissolve equal amount of CO2. Last but not least, for the longest time bubbling, 

30 min, the zeolites which absorb more amount of CO2 are the second ones, followed by 

the third one and the worst ones are the first ones.  

The second zeolites are the ones which have more slope on the first part of the calibration 

curve, it means that they can absorb CO2 quicker the first 20 min, and the first and the 

third ones absorb the CO2 more slowly. Although the last 10 min almost all the slope are 

the same, so the speed of dissolving CO2 is approximately the same.  
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Graph 6.5: Plots of the amount of CO2 dissolved with different zeolites, bubbling times and cold water 

Table 6.5: Results for the CO2 dissolved in cold water with different zeolites 
Cold water 

 1st zeolites 2nd zeolites 3rd zeolites 
time bubbling 

(min) g of CO2 /l water g of CO2 /l water g of CO2 /l water 

10 0,8184 0,8184 0,88 
20 1,2276 1,2232 1,3684 
30 1,4784 1,3464 1,342 

With cold water it can be seen that the trend is the same as warm water, but in this case 

the amount of CO2 dissolved is bigger. For 10 min bubbling, the zeolites which can 

dissolve more amount of CO2 are the third one, and the first ones and the second ones 

can dissolve exactly the same grams of CO2 per litre of water. For 20 min bubbling the 

best zeolites are the third ones, and for 30 min the first ones.  

Within the first 20 min, the slopes of the three zeolites are the same; it means that the 

zeolites with cold water absorb the same amount of CO2 per minute. The last part the first 

zeolites are the ones who can absorb the CO2 quicker, and the third ones and the second 

ones are decreasing the speed.  

The solubility of CO2 was compared also with and without zeolites. It can be seen in graph 

6.9 that the solubility with the zeolites inside the flask are better than without zeolites.  
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Table 6.6: Data of the solubility of CO2 with the different zeolites and without them 
 Solubility g CO2/l of water 

Time 
(min) 

Without zeo-
lites 1st zeolites 2nd zeolites 3rd zeolites 

10 0,352 0,9152 0,6864 0,968 
10   0,8184 0,8184 0,88 
15 0,5808       
20 0,3344 0,968 1,144 1,1572 
20 0,3608 0,1227 1,2232 1,3684 
20 0,4224       
20 0,616       
30 0,6336 0,1122 1,2628 1,2188 
30   0,1478 1,3464 1,642 

 
Graph 6.6: Comparison of the solubility with different types of zeolites and without zeolites 

There are different values for the different zeolites and also for different bubbling times. 

For a bubbling time of 10 min, the zeolites which absorb more amount of CO2 are the third 

ones and the same with 20min bubbling. However for 30 min bubbling the zeolites which 

absorb more amount are the first ones.  

The amount of CO2 dissolved in water without zeolites is always the lower value, it can 

happen that due to the cavities of the zeolites they are able to capture more amount of 

CO2 and only with water it becomes into gas again very fast.  
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6.3.1.2. pH dependence  

Regarding pH, it cannot be conclude anything as it can be seen in graph 6.6. It can be 

seen that for acid pH there is one maximum at pH 1,6 and then the solubility of CO2 starts 

to decrease as the pH starts to neutralize. About basic pH the maximum is at pH 11,49 but 

it cannot be seen any relation between the whole scale of pH (from 0 to 14) and the grams 

of CO2 absorbed.   

 
Graph 6.7: Relation between the pH and the CO2 dissolved in water 

Table 6.7: Results of the grams of CO2 absorbed with different pH 

T(ºC) pH VNaOH (ml) g CO2 
23 13,08 24,4 0,10736 
22 12,32 23,2 0,10208 
22 11,49 26,7 0,11748 
22 8,23 20,6 0,09064 

21,5 3,31 18,9 0,08316 
22 2,55 24,7 0,10868 
22 1,6 28,5 0,1254 
22 1,43 27,6 0,12144 
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6.3.2. Photoreduction 
6.3.2.1. Temperature dependence  

It can be seen in graph 6.8 the evolution of the temperature while photoreduction is 

occurring, the temperature increases with the time, so probably it is an exothermic 

reaction. It can be seen also that with all the zeolites the temperature follows the same 

trend, and with the second zeolites is when the photoreduction achieve more temperature.  

In these experiments the water was bubbled 30 min, and it was done with the three 

different zeolites, the amount of zeolites was 0,15 g.  

 
Graph 6.8: Evolution of the temperature while photoreduction is occurring 
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Table 6.8: Results of the experiments for the evaluation of the temperature 

Time (min) 
Temperature (ºC) 

1st zeolites 2nd zeolites 3rd zeolites 
01 24 24 24 
30 25,5 28 28 
60 27 29 - 
90 28 - 29 
120 29 30 140 
150 30 - 31 
180 30,5 31  
210 30,5 -  
240 30,5 31,8  
300  32,5  
360  32,7  
420  33  

6.3.2.2. COD  

The COD was calculated as it is explained in 6.2.6 part, several experiments were 

performed to know how parameters like temperature, amount of zeolites or time affects to 

the conversion of CO2 into organic matter.  

Three experiments were made for the three zeolites with the same amount of zeolites, 

0,15 g and 20 min bubbling CO2 and taking samples every two hours and at the beginning, 

after bubbling, to know the evolution of the COD. It can be seen in graph 6.14 that the 

zeolites which had better value for the COD were the 2nd ones and the 3rd ones, while the 

1st ones, had low COD value.  It can mean that the most efficient zeolites for 

photoreduction are the 2nd and the 3rd ones.  

1 Time 0 means the point which it is started to bubble the CO2 into the water. 
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Graph 6.9: Relation between the COD, the photoreduction time and the sort of zeolite 

Table 6.9: Results of the experiments for the COD relation between the different zeolites 
  COD (ppm)  
time (min) 1st zeolites 2nd zeolites 3rd zeolites 

0   172,75 195,25 
60       

120 135,25 200,25 227,75 
180       
240 165,25 220,25   
265   240,25 

As it was expected as longer as the photoreduction is higher COD value appears. The 

zeolites which can convert more CO2 into COD are the third ones (240,25 ppm of COD) , 

and the ones that can convert less amount are the first ones (165.25 ppm of COD).  

It was also studied the relation between the temperature and the COD values. Several 

photoreduction were performed (0,15 g of zeolites, 20 min bubbling), changing the 

temperatures (cold and warm water), changing the zeolites and taking samples from time 

to time. 
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Table 6.10: Data of the COD with different temperature for the 2nd and 3rd zeolites 
 2nd zeolites 3rd zeolites 
  cold water warm water cold water warm water 
time 
(min) 

T(ºC) COD (ppm) T(ºC) COD (ppm) T(ºC) COD (ppm) T(ºC) COD (ppm) 

0 9,5 172,75 29 135,25 12 195,25   
60        29 130,25 

120 14,2 200,25 30 185,25 15,5 227,75 30 195,5 
240 18 220,25 31 197,75 21 240,25   

 
Graph 6.10: Plots of the COD curves for different temperatures and different time 

According to the obtained results, the best conditions in order to obtain the biggest amount 

of COD are with the third zeolites and cold water, but it is not something determining 

because also the first value of COD of this experiment was higher than the others, it is 

something logic because as graph 6.4 shows the third zeolites are the ones which can 

absorb more CO2 in 20min. 

COD curves for cold water have less slope than the ones with warm water, it mean that the 

experiments with warm water are able to convert more CO2 into organic matter faster than 

with cold water.  

The amount of COD and the amount of zeolites for the catalysis were also considered an 

interesting relation to study. Several experiments were performed, the second and the third 

zeolites were tested with 0,1 g, 0,15 g and 0,2 g of zeolites with warm water and the COD 

was measured after the photoreduction.   
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Graph 6.11: Relation between the amount of zeolites and the COD 

Table 6.11: Data of the experiments with 0,1 g, 0,15 g and 0,2 g of the second and third zeolites 
  COD (ppm) 
  2nd zeolites 3rd zeolites 

Time (min) 0,1g  0,15g  0,2g  0,1g  0,15g  
0   112,75 37,75 232,75   

60 177,75       130,25 
120 260,25 140,25 200,25 250,25 195,5 
180           
240   160,25 360,25 410,25   

 
6.12: Graph of the concentration of CO2 during photoreduction with different zeolites 
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Table 6.12: Results for the concentration of CO2 while photoreduction is occurring 

[CO2] 
Time 
(min) 0,1 g 2nd zeo. 0,15 g 2nd zeo. 0,2g 2nd zeo. 0,1 g 3rd zeo. 0,15g 3rd zeo. 

0 0,025 0,016 0,027 0,1012 0,023 
40   0,015556     0,021 
60 0,023   0,023 0,07946   

100   0,015     0,016 
120 0,015   0,015 0,05685   
160   0,014286     0,014 
180 0,013   0,011 0,04365   
220   0,013333     0,012 
240 0,011   0,008 0,03432   
280   0,02     0,012 
340   0,02     0,011 
400         0,011 
460         0,008 

Graph 6.11 shows that photoreduction with 0,1 g of zeolites achieve higher COD values. 

On graph 6.12 can be seen that also CO2 concentration is decreasing. It can be seen the 

relation between both graphs, because the curves with more slope in the graph of COD 

are the ones with more negatives slope in the graph of CO2 concentration. It means that 

zeolites really are converting this CO2 into organic matter.  

The zeolites which achieve more COD value are the second ones, with 0,15 g of them and 

they are also the ones which have more slope, so fasters. The ones which reach less 

amount of COD are the 2nd and the 3rd ones with 0,15 g.   

To know sure that the reaction was occurring, 0,15 g of zeolites with water were placed 

into a dark atmosphere and they were let it there 24 hours. After that time the COD was 

measured and it was 0,024 nm, exactly the same amount of absorbance than the blank. 

So it means that without light the reaction is not working.  

It was made an experiment to know if the experiment was working or not. It consisted in 

place 0,15 g of the second zeolites into 100 ml of water in totally darkness for 24 hours. 

After that the absorbance was measured and COD calculated. The concentration was 

0,024 ppm, the same of the blank, so it can be said that photoreduction is working.   
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6.3.2.3. Pseudo order of the reaction  

It was done also some experiments according the procedure explained in 6.2.7 in order to 

know the kinetics of the reaction. It is going to detail the data of the first experiment as a 

representative example, the other ones were the same but changing the zeolites, the 

temperature or the amount of zeolites. Later is going to be detailed a table with all the 

experiments performed and the results obtained (table 6.12).  

It has to be said that V flask is the total volume left in the flask every time a sample was 

taken, the sample was 0,01l but also every hour samples of 0.004 l were taken for the 

COD measurement. In all the experiments the bubbling time was 20 min.  

Table 6.13: Data for calculate the pseudo order of the reaction (with 0,15g of the second zeolites) 
    PSEUDO ORDER OF THE REACTION 
    0 1 2 

time PC 
(min) T(ºC) VNaOH (ml) V flask (l) [CO2] ln([CO20]/[CO2]) 1/[CO2] 

 24 - - - - - 
0 24,5 1,6 0,1 0,016 0 62,5 

40 28 1,4 0,09 0,0155 -0,028170877 64,2857 
80 30 1,2 0,08 0,0155 -0,064538521 66,6667 

120 31 1 0,07 0,0143 -0,113328685 70 
160 31,5 0,8 0,06 0,0133 -0,182321557 75 
200 31,7 1 0,05 0,002 0,223143551 50 
240 31 0,8 0,04 0,002 0,223143551 50 

   k: 0,000022 0,00113 0,03844 
   R2 0,9775 0,969 0,9592 

It was considered to omit some experimental points because they were very far of the 

other points, and they were considered as an anomaly.   

It has to be said that as the equation of the second order reaction said (fig.6.19) the slope 

of the calibration for this order has to be divided by two in order to know the kinetic 

constant.  

2 Units: min-1 

3 Units: mol·l-1·min-1 
4 Units: l·mol-1·min-1 
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Graph 6.13: First experiment calibration curve for pseudo order 0 

 

 
Graph 6.14: First experiment calibration curve for pseudo order 1 
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Graph 6.15: First experiment calibration curve for pseudo order 2 

It can be seen in graph 6.12 and table 6.9 that the curve with better R2 coefficient is the 

one for zero-pseudo order. With a R2 of 0,9775.   

Table 6.14: Results of all the experiments 
 Zeolites Water temperature5 Pseudo 

order 
k6 R2 

1 0,15 g second 
zeolites  

Warm water (around 
29ºC) 

0 0,00002 0,9775 

2 0,15 g third 
zeolites 

Warm water (around 
30ºC) 

1 0,0035 0,9173 

3 0,1 g third 
zeolites 

Warm water (around 
27ºC)  

2 0,051 0,96 

4 0,15 g second 
zeolites 

Cold water (around 
12ºC) 

0 0,00001 0,9745 

5 0,15g third 
zeolites 

Cold water (around 
15ºC) 

1 0,0036 0.9895 

6 0,2 g second 
zeolites 

Warm water (around 
28ºC) 

1 0,049 0.9835 

7 0,1 g third 
zeolites 

Cold water (around 
15ºC)  

1 0,0022 0,9738 

8 0,1 g second 
zeolites 

Warm water (around 
26ºC) 

2 0,1127 0,9567 

 

5 The temperature on the reaction was continuously changing so it was calculated the average of all 
the temperatures to give an approximate idea.   
6 Every k in its corresponding units.  
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Graph 6.16: Results for the pseudo order of the reaction 

 

As it can be seen in table 6.13, the values are very different in every experiment, but it can 

be seen similarities between the sorts of zeolites. In graph 6.15 it can be seen for the case 

of the second zeolites (0,15 g) both experiments have results for zero-pseudo order 

reaction, with a very similar kinetic constant and also similar R2, but in the case of 0,2 g of 

zeolite the pseudo order changes. For the second zeolites and 2 g of amount it can be 

seen pseudo order 1 and a kinetic constant far from the others.  

For the third zeolites, for 0,15 g, both kinetic constants are almost the same (0,0035 min-1 

and 0,0036 min-1) and  the pseudo order is also the same for both (first). But for the 

amount of 0,1 g with warm water the experimental data give results for second pseudo 

order also with the second zeolites, but with cold water for first pseudo order, with kinetic 

constants quite different. This could be due to the different reactions of photoreduction, 

perhaps with 0,1 g of zeolites some reactions and temperature become more favoured 

some other with more amount of zeolites.  

Anyway the majority orders are 0 and 1, which suggest that data are quite according to the 

ones found in the bibliography (section 5.2.2.3) [34]. 
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6.3.2.4. Activation energy of the reaction 

To know the activation energy of the reaction it has been taken the first and the forth 

experiment for the second zeolites, because to calculate this parameter was needed a 

change of temperature. It was followed the procedure explained in section  

For the third zeolites the results are detailed below: 

Table 6.15: Results for the calculation of the activation energy for the third zeolites 
 T (K) k (mol· l-1s-1) 1/T lnk Ea (J/mol) 

k1 287,04 6,00E-03 0,00348384 -5,11599581 
-74370,2815 k2 302,67 0,0012 0,00330391 -6,72543372 

The Ea was calculated with the eq. (X), because it weren’t enough data for doing a 

regression. It is very important to have all the units expressed in the International System, 

the temperature in absolute value (K) and k in seconds.  

It can be seen in table 6.13 that the value of Ea is -74370,28 J/mol. Negative activation 

energy means that the speed decreases with the temperature, which thing doesn’t surprise 

because at less temperature more amount of CO2 is dissolved and more CO2 is converted 

into organic compounds. As it was found in the bibliographic research the activation 

energy is about few KJ, nothing was found to know if 74 KJ/mol is too much or not. So it is 

known that the result is not far from what was expected but it is also not know how close 

they are to real ones.  
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7. Conclusions and future work 
7.1. Conclusions 

The main objective was to know if is possible to develop a photoreduction with natural 

zeolites which reducing the CO2 level and increasing the organic compounds on it. After 

this research it can be said that is possible, although it is still unknown the compounds it is 

known that the CO2 is converted into organic matter (Graph 6.16).  

About the secondary, but not less important, goals here it is written a brief description of 

the achievement of the research:  

7.1.1. Conclusion about solubility  

• The amount of CO2 dissolved in water has a relationship between the bubbling 

time. As longer as it is bubbled the more CO2 is dissolved (see graph 6.2 and table 

6.2). 

• Experimentally it can be said that probably the solubility of the CO2 in water is 

better with cold water (graph 6.3 and table 6.3), but it cannot be said anything sure 

because there are not data enough. The temperature of the experiments was no 

constant, so this could be the reason why the results are not determining.  

• As it was seen in graph 6.4, the zeolites which ones absorb more are the second 

ones in 30 min of bubbling time, the amount of CO2 absorbed is 1,2628 g. And the 

zeolites which ones absorb less amount of CO2 are the second ones also but in 10 

min of bubbling time, 0,6864g absorbed.  

• Zeolites with cold water achieve better results about solubility, for instance 0,15 g of 

the second zeolites in 20 min bubbling are able to dissolve 1,2232 g of CO2 per litre 

of cold water while in warm water the solubility decreases at 1,144 g. (Graph 6.5)   

• The zeolites which can absorb more CO2 in cold water are the first (1,4784 g/l) in 

30 min bubbling, and the ones which can absorb less are the first ones and the 

second ones in 10 min of bubbling (0,8184 g/l for both). 

• It can be seen in graph 6.6 that solubility of CO2 increases significantly with 

zeolites,  whereas without zeolites the solubility in 20 min of bubbling is 0,3344 g/l 

of water, with the first the second and the third zeolites the solubility is 0,968, 1,144 
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and 1,157 g/l of water with the same amount of time. So it can be said that with the 

zeolites we at least multiplying by three the amount of CO2 dissolved.  

• The pH was another variable of interest, but in this research it cannot be 

determinate anything (see graph 6.7), with the experiment done no special 

relationship is noticed.  

7.1.2. Conclusions about photoreduction 

• The temperature is increasing along the photoreduction is occurring (graph 6.8), 

perhaps this is because photoreduction is an exothermic reaction.   

• The zeolite which riches higher amount of COD, it means organic matter, is the 

third one, while the first one is the one which achieve less COD. While the third 

zeolites in two hours are able to achieve up to 227,75 ppm  of COD, the first ones 

in the same time can achieve 135,25ppm (see graph 6.9). So it can be said that the 

fist zeolites were modified wrong.  

• In graph 6.10, the best condition for developing a photoreduction can be deduced. 

The most effective way in order to obtain higher amount of organic compounds is 

with cold water and with the third zeolites, but it also depends on what is wanted. 

The slopes of the curves show that the reaction with cold water is slower than with 

warm water.  

• In graph 6.11 and 6.12 it can be seen that the photoreduction is working and it is 

converting the CO2 into organic matter.  

• The amount of zeolites for performing the photoreduction is another parameter 

which changes the yield. In graph 6.11 it can be noticed that with less amount 0,1 g 

of zeolite the conversion is more effective, more amount of CO2 is converted. It is 

also effective 0,2 g of zeolite, but in this research it was only performed one 

experiment with this amount of zeolites, so it is not determining.  

• About the order of the reaction, it is not clear with the results but the majority of the 

experiments give pseudo order 1, which result is according to the bibliographic 

search. But one conclusion is that the photoreduction is a complex general reaction 

because there are a lot of reaction and factors involved, so it cannot be calculated 

carefully the kinetics of the reaction simplifying the reaction as one (see table 6.13 

and graph 6.16).  
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• Another kinetic parameter is the activation energy, for the same reason as the 

kinetic constants it cannot be calculated precisely by simplify the reaction of 

photoreduction that much.  

 

7.2. Future work 

• Could be interesting to monitor the pH evolution during the reaction, to know more 

about the equilibrium of the carbonic acid in water and understand more the 

reactions involved.  

• Performing the photoreduction with constant temperature (cold and warm) could be 

also interesting to know if there are fluctuations of products.  

• It would be interesting to find the compounds which ones are forming during the 

photoreduction. For example GCMS.   

• To know more about kinetics, the reaction could be breakdown into the main 

reactions and calculate the constants for each one of them.  
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