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Abstract. Reducing wedge without generating camber is still a big challenge for today’s 
process automation systems for hot strip mills. Therefore, detailed transient 3D-models of the 
underlying severely asymmetric flat hot rolling processes have been developed by the authors 
with the help of the commercial FEM-package ©Abaqus Explicit. By utilizing suitably 
positioned edging rolls, the corresponding lateral force acting on the strip induces a lateral 
material flow inside the roll gap, leading to stress-redistributions such that the outgoing 
camber-curvature is drastically reduced. Systematic parameter studies performed so far 
revealed how the lateral edging force and the resulting strip camber-curvature depend on 
characteristic rolling parameters, such as slab width, thickness, initial wedge and thickness 
reduction. 

To understand the underlying highly non-linear elasto-viscoplastic forming processes 
inside the strip or slab in more detail, and to develop fast simulation-tools, semi-analytical 
model reduction approaches have been developed. This enables a quantitative analysis of the 
induced lateral material flow and the occurring stress-redistributions inside the roll bite. By 
introducing a lateral material transfer parameter directly correlated to the camber-curvature, 
an analytical relation could be derived for the bending moment (and external work) that has to 
be applied to eliminate the camber of the strip or slab. These analytical predictions, although 
based on rough simplifications, correspond quite satisfactorily with those attained by 3D-
FEM simulations. 
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1 INTRODUCTION AND SURVEY 
The hot rolling process can be considered as a key step within the production chain of high 

quality steel strip and plate material. To attain a more detailed insight into the elasto-
viscoplastic forming phenomena [1 - 3] during the rolling process [4], the application of 
customized modeling tools is essential. For the prediction of 3D-effects during the roughing 
process of thick slabs, such as the lateral material flow and the influence of an edger, adequate 
3D models are of utmost importance. 

Rolled strip is ideally both straight (i.e. without camber) and left-right-symmetrical with 
respect to thickness (i.e. wedge free), respectively. Unfortunately, if a wedge within the slab is 
removed through swiveling of the rolls without further countermeasures, a camber will result, 
which - from a quality point of view – is even worse than wedge. Modern, so called “camber 
free rolling systems” apply cameras to swivel the roll sets of roughing or finishing mill stands 
to minimize the lateral curvature (camber) of the produced strip. Hence, all shape errors on 
the slab, i.e. initial camber or wedge are transferred into a wedge on the coil. This resulting 
wedge has to be accepted, if no additional actuator is available. 

In this study (cf. section 2) the 3D-simulation of severely non-symmetric coupled flat hot 
rolling and edging processes is performed by utilizing the commercial FEM-Packages 
©Abaqus Standard and Explicit. This enables the reliable prediction of camber formation [5-8] 
due to prescribed strip and slab wedge in hot rolling as well as of its suppression. Moreover, it 
leads to a deeper understanding of the underlying process details, which is a prerequisite for 
further process mechatronisation (model based design and model based control) targeting 
improved product quality. It enables the prediction of profile transfer, eigenstrains, residual 
stresses for highly asymmetric rolling scenarios for a single mill stand coupled with heavy 
sideguides and edgers. The developed enhanced models will also lead to an improvement in 
prediction of quality for a wide variety of process parameters and support the optimization of 
production plants. Modelling and simulation have to be accompanied by validation and 
calibration with measured mill data. 

The results obtained so far form the basic knowledge for the development of fast reduced 
semi-analytical software-prototypes for industrial offline- and online applications including 
control strategies and algorithms (model based control). Purely analytical considerations 
regarding the prediction of the induced lateral material flow and the corresponding stress and 
strain re-distributions resulting from external lateral forces applied onto the slab outside the 
roll-gap (e.g., by utilizing an edger) will be outlined in section 3. However, as some essential 
physical effects are not explicitly incorporated in this rather simple analytical model, it is 
primarily useful for qualitative considerations (e.g. sensitivity analyses). More refined semi-
analytical 3D roll-gap modelling approaches, which are currently under development, will be 
valuable for precise quantitative predictions as well. 

As already pointed out above, reducing wedge without causing camber is still a big 
challenge for today’s production in hot strip mills. Although camber has been treated as a 
problem for many years, cf. e.g. [5–8], and most of such studies are based on qualitative 
camber assessment, pilot plant trials and numerical simulation results, it has to be emphasized 
that still a lot of essential details are not yet fully understood. The scientific knowledge 
outlined in sections 2 and 3 give rise to the development of enhanced automated online 
systems for wedge and camber control and suppression in a commercial hot strip mill, the 
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implementation of which is currently in test-phase, and the results attained so far look quite 
promising. 

2 NUMERICAL INVESTIGATIONS 
Figure 1 shows a sketch of the investigated mechanical system. A strip with initial wedge 

is rolled such that the wedge is eliminated entirely. Lateral movement of the strip on the entry 
side is prevented using side-guides. The elimination of the wedge is associated with a lateral 
material flow in the roll-bite, causing a strip with significant camber. To suppress the 
formation of this strip camber, a force controlled edger is proposed, see Figure 1. Initially, the 
upper work roll is positioned with some clearance above the resting strip. In the following 
step, the required rotational speed is applied to the work roll, and the work roll is lowered to 
the final strip thickness. The lowering of the work roll causes a transient stress distribution 
near the front crop of the strip, see exemplarily in Figure 2. The edger is brought to contact 
with the strip by applying a small lateral force ( )r

zEF to the edger when the front crop has 
passed the centerline of the edger. It is worth to note that the edger is connected to the inertial 
frame by a soft spring. Thereafter, ( )r

zEF  is increased sinusoidally to the final constant value
( )

,max
r

zEF . The effect of the lateral edger force ( )
,max

r
zEF  on the formation of strip camber is 

investigated in the following using the software package ©Abaqus Explicit, where special 
emphasis is placed on the influence of a variation of the system parameters initial width, 
thickness, wedge of strip, and thickness reduction. 

Figure 1: Sketch of Abaqus model for investigating 
the influence of a force-controlled edger to the 
camber of rolled strips with initial wedge. 

Figure 2: Exemplary Abaqus result of a rolled strip 
with initial wedge, depicting the formation of a 
quasi-stationary state for a constant lateral edger 
force. 

Roll stand and strip are assumed to be symmetric with respect to the horizontal plane (x-z 
plane), and hence, numerical simulations are limited to the upper half. Work roll, side-guides 
and edger were modeled as rigid bodies, whereas an elasto-viscoplastically material law was 
assumed for the strip. To reduce the numerical simulation time, the edger was located closer 
to the work roll in the reduced model, i.e. at a distance ( ) / 3=r

we wel l , where the superscript ( )r

denotes the reduced quantity, and moreover, the mass scaling in Abaqus Explicit was set to 
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10. Comparative investigations with ©Abaqus Standard showed only marginal differences.
Meshing was done using 50 elements across the width, and 8 elements across the half 

thickness of the strip, with a continuous refining of the elements’ size from the core to the 
surface of the strip. Table 1 shows the default set of system parameters used for the numerical 
investigations. 

Figure 3: Curvature ( ) ( )r
scxκ  of slab centerline for

( )
,max 250kN.=r

zEF Definition of a spatially fixed area 

for calculating the averaged curvature ( )
,
r

s avgκ .

Figure 4: Results of a parameter study investigating 
the averaged curvature ( )

,
r

s avgκ  for different widths of 

the strip and several values of the maximum lateral 
edger force ( )

,max .r
zEF

Table 1: Set of default system parameters. 

Parameter Symbol Value Unit 
width of strip w0 1200 mm 

thickness of strip H0 180 mm 
draft R0 35 mm 

absolute wedge W0 6 mm 

Figure 3 depicts an exemplary result of the curvature distribution ( ) ( )r
scxκ of the slab 

centerline for ( )
,max 250kN.=r

zEF After some transient behaviour, resulting from the lowering of 
the work roll to the final strip thickness, and the increasing of the lateral edger force to ( )

,max
r

zEF , 
an almost constant (stationary) value of the curvature is observed. This allows to calculate an 
averaged curvature ( )

,
r

s avgκ  within a spatially fixed area, see Figure 3. Therein, ( )
, 0.014= −r

s avgκ  , 
whereas without edger an averaged curvature of ( )

, 0.024= −r
s avgκ  is observed, i.e. applying the 

lateral force results in a significant reduction of the curvature of the strip. The effect of ( )
,max

r
zEF

to the curvature ( )
,
r

s avgκ  is shown in Figure 4 for different initial widths of the strip. Increasing 
( )

,max
r

zEF  results in a reduction of the averaged curvature of the strip until ( )
, 0=r

s avgκ i.e., a straight

strip is obatined. If ( )
,max

r
zEF  is increased further on, the curvature changes its sign, which means 
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that the strip bends to the opposite direction. This clearly demonstrates that a certain value of 
the lateral edger force exists which allows to fully suppress the formation of strip camber. 

Figure 5: Relative maximum lateral edger force 

,max ,max,0/zE zEF F  corresponding to a strip with zero 
curvature for different values of the relative width 

0/w w of the strip. 

Figure 6: Resulting curvature of the full model 
when applying a lateral edger force 

( )
,max ,( 0)r

zE s avgF κ = , for which the curvature

vanishes in the reduced model. 

Figure 5 depicts the relative edger force ,max ,max,0/zE zEF F necessary to suppress the strip’s 
curvature for variations of the relative width 0/w w of the strip. Therein, ,max,0zEF represents the 
required lateral edger force for the default set of system parameters according to Table 1. As 
expected, increasing the width of the strip results in a higher lateral edger force, necessary to 
suppress the formation of strip camber. This relationship can be desribed precisely by a 
polynomial of third order, see Figure 5.  

The results presented up to now, are all related to the reduced model, where the edger is 
located closer to the work roll to save computational time. To check, if the results of the 
reduced model are valid also for the full model, where the edger is in its original position, a 
numerical evaluation of the full model based on the default set of system parameters, see 
Table 1, and the lateral edger force ( )

,max ,max /3= r
zE zEF F was carried out. Figure 6 depicts the 

corresponding curvature of the slab centerline of the full model. It can be clearly seen, that in 
the front area of the strip, which is rolled without contact between edger and strip, a well 
defined steady state can be observed, with a curvature 0.024≈ −κ . Applying the lateral edger 
force causes a short transient behaviour of the curvature, and immediately thereafter, a quasi 
steady state with 0.0≈κ  is achieved. This demonstrates exemplarily, that the proposed 
reduced model is capable of predicting the behaviour of the full model. 

The basis for suppressing the formation of strip camber when eliminating strip wedge, is 
the induction of a lateral material flow in the roll bite by applying a lateral force to the strip on 
the exit side. This concept benefits from the fact that the strip is already plastfied in the roll 
bite due to the thickness reduction achieved by the work rolls. In the present case, the ratio of 
the moment of the lateral edger force ,maxzEF compared to the moment plM that would be
necessary for plastification of the strip in the roll bite in the absence of the rolling force reads 
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,max

( ) 2/ /( / 4) 0.065,∆ = =
xx zE

Out
pl we f cM M F l k H wσ i.e. only 6.5% of plM  is necessary to modulate the 

lateral material flow in the roll-bite such that a strip with approximately zero curvature is 
achieved. 

Figure 7: Averaged axial stress ,xx avgσ  at roll bite

exit in the quasi-stationary state with and without 
lateral edger force. 

Figure 8: Difference of averaged axial stress ,xx avgσ
at roll bite exit with and without lateral edger force. 

The effect of the lateral edger force on the distribution of the averaged axial stress over 
strip width is shown in Figure 7 for the default set of system parameters. Therein, axial 
stresses at the roll bite exit, averaged across the thickness of the strip, are displayed for the 
cases with, respectively without a lateral edger force being applied. The results hold for a well 
pronounced steady state. It can be seen clearly, that without edger, i.e. free formation of 
camber takes place, an axial stress distribution which is almost symmetric with respect to the 
center of strip occurs. In comparison, applying a constant lateral force causes an increase of 
stresses for lateral strip coordinates within [0, 600], and decreased stresses within [-600, 0]. 

The corresponding difference ,∆ xx avgσ between the axial stresses developing with and 
without lateral edger force, is given in Figure 8, indicating tensile stresses in the half of the 
strip adjacent to the edger, and compressive stresses in the opposite half. Within a range of 
about [-200, 200], ,∆ xx avgσ can be approximated by a linear relationship with sufficient 
accuracy. 

Figure 9 shows the lateral material transfer factor ζ  (defined in section 3, see Equations 
(5)) as a function of the relative edger force ,max ,max,0/zE zEF F  and for different relative widths of 
the strip. If 1=ζ , total suppression of strip camber is achieved, whereas 0=ζ  indicates free 
formation of camber. A material transfer factor 1>ζ  corresponds to a scenario for which the 
lateral material flow, and therewith, the curvature of the strip changes its sign, i.e. the strip is 
bent to the opposite direction. So far, only a variation of the width of the strip was 
investigated. In the following, some results concerning the variation of strip thickness, wedge, 
and reduction are presented. 

699



A. Kainz, T. Pumhössel, M. Kurz, A. Schiefermueller and K. Zeman 

Figure 9: Lateral material transfer factor ζ for 
strips with different initial width and for different 
values of the lateral edger force ,max .zEF

Figure 10: Required relative edger force 

,max ,max,0/zE zEF F  to achieve a strip with zero 
curvature for variations of relative system 
parameters 0/p p . 

Figure 10 shows a collection of the corresponding results. Increasing the thickness of the 
strip initially causes a larger required edger force to achieve a strip with zero curvature, see 
Figure 10. For 0/ 1.2> ≈H H , the relative edger force ,max ,max,0/zE zEF F , decreases slightly as the 
effect of the decreasing relative wedge on the required lateral force necessary to suppress strip 
camber formation overcompensates the effect of increasing strip thickness. The influence of 
the reduction meets the expectations - with increasing reduction, the required lateral edger 
force becomes smaller. With increasing wedge, a larger lateral force is required to suppress 
strip camber. 

3 ANALYTICAL INVESTIGATIONS 
In this section, the behavior of a wedged slab running through one horizontal roll pass with 

aligned rolls is investigated by analytical means. Due to the wedge on the entry side and the 
alignment of the rolls, the material undergoes different reductions on the operator side and on 
the drive side of the material. As a consequence, the side with higher reduction shows higher 
elongation. This results in a curvature of the material on the exit side and camber develops. 
The impact of an externally applied lateral force, e.g. resulting from an edger, would cause an 
asymmetric tension regime, which compensates for the different elongations by inducing an 
additional lateral material flow. Therefore, the wedge can (at least in principle) be eliminated 
fully without formation of camber by choosing the correct lateral force-value. 

By utilizing analytical methods, the induced lateral material flow inside the roll-bite can be 
analyzed to some extent as follows. The x-coordinate of the underlying global Cartesian 
coordinate system denotes the rolling direction, whereas y and z indicate the thickness and 
lateral directions of the strip or slab, respectively (cf. Figures 1 and 2). A non-dimensional 
lateral coordinate is introduced via 
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[ ]1, 1
2
w

z η η= → ∈ − + . (1)

Within the frame of perturbation theory, the special case of plane strain (i.e. no lateral 
material flow) can be considered as “undisturbed” scenario of pure thickness reduction with 
logarithmic strain values 

( )
( )

(0) (0)
( )ln 0

In
c

xx yy Out
c

H

H
ε ε  

= − = > 
 

. (2)

For simplicity, linear wedge-profiles are assumed here for the strip entry- and exit profiles 
(In: before roll-gap entry, Out: after roll-gap exit) according to 

( ) ( )
( )

( )
( ) 1

2

In
InIn abs

C In
C

W
H H

H
η η

 
≅ − 

 
( ) ( )

( )

( )
( ) 1

2

Out
OutOut abs

C Out
C

W
H H

H
η η

 
≅ − 

 
(3)

Calculations taking into account more general strip-profiles were accomplished as well and 
will be outlined at the end of this section (cf. Equations (14) ff.).  

By taking into account a small relative strip wedge change, defined as the difference of the 
absolute strip wedge values, divided by the respective nominal (C: Centerline) thickness 
values, 

( )

( )

( )

( ) 1
Out In

abs abs
rel relOut In

C C

W W
W with W

H H

 
∆ ≡ − ∆ << 

 
(4)

the corresponding induced logarithmic (i.e., “true”) plastic strains inside the strip or slab at the 
roll gap exit can approximately be assumed to be of the form (in lowest order of ∆Wrel) 

( ) [ ](0) (1 ) 2xx xx relWε η ε ζ η≅ + − ∆ (5a)

( ) [ ](0) 2yy yy relWε η ε η≅ − ∆ (5b)

( ) [ ]2zz relWε η ζ η≅ ∆  , (5c)

where the scalar “lateral material transfer factor” ζ  is a measure of the magnitude of the 
lateral material flow involved. A value of zero indicates the case of plane strain and zero 
lateral flow, whereas a value of 1ζ =  represents 100% lateral flow such that no longitudinal 
strain inhomogenities are induced across the strip’s width. 

Note that shear strains are neglected here. The plastic incompressibility constraint is 
fulfilled exactly for the logarithmic strain tensor components (Equations (5a)-(5c)) 

( ) ( ) ( )
1 1

0xx yy zzη
ε η ε η ε η

− <= <=
 ∀ + + =   . (6)

By neglecting higher order terms in the relative strip wedge change ∆Wrel, the uniaxial 
equivalent plastic strain can be determined according to 
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( ) ( )( ) 2 2 2 (0)
(0)

2 2 11 1
3 2 23

p rel
xx yy zz xx

xx

W ζε η ε ε ε ε η
ε

 ∆  = + + ≅ + −    
 . (7)

Within the frame of Levy-Mises [1 - 4] the deviatoric (i.e. trace-free) stress-components 
ijσ ′  of the Cauchy stress tensor are fully determined by the associated plastic flow rule. To 

calculate the stresses itself, two more conditions have to be taken into consideration. The 
lateral force-equilibrium reduces here to 

0zz zzp

z

σ σ
η η

′∂ ∂ ∂= → =
∂ ∂ ∂

(8)

i.e., the lateral change of the hydrostatic pressure p is already prescribed via the determination
of ijσ ′ . The longitudinal stress boundary condition is given by 

( ) (0)
xx F F xxσ η σ σ σ= → = (9)

for prescribed mean front tension stress. These two conditions enable the unique 
determination of the hydrostatic pressure p and of the Cauchy stresses, which read in lowest 
order of ∆Wrel

( ) (0)1
23

f rel
F

xx

k W
p

ζη σ η
ε

  ∆= − + +  
  

( ) (0)

3
43

f rel
xx F

xx

k Wζσ η σ η
ε

 ∆ = −     
(10a)

( ) (0)

2 3
43 3

f f rel
yy F

xx

k k Wζσ η σ η
ε

   ∆ = − −       
( )

3
f

zz F

k
σ η σ = − 

 
 , (10b)

where fk  denotes the yield-strength value. 
When dealing with camber formation, the “material transfer factor” ζ  as introduced in 

Equations (5a) and (5b), is directly correlated to the camber-curvature κ

(1 )relW

w
κ ζ−∆= − (11)

as can be shown easily via elementary geometric considerations. It takes its maximum value 
for the first limiting scenario, i.e., for zero lateral flow  max0 relW wζ κ κ= → = = −∆ .  For 
the opposite limiting scenario, i.e., for 1ζ = , the lateral flow inside the roll-gap suffices to 
fully eliminate the camber (i.e. 0κ = ). In that case longitudinal compressive stresses (σxx < 0) 
and tensile stresses (σxx > 0) are induced depending on the lateral position η , as follows 
quantitatively from Equation (10a). Moreover, the local roll separating force proportional to 
~[-σyy] (cf. Equation (10b)) decreases in regions, where longitudinal tensile stresses occur, 
and increases in regions with compressive longitudinal stresses. 

The external bending moment MB corresponding to the longitudinal stress distribution 
σxx(η) in Equation (10a) is determined by evaluating the integral 
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( ) ( )
( ) 2/2

( )
(0)

/2 4 2 3
plast

Outw
c fOut rel

B xx
xxw

M

H w k W
M z H z z dz

ζσ
ε

+

−

 ∆= ≅  
 

∫


 . (12)

The corresponding plastic deformation work (per strip unit length) reads 

( )
max

2( )0
( )

(0)16 3

Out
c f relpl

B

xx

H w k W
W M d

κ

κ
ε
∆

= =∫  . (13)

It should be emphasized that the bending moment required to eliminate camber (c.f. 
Equation (12)) is tiny (about 2-8%) compared to the value Mplast, which is necessary for 
“classical” strip bending, i.e., pure bending without thickness reduction by rolling. The 
underlying main reason is that due to strip thickness reduction inside the roll gap, 
plastification already occurs. Therefore, the material flow merely has to be “modulated”, i.e. 
only the stress-redistributions coupled to the additional lateral material flow have to be 
induced by applying this external bending moment. 

A generalization of Equations (3) ff. from linear wedges to arbitrary non-linear strip-entry 
profiles is straight forward and can be performed systematically, e.g., by utilizing an expansion 
in series of Legendre-polynomials ( )kP η  [9]. By performing a stress and strain analysis, based 
on a generalization of Equation (3) according to 

( ) ( ){ }( ) ( ) ( )In In In
CH H Hη η= + ∆ ( ) ( ){ }( ) ( ) ( )Out Out Out

CH H Hη η= + ∆  , (14)

and by defining a suitable auxiliary function ( )ηΨ

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
0

In Out

j jIn Out
jC C

H H
P

H H

η ηη η
∞

=

 ∆ ∆
Ψ ≡ − ≅ Ψ 

 
∑  , (15)

which can be expanded in terms of the complete orthogonal Legendre polynomials [9], one is 
directly led to the product representation 

( ) ( ) ( ) ( )
0

k k
k

Pη η ζ η η
∞

=

Ξ ≡ Ψ = Ξ∑ ( ) ( ) ( )
1

1

2 1
2k k

k
P dη η η

+

−

+
→ Ξ = Ξ∫  . (16)

It should be emphasized that the scalar “lateral material transfer function” ( )ζ η  involved in
(16) is a generalization of the material transfer factor ζ  introduced in Equation (5) 
representing a quantitative measure of the magnitude of the lateral material flow related to a 
relative strip profile change according to the function ( )ηΨ . The consistent determination of
this quantity requires a full 3D roll-gap model and can be calculated either by enhanced 3D 
semi-analytical models (an enhanced variant is currently under development), or by analyzing 
3D Finite Element simulation results. In general cases, the lateral material flow is 
inhomogeneous and varies in lateral direction. Therefore, it also has to be expanded in terms 
of Legendre-polynomials 
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( ) ( ) ( ) ( ) ( )
1

0 1

2 1
2k k k k

k

k
P P dζ η ζ η ζ η η η

+∞

= −

+
= → = Ξ∑ ∫  . (17)

Combining the Equations (15) - (17) one is immediately led to the correlation between the 
Legendre coefficients involved 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

k k i j i j
k i j

P P Pη η η ζ η ζ η η
∞ ∞ ∞

= = =

Ξ = Ξ = Ψ = Ψ∑ ∑∑ (18a)

( )
0 0

2 1
2k i j ijk

i j

k
Iζ

∞ ∞

= =

+
Ξ = Ψ∑∑  with ( ) ( ) ( )

1

1
ijk i j kI P P P dη η η η

+

−

= ∫ . (18b)

Note that for the analytical evaluation of overlap matrix elements ijkI  a lot of literature 
exists. However, a numerical evaluation of the first (about) thousand values suffices in most 
cases considered (eventually in combination with asymptotic expansions and remainder term 
estimates). For the strains and stresses at roll gap exit the general representation in terms of 
the auxiliary functions ( )ηΨ  and ( )ηΞ  introduced above can be found

( ) ( ) ( ){ }(0) 1xx xxε η ε ζ η η= + − Ψ   ( ) ( ) 0(0)

3
23

f
xx F

xx

k
σ η σ η

ε
  

= − Ξ − Ξ     
  

(19a)

( ) ( ){ }(0)
yy xxε η ε η= − − Ψ ( ) ( ) ( )*

0(0)

3
23

f
yy F f

xx

k
kσ η σ η

ε
  

= − − Ξ − Ξ     
  

(19b)

( ) ( ) ( )zzε η ζ η η= Ψ 0(0)

31
23

f
zz F

xx

k
σ σ

ε
  

= − − Ξ  
  

 . (19c)

For the bending moment analogous to Equation (12) one obtains the integral representation 

( ){ }
( )

( )

( ) 2 1

0(0)
1

3 1
4 2

Out

Out
c

Out
c f

B
xx

H

H

H w k
M dη η η

ε

+

−

∆     ≅ + Ξ − Ξ        
∫  . (20)

These general expressions represent analytical solutions for arbitrary non-linear changes of 
strip thickness profiles according to Equation (14) and (15). The special case of a linear 
wedge (cf. above) can be recovered easily by taking into consideration the setting 

( ) 0ζ η ζ= ,   ( ) ( )1
2 relwη ηΨ = ∆ ( ) ( ) ( )0 0 1

1
2 relW Pη ζ η→ Ξ − Ξ = ∆   ,   0 0ζΞ = Ψ = . (21)

with the relative strip wedge change 
relW∆  being defined in Equation (4). For the practically 

especially important case of second order (parabolic) strip shapes, one immediately obtains 

( ) ( ) 2
relCη ηΨ = ∆ ( ) ( ) ( )0 0 2

2
3 relC Pη ζ η→ Ξ − Ξ = ∆      and ( )0 0

1
3 relCζ ζΞ = Ψ = ∆ , , (22)

where the relative strip crown change is denoted by relC∆ . 
To conclude this section it should be emphasized that the fully analytical considerations 

presented so far lead to results, which describe the underlying technical-physical rolling 
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scenario qualitatively correctly to some extent and can be used (e.g.) for sensitivity analyses. 
However, as essential physical effects, such as bulk shear stresses and lateral Coulomb 
friction, are not explicitly incorporated in the analytical model presented here, severe 
quantitative deviations may occur for some quantities. This drawback will be overcome by 
more refined semi-analytical 3D roll-gap modelling approaches currently under development. 

4 CONCLUSIONS 
In the present study, a new approach has been presented to minimize both camber and 

wedge, respectively, with negligible need for mechanical modifications. The behavior of a 
wedged slab, running through one horizontal roll pass with aligned rolls, and being exposed to 
additional lateral forces outside the roll-gap, resulting e.g. from an edger, was investigated in 
detail. It could be proven by both numerical 3D-FEM and by analytical methods that the 
principle of inducing an additional lateral flow inside the roll gap by utilizing external lateral 
forces or bending moments is highly efficient. As plastification already occurs inside the roll 
gap, these additional loads are comparably low, as they merely have to induce a re-
distribution of the already existing plastic material flow. First results from a commercial 
production hot rolling mill, where a camber control system and an associated wedge control 
system based on these concepts was realized, look quite promising. 
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