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Abstract.  
The paper describes some aspects of the application of  XFEM to represent Geomechanical 

discontinuities, including the choice of additional nodal variables and the appearance and 
remedies to the oscillations that may take place depending on the mesh layout. An example of 
application to recover the stresses along a discontinuity line emanating from a tunnel cross-
section is presented together with the comparison to an analytical solution. The formulation is 
developed in terms of the “overhang” displacement variables on the other side of the 
discontinuity (instead of more traditional displacement jump variables), and the oscillations 
associated to nodes too close to the discontinuity are solved by moving those nodes onto the 
discontinuity (instead of moving them away as seems more common in current practice). 
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1 INTRODUCTION 
Discontinuities play an important role in many types of geomechanical problems, 

especially in those involving rock masses. The Extended Finite Element Method (XFEM) is a 
relatively recent method used to represent discontinuities, which was introduced as an 
enriched finite element approach that combines the standard FEM and the Partition of Unity 
Method (PUM) [1]. However, most of the XFEM literature describes the application to model 
opening tensile cracks [2], although the approach should be in principle also capable of 
modelling shear-compression mechanisms as well, as it corresponds for instance to faults or 
fractures in rock masses. To this end, the XFEM discontinuity should incorporate general 
standard traction-separation/sliding constitutive laws similar to those used for instance in 
traditional zero-thickness interface elements in rock mechanics.  

In the paper, one such formulation is described and the results are verified with examples. The 
fundamental assumption of the displacement field, including the jumps across the 
discontinuity, is normally formulated in terms of the jump variables at the nodes, which are 
then interpolated to the discontinuity location. In this case, instead, an alternative approach 
has been followed that was proposed originally by Jirásek [1], which considers as new 
variables the “overhang” displacements that would correspond to the nodes across the 
discontinuity to obtain the desired deformation with the standard continuum interpolation 
functions. The proposed formulation, described in more detail in [3] together with some 
additional theoretical considerations, seem to lead to smooth results in general, although that 
requires to solve a number of implementation aspects that otherwise generate numerical 
oscillations in the results [4]. 

  

2 XFEM FORMULATION AND IMPLEMENTATION 
The most characteristic assumption of the Extended Finite Element Method (XFEM) is an 

interpolation of the displacement field within the elements including a first term with the 
classical FEM shape functions, plus a second term for the discontinuity jump, as given by 
expression:  
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elements. Regarding the geometry of intersections between the quadrangle and the 
discontinuity, two main situations may be distinguished:  two nodes on each side (“2-2” 
intersection), and one node plus three nodes (“1-3” intersection), see Figure 1: 

 
Figure 1. Basic intersection types: “2-2” (left) 

and a “1-3” (right). 

In addition, different particular cases may be identified when the discontinuity coincides with 
a node or nodes (Figure 2) although these cases may be described as particular versions of the 
“2-2” or “1-3” intersections. 

 
Figure 2. Special cases of intersection. 

2.1 “Overhang” displacements as additional variables. 

Most XFEM formulations take as additional variables in Eq.(1) the displacement jumps   . 
However, in this study the alternative choice proposed by Jirásek and Belytschko [1] is 
followed, in which the additional variables used are the “overhang” displacements across the 
discontinuity   , with the physical meaning and the relation to the traditional displacement 
jumps    and total displacement values     as illustrated in Fig. 3. 

 
Figure 3. Schematic 1-D representation of real displacements (  ), fictitious displacements (  ) and jumps (  ). 

The choice of    instead of    has some advantages from the viewpoint of physical 
interpretation, and it also brings some theoretical advantages [3]. Mathematically, the relation 
between these variables is the following: 

(2) 
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Considering separately the subdomains on each side of the discontinuity the previous relation 
leads to the corresponding interpolation expression and enrichment functions. On the negative 
side, this leads simply to: 

(3) 

and on the positive side: 

(5) 

 
that is, to the traditional FEM interpolation but using for each side of the discontinuity the 
appropriate combination of regular displacements    and overhang displacements   . Finally, 
on the discontinuity itself the displacement jump may be defined from previous equations as 
the difference between real displacements on both sides of the discontinuity:  

(7) 

2.2 Other theoretical aspects and numerical implementation. 
Based on the above equations, the full XFEM formulation, including stiffness matrices, force 
vectors, etc. has been developed according to the Principle of Virtual Work and other usual 
procedures in the literature. These aspects, together with some novel considerations on the so-
called double interpolation assumption and equivalence to traditional double-node interface 
elements [5], are described can be found in [3]. 

3 NUMERICAL EXAMPLE 
The example presented in this section shows the capability of the formulation to reproduce the 
correct stresses tractions along a radial XFEM discontinuity in a tunnel cross-section, and it 
also illustrates some effects of the mesh layout on the numerical results. 

The example consists of a 6 meter radius tunnel cross-section, at the center of a 2D domain 
of 120x120m, with distributed loads of 8MPa applied on the top, 4MPa on the right side and 
prescribed movements (rollers) on bottom and left boundaries (Figure 4). The inclined 
discontinuity is assigned very high elastic stiffness values so that the overall behavior 
coincides with the classical Kirsch solution, with expressions: 
 
 

(13) 

 

(14) 

 

(15) 
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where   is the vertical load,   the horizontal-to-vertical remote stress ratio,   the tunnel 
radius, and  ,   the polar coordinates of any point with respect to the tunnel center. 
 

 
Figure 4. Square domain of 120x120m with a 

tunnel at the center.  

The precise location of the discontinuity is defined by equation y=0.625x+22.5, and for the 
numerical analysis, this location is defined via level set. The elastic stiffness values for the 
discontinuity are        and         MPa/m. For the continuum, plane strain and linear 
elasticity are assumed, with E =    MPa and  = 0.3. The FE mesh is unstructured with 
1029 quadrilateral elements, out of which 21 are XFEM-enriched (crossed by discontinuity), 
see Figure 5.  

 

Figure 5. Unstructured squared mesh used for 
example 1, with a prefixed discontinuity (red line). 
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Figure 6 shows the normal and shear components of stress tractions transmitted across the 
discontinuity, that have been obtained from both the XFEM numerical calculation (in this 
case obtained directly as normal and shear stresses on the discontinuity itself, represented by 
dots in the figure), and from the Kirsch formulas (in this case projected on the discontinuity 
plane from the corresponding continuum stress components along the discontinuity location, 
solid line). As it is seen in the figure, XFEM results turn out very close to the analytical 
solution.  
 

The second set of results correspond to the same geometry and boundary conditions, but using 
another unstructured mesh defined by 920 quadrilateral elements, of which 25 are XFEM 
enriched, Figure 7. 
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The results should be similar, and in fact they mostly are; however, this second mesh leads to 
some stress oscillations, as we can see on Figure 8, especially in the tangential component. 
 

The discontinuity oscillations happen to take place in the area where it intersects the FE lines 
at a skew angle and very near a node (see Figure 9 for a close-up of that part of the mesh). 
This leads to the suspicion that the oscillations are related to this type of intersection, and to 
verify that a few more calculations have been run after changing slightly the position of the 
nodes in that area, which seem to confirm the assumption. 
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As a remedy, in the literature one can find suggestions to shifting the position of the node of 
interest in that area slightly away from the discontinuity. However this requires establishing 
the precise strategy including by how much and in which direction this movement should take 
place. In this study, the opposite strategy has been explored, that is, moving these nodes onto 
the discontinuity itself. This alternative strategy requires fewer parameters, although the 
implementation may be a little longer because it requires to identify and treat separately the 
additional configurations shown in Fig. 2. By applying this strategy to this example, only the 
one node indicated in Fifg.9 is moved onto the discontinuity, and the stress oscillation 
disappears from the results as shown in Fig.10. 

 
Figure 10. Stress field calculated on the discontinuity. Lines represent the 

analytical solution of Kirsch and dots are XFEM’s solution. 
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5 CONCLUDING REMARKS 

The application of XFEM to represent Geomechanical discontinuities has been outlined in 
this paper, with emphasis on basic aspects of the formulation and on numerical oscillations 
that may take place depending on the mesh layout. An example of application to recover the 
stresses along a discontinuity line emanating from a tunnel cross-section has been presented 
together with the comparison to an analytical solution. The formulation in terms of the 
“overhang” displacement variables on the other side of the discontinuity (instead of more 
traditional displacement jump variables) has some advantages in the mechanical interpretation 
and clearer physical meaning of the boundary conditions. A strategy to deal with the 
oscillations due to the discontinuity crossing the mesh lines very near some nodes, which is 
based on moving the nodes onto the discontinuity itself (rather than moving them away) has 
been also demonstrated successfully. 
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