
On the scalability of inexact balancing domain
decomposition by constraints with overlapped

coarse/fine corrections

Santiago Badiaa,b, Alberto F. Mart́ına,b, Javier Principea,b

aCentre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Parc Mediterrani de
la Tecnologia, UPC, Esteve Terradas 5, 08860 Castelldefels, Spain

({sbadia,amartin,principe}@cimne.upc.edu)
bUniversitat Politècnica de Catalunya, Jordi Girona 1-3, Edifici C1, 08034 Barcelona,

Spain

Abstract

In this work, we analyze the scalability of inexact two-level Balancing Domain
Decomposition by Constraints (BDDC) preconditioners for Krylov subspace it-
erative solvers, when using a highly scalable asynchronous parallel implementa-
tion where fine and coarse correction computations are overlapped in time. This
way, the coarse-grid problem can be fully overlapped by fine-grid computations
(which are embarrassingly parallel) in a wide range of cases. Further, we con-
sider inexact solvers to reduce the computational cost/complexity and memory
consumption of coarse and local problems and boost the scalability of the solver.
Out of our numerical experimentation, we conclude that the BDDC precondi-
tioner is quite insensitive to inexact solvers. In particular, one cycle of algebraic
multigrid (AMG) is enough to attain algorithmic scalability. Further, the clear
reduction of computing time and memory requirements of inexact solvers com-
pared to sparse direct ones makes possible to scale far beyond state-of-the-art
BDDC implementations. Excellent weak scalability results have been obtained
with the proposed inexact/overlapped implementation of the two-level BDDC
preconditioner, up to 93,312 cores and 20 billion unknowns on JUQUEEN. Fur-
ther, we have also applied the proposed setting to unstructured meshes and
partitions for the pressure Poisson solver in the backward-facing step bench-
mark domain.

Keywords: Domain decomposition, inexact solvers, BDDC, parallelization,
overlapping, scalability

1. Introduction

In order to deal with increasing levels of complexity in the simulation of phe-
nomena governed by partial differential equations (PDEs), computational engi-
neering and science must advance in the development of numerical algorithms
and implementations that will efficiently exploit the ever-increasing amount of

Preprint submitted to Parallel Computing September 24, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41824123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


computational resources. The growth in computational power that resulted
from Moore’s law passes now through increasing the number of cores in a chip,
instead of making cores faster. As a result, the next generation of supercom-
puters, able to reach 1 exaflop/s, is expected to reach billions of cores. The
efficient exploitation of billion-fold levels of concurrency is a big challenge. The
advance of large scale scientific computing will be strongly related to the ability
to efficiently exploit these extreme core counts [1].

The time spent in an implicit simulation at the linear solver relative to the
overall execution time grows with the size of the problem and the number of
cores [2]. For extreme scale implicit simulations, a massively parallel linear
solver is a key component. This scenario exacerbates the need of highly scal-
able algorithms and implementations. Only numerical algorithms with all their
components scalable will efficiently run on extreme scale supercomputers. Ex-
treme scale solvers should be developed under the assumption that local flops
are cheap and communications expensive. On extreme core counts, it will be
a must to reduce communication and synchronization among processors, and
overlap communication with computation. At the largest scales, linear solvers
are based on preconditioned Krylov subspace methods. Algorithmically scalable
preconditioners include (algebraic) multigrid (MG) [3] and some domain decom-
position (DD) algorithms [4]. However, this theoretical property is not enough
for practical weak scalability, since the preconditioner itself must allow for a
massively scalable implementation. Today’s most scalable algorithms/imple-
mentations present practical limits of parallelism, e.g., due to the small, coarse
problems to be solved in the hierarchical process for DD/AMG, and the loss of
sparsity and denser communication patterns at coarser levels of AMG.

DD preconditioners make explicit use of the partition of the global mesh, e.g.,
for the finite element (FE) integration, into sub-meshes (subdomains) and pro-
vide a natural framework for the development of fast parallel solvers tailored for
distributed-memory machines. One-level DD algorithms involve the solution of
local problems and nearest-neighbors communications. A (second level) coarse
correction (coupling all subdomains) is required to have algorithmic scalability,
but it also harms the practical (CPU time) weak scalability. Two-level DD al-
gorithms include the Balancing Neumann-Neumann preconditioner (BNN) [5],
the Balancing DD by Constraints preconditioner (BDDC) [6], and FETI-DP
preconditioners [7]. In all these cases, for positive-definite matrices, a poly-
logarithmic expression of the condition number of the preconditioned system
κ = 1 + log2

(
H
h

)
can be proved, where h and H are the mesh and subdomain

characteristic sizes, respectively, and d is the space dimension; (H
h )d is the local

problem size. Consequently, in weak scaling scenarios, i.e., increasing the linear
system size and number of processors keeping H

h fixed, the number of itera-
tions of the preconditioned conjugate gradient (PCG) solver is (asymptotically)
independent of the number of processors.

The practical scalability limits of a two-level DD implementation is deter-
mined by the coarse solver computation, whose size increases (at best) linearly
with respect to the number of subdomains. The coarse problem rapidly be-

2



comes the bottleneck of the algorithm as we increase the number of processors,
reducing weak scalability [8]. The coarse problem is several orders of magni-
tude smaller than the original global system, and only a very small portion
of the computing cores can efficiently be exploited (assuming a parallel coarse
solver). In typical DD implementations, this produces an unacceptable parallel
efficiency loss, since all the cores not involved in the coarse solver computation
are idling (see Figure 1). One obvious strategy to improve scalability is to reduce
the wall-clock time spent at the coarse solver by using, e.g., a MPI-distributed
sparse direct solver like MUMPS [9] (see [10] for BDDC and [11] for FETI-DP).
However, this approach only mitigates the problem.

2. Motivation

The BDDC preconditioner has some salient properties that permit to over-
come this parallel overhead, making it an excellent candidate for extreme scale
solver design:

(P1) It allows for a mathematically supported extremely aggressive coarsening.
The ratio between the size of the global and coarse problem is of the order
of the local problem size, i.e., (H

h )d. On memory-constrained supercom-
puters, it is in the order of 105 for sparse direct methods [12] and 106 for
inexact solvers (see Section 6).

(P2) The coarse matrix has a similar sparsity pattern as the original system
matrix.

(P3) The constrained Neumann and Dirichlet local problems, as well as the
coarse problem, can be computed in an inexact way, e.g., using one AMG
cycle without affecting the algorithmic scalability of the method [13].

(P4) Due to the fact that the coarse matrix has a similar structure as the
original system matrix, a multilevel extension of the algorithm is possible
[14, 15].

(P5) Coarse and fine components can be computed in parallel [6], since the basis
for the coarse space is constructed in such a way that it is orthogonal to
the fine component space with respect to the inner product induced by
the unassembled system matrix [6, 16].

Properties (P1) and (P2) are readily exploited in any BDDC implementation.
Property (P3), i.e., the algorithmic scalability of BDDC with inexact solvers,
has been proved by Dohrmann in [13]. Similar inexact preconditioners have
been presented in [17]. The inexact BDDC method can easily increase parallel
efficiency, due to the linear complexity of the coarse solver, especially at large
core counts. However, as far as we know, a practical weak scalability analysis of
inexact BDDC methods (at large scales) has not been carried out so far. Besides,
for FETI-DP, one cycle of the MPI-distributed AMG solver in BoomerAMG [18]
has been used as inexact coarse solver in [19, 20] for 2D elasticity problems.

With regard to (P4), a multilevel BDDC algorithm has been proposed in [15],
where the coarse problem at the next BDDC level is approximated by its BDDC

3



approximation. This way, the CPU cost of the coarse problem is reduced, but
the condition number bound increases with the number of levels [15]. A high-
performance implementation of the multilevel BDDC method can be found in
[10].

The efficient exploitation of (P5), i.e., the orthogonality between coarse and
fine spaces, is not trivial. However, this property makes possible a parallel
computation of coarse and fine corrections, i.e., overlapped in time. In [12],
we have classified all the duties in an exact (i.e., using sparse direct solvers)
BDDC-PCG algorithm into fine and coarse duties. These duties have been re-
scheduled to achieve the maximum degree of overlapping while preserving data
dependencies. The actual implementation of this idea requires significant code
refactoring, since it involves a switch from a data parallelism to a task paral-
lelism paradigm, dividing processors into those having fine grid duties and those
having coarse grid duties. Clearly, this approach reduces synchronization among
processors, and overlaps communications/computations, following the exascale
solver paradigm [1]. It has been exploited in [12], where we have performed
scalability analyses for the 3D Poisson and linear elasticity problems on a pair
of state-of-the-art multicore-based distributed-memory machines (HELIOS and
CURIE). Excellent weak scalability has been attained up to 27K cores for rea-
sonably high local problem sizes, e.g., (H

h ) = 30 which means 27K elements/core
in the 3D Poisson problem; both local and coarse problems were solved by using
the multi-threaded sparse direct solver PARDISO [21].

On the hardware front, the current trend in HPC is to increase the core
count per node while reducing the memory available per core. On one hand,
to reduce synchronization, as in the overlapped BDDC implementation in [12],
will be crucial at extreme core counts. Further, this overlapped implementa-
tion alleviates memory requirements, since fine (resp., coarse) processors do not
perform/store coarse (resp., fine) solver duties/matrices. In the same direction,
linear complexity inexact solvers, much less memory intensive than sparse di-
rect methods, will certainly be favored. They should also be favored at large
core counts, since the potential loss of scalability due to the coarse solver is
much less dramatic. The current state-of-the-art in DD implementations and
the supercomputing trends to reach the exascale have motivated the combined
overlapped/inexact BDDC implementation proposed in this work.

In this article, we extend the overlapped implementation in [12] for exact
solvers to the inexact BDDC methods proposed in [13] (with slight modifica-
tions). First, we analyze the effect of perturbing in isolation every problem at the
BDDC preconditioner. Next, we propose different inexact methods, combining
different numbers of AMG cycles for each internal problem. A comprehensive
weak scalability analysis of the resulting overlapped/inexact BDDC implemen-
tation has been performed up to 93,312 cores and more than 20 billion unknowns
on JUQUEEN, at the Jülich Supercomputing Center (JSC). This test has been
performed for structured meshes and partitions and constant physical coeffi-
cients. As far as we know, these are the largest scale scalability analyses and
simulations performed so far with DD methods.

4



The proposed implementation of inexact BDDC methods has been coded in
FEMPAR, a massively parallel finite element solver devoted to the LES simu-
lation of incompressible turbulent flows and MHD on unstructured meshes (see
[22, 23, 24, 25]). In these problems, the typical approach is to consider a pres-
sure segregation technique (see [26, 27]), which leads to a momentum equation
that is usually integrated explicitly and a pressure Poisson solver, the bottle-
neck of these simulations. An efficient and scalable pressure Poisson solver is a
must. As a result, we have also applied the proposed setting to unstructured
meshes and partitions for the pressure Poisson problem in the backward-facing
step benchmark domain. We note that free flow solvers lead to Poisson prob-
lems with constant coefficients, a main difference with respect to the flow in
highly heterogeneous porous media. In these last situations, that arise, e.g.,
in subsurface modelling, more advanced implementations based on an adaptive
BDDC coarse space [10] are needed (see also [28] for efficient techniques for
these problems). Further, the use of inexact solvers for these problems would
require local AMG solvers suitable for highly varying coefficients.

This work is structured as follows. Section 3 is devoted to non-overlapping
DD and the BDDC preconditioner whereas Section 4 is devoted to the intro-
duction of inexact variants. In Section 5, we extend the highly scalable paral-
lel distributed-memory implementation of the BDDC algorithm in [12], which
overlaps fine and coarse computations, to the inexact variant. In Section 6, we
report a comprehensive set of numerical experiments on structured meshes that
includes a study of the influence of approximately solving each internal problem
in isolation and a weak scalability analysis. Numerical examples for unstruc-
tured meshes and partitions are also provided. Finally, in Section 7, we draw
some conclusions and define future lines of work.

3. Balancing Domain Decomposition

3.1. Problem setting

Let us consider a bounded polyhedral domain Ω ⊂ Rd with d = 2, 3 and a
quasi-uniform FE partition (mesh) with characteristic size h. As model problem,
we study the Poisson problem on Ω, for an arbitrary forcing term and boundary
conditions (as soon as the problem is well-posed). Let V̄ ⊂ H1(Ω) be a C0-
continuous FE space. The Galerkin approximation of the Poisson problem with
respect to V̄ leads to a linear system of equations:

Ax = f. (1)

Further, we consider a quasi-uniform partition of the global mesh into nsbd

local meshes, which induces a non-overlapping domain decomposition of Ω into
subdomains Ωi, i = 1, . . . , nsbd (of characteristic size H). The interface of Ωi

is defined as Γi := ∂Ωi \ ∂Ω and the whole interface (skeleton) of the domain
decomposition is Γ :=

⋃nsbd

i=1 Γi. For every subdomain Ωi, we introduce the local
FE space of functions Vi. V := V1 × . . . × Vnsbd

denotes the global FE space

5



of functions that can be discontinuous on Γ; clearly, V̄ ⊂ V. Obviously, all FE
spaces are isomorphic to real vector spaces.

Let us define the restriction operator Ri : V̄ → Vi, that applied to a vector
in V̄ provides its restriction into Ωi, and R := R1 × . . .×Rnsbd

: V̄→ V. Let us
also define the operator Ei := Rt

iDi : Vi → V̄, where Di : Vi → Vi is a weighting
operator. The weighting operators represent a partition of unity, in the sense
that RtDR = I, with D := D1 × . . .×Dnsbd

: V→ V. Further, let E := RtD.
The subdomain FE matrix corresponding to Vi is denoted by K(i), and its

size is denoted by ni. K := diag
(
K(1), . . . ,K(nsbd)

)
is the global sub-assembled

FE matrix on V. (Along the paper, we denote with the letter K (partially) sub-
assembled matrices and with A fully assembled ones.) Analogously, we define
the local sub-assembled right-hand side g(i) and its global counterpart g. The
system matrix A and right-hand side f can be obtained after the assembly of
K as A = RtKR and g as f = Rtg.

The non-overlapping partition induces a reordering of FE vectors into inte-
rior and interface nodes, i.e., u = [uI , uΓ]t. We also define the interior restriction
operator RIu := uI . It leads to the following block reordered structure of the
global assembled, global sub-assembled and local matrices:

A =

[
AII AIΓ

AΓI AΓΓ

]
, K =

[
AII KIΓ

KΓI KΓΓ

]
, and K(i) =

[
A

(i)
II A

(i)
IΓ

A
(i)
ΓI K

(i)
ΓΓ

]
,

respectively. Matrices AII , AIΓ, AΓI andKΓΓ present a block diagonal structure

(very amenable to parallelization), e.g., AII = diag
(
A

(1)
II , A

(2)
II , . . . , A

(nsbd)
II

)
.

Matrices KIΓ and KΓI are simply an extension by zeros of AIΓ and AΓI , re-
spectively.

3.2. BDDC preconditioner

The BDDC preconditioner is a two-level domain decomposition method
where some local fine-grid corrections and a global coarse-grid correction (that
couples all subdomains and makes the preconditioner both scalable and optimal)
are combined. The idea behind the BDDC preconditioner is to approximate the
original FE problem by another one in which we relax the continuity conditions,
drastically reducing the size of the modified Schur complement, combined with
an initial and final interior correction.

The construction of the BDDC preconditioner requires a partition of the
degrees of freedom (DoFs) on Γ into objects, which can be corners, edges or
faces. Next, we associate to some (or all) of these objects a coarse DoF. The
coarse DoFs can be the values of the function at the corners, or the mean
values of the function on edges/faces. We define the BDDC FE space V̊ as
the subspace of functions in V that are continuous on coarse DoFs; clearly,
V̄ ⊂ V̊ ⊂ V. The three most common variants of the BDDC method are referred
as BDDC(c), BDDC(ce) and BDDC(cef), where we enforce continuity on only
corner coarse DoFs, corner and edge coarse DoFs, and corner, edge and face
coarse DoFs, respectively. We denote by K̊ the FE matrix related to V̊. It can

6



be formally obtained from the partial assembly (at coarse DoFs only) of the
global sub-assembled matrix K, even though it is never implemented this way.
The invertibility of this matrix depends on the definition of the coarse DoFs.
Let us define:

PI := Rt
IA
−1
II RI , PFC := EK̊−1Et, H := I−PIA =

[
0 −A−1

II AIΓ

0 IΓ

]
.

(FC denotes fine/coarse correction and H is the so-called discrete harmonic
extension operator.) The BDDC preconditioner M consists in a multiplicative
combination of PI , PFC , and PI . Using the fact that PIAPI = PI , we obtain:

M = PI +HPFCH
t.

The practical implementation of the BDDC correction PFC requires some elab-
oration. Let us consider a decomposition of the BDDC space V̊ into a fine space
V̊F of vectors that vanish on coarse DoFs and the K̊-orthogonal complement
V̊C , denoted as the coarse space. As a result, the BDDC FE problem can be de-
composed into fine and coarse components, i.e., x̊ = K̊−1Etr = xF + xC . Since
fine and coarse spaces are K̊-orthogonal by definition, they can be computed in
parallel.

The fine space functions in V̊F vanish on coarse DoFs (which are the only
DoFs that involve continuity among subdomains). Due to the K̊-orthogonality,
the fine component can be defined as xF := EFK

−1
F Et

F , where KF is the

Galerkin projection of K onto V̊F , i.e., functions that vanish on coarse DoFs,
and EF is the restriction of E to V̊F . In order to compute this fine correction
in practice, we define the local matrix of constraints Ci such that, given a local
vector of unknowns, it provides its local coarse DoFs values. We refer to [29] for
a detailed implementation of Ci. As a result, the fine correction xF computation
only involves constrained Neumann problems:[

K(i) Ct
i

Ci 0

] [
x

(i)
F

λ

]
=

[
Et

ir
0

]
. (2)

As it is described in detail in [29], the solution of the constrained Neumann prob-
lem is performed after applying a permutation that separates coarse corner DoFs

(denoted by c) from the rest of DoFs (denoted by r), i.e., x(i) = [x
(i)
c , x

(i)
r ]t ∈ Vi.

Further, we define the restriction Rr,i such that Rr,ix
(i) = x

(i)
r . Corner DoFs

can be explicitly eliminated (in fact x
(i)
c = 0 for the fine correction), leading to

the system [
K

(i)
rr Ct

r,i

Cr,i 0

] [
x

(i)
r

λr,i

]
=

[
Rr,iE

t
ir

0

]
. (3)

This system is solved by computing the Schur complement for the edge/face
Lagrange multipliers as

Cr,i(K
(i)
rr )−1Ct

r,iλ
(i)
r = −Cr,i(K

(i)
rr )−1Rr,iE

t
ir. (4)

7



As a result, the fine correction involves to compute the inverse of the global

matrix Krr := diag(K
(1)
rr , . . . ,K

(nsbd)
rr ). There are existing mechanisms that

modify the definition of objects in order to enforce Krr to be invertible (see [30,
6]).

The coarse space V̊C ⊂ V̊ is built as

V̊C = span{Φ1,Φ2, . . . ,Φncts},

where every coarse function is associated to a coarse DoF. We denote by Φ the
matrix with columns Φi. The coarse basis Φ (the matrix with columns Φi) is
the solution of a multiple right-hand side global system. Since the values on the
coarse DoFs are prescribed and the rest of DoFs are local, the coarse space can
also be computed via (parallel) local constrained Neumann problems, i.e.,[

K(i) Ct
i

Ci 0

] [
Φ(i)

Λ(i)

]
=

[
0
I

]
. (5)

System (5) is solved in the same way as system (2), getting:

Φ(i) =

[
Φ

(i)
c

Φ
(i)
r

]
, Φ(i)

c =
[
I 0
]
, Φ(i)

r = −(K(i)
rr )−1Ct

r,iΛ
i
r −

[
K

(i)
rc 0

]
, (6)

Cr,i(K
(i)
rr )−1Ct

r,iΛ
(i)
r = −Cr,i(K

(i)
rr )−1

[
K

(i)
rc I

]
. (7)

Let us note that any function Φi is associated to an object and its support is
the set of subdomains that share this object. Thus, at every subdomain we only
compute the non-zero restrictions, i.e., the coarse space basis functions related
to local coarse DoFs. We compute the coarse matrix KC as

KC = ΦtKΦ =

nsbd∑
i=1

Rt
C,iΦ

(i)tK(i)Φ(i)RC,i.

where RC,i is the coarse matrix assembly operator, i.e., the local-to-global cor-

respondence for coarse DoFs. The subdomain contributions Φ(i)tK(i)Φ(i) can
readily be computed (in parallel) and assembled, e.g., in one processor. The
coarse residual rC = ΦtEtr is computed analogously (see [29]). Once KC and
rC are assembled, the coarse correction is obtained as xC = ΦK−1

C rC . The
BDDC preconditioner can finally be stated as:

M = PI +H(EΦK−1
C ΦtEt + EFK

−1
F Et

F )Ht.

Remark 3.1. When considering exact Dirichlet solvers, after an initial pre-
correction, we can easily check that rI = 0 at all Krylov iterations. In this case,
PI and H computations can be eliminated without modifying the method, i.e.,

Mr = H(EΦK−1
C ΦtEt + EFK

−1
F Et

F )r,

leading to one interior (Dirichlet) correction per iterations, instead of two.

8



We refer to [31] for a proof of the following theorem, about the condition
number of the BDDC-preconditioned system matrix.

Theorem 3.1. The maximum and minimum eigenvalues of the BDDC precon-
ditioned system matrix are:

λmin(MA) ≥ 1, λmax(MA) ≤ βω, with ω :=

(
1 + log2

(
H

h

))
,

for BDDC(c) or BDDC(ce) in 2D, and BDDC(ce) and BDDC(cef) in 3D, where
β > 0 does not depend on (H,h). For the BDDC(c) preconditioner in 3D,

λmin(MA) ≥ 1, λmax(MA) ≤ β′H
h
ω, for β′ > 0 also independent of (H,h).

Remark 3.2. The BDDC preconditioner is quasi-optimal and algorithmically
scalable, since the condition number of the preconditioned system matrix only
depends on the local system size, which is fixed in a weak scaling scenario. Fur-
ther, the condition number is a poly-logarithmic function of H

h , with the only
exception of BDDC(c) in 3D. In this last case, the condition number is affected
by an additional H

h factor, which can be large (e.g., 60 in the numerical ex-
periments of Section 6). It justifies the large iteration counts of this method
(compared to those of BDDC(ce) and BDDC(cef)).

4. Inexact BDDC

The exact BDDC preconditioner involves some linear systems to be solved.
The action of K−1

rr , i.e., the local constrained (on the coarse corner DoFs only)
Neumann problems, is required to compute the coarse basis Φ and the fine
correction, the action of A−1

II , i.e., the local Dirichlet problems, is required for
the interior corrections, and the action of K−1

C , i.e., the coarse problem, must
be solved to compute the coarse correction. These problems are traditionally
solved via sparse direct methods [6]. However, as motivated in the introduc-
tion, the use of inexact solvers is very appealing for large-scale simulations on
supercomputers, due to increasing memory restrictions and higher core counts.
Dohrmann has proposed and analyzed in [13] an inexact version of the BDDC
method, where the local/coarse problems are replaced by preconditioners. Let

us assume that we have at our disposal an approximation K̃rr of Krr such that:

δFx
tKrrx ≤ xtK̃rrx ≤ ∆Fx

tKrrx, ∀x. (8)

(Along this section, we assume δ(·) and ∆(·) to be positive constants independent
of (H,h) and the vector space for x can be inferred from the matrices in the

inequalities.) Further, let us also introduce approximations K̂rr and ÃII of Krr

and AII , respectively, and the following global matrices:

K̂ :=

[
K̂rr Krc

Kcr Kcc

]
, K̃ :=

[
ÃII KIΓ

KΓI KΓΓ

]
. (9)

9



We assume that

δΦx
tKx ≤ xtK̂x ≤ ∆Φx

tKx, δIx
tKx ≤ xtK̃x ≤ ∆Ix

tKx, ∀x. (10)

(We omit the reordering operators for brevity.) In order for the matrices in (9)
to be semi-positive definite, we also assume

xtKrrx ≤ xtK̂rrx, xtAIIx ≤ xtÃIIx, ∀x.

As noted in [13], since K is singular, the kernel of K, K̂, and K̃ must be identical
to satisfy (10). Let W be such that ker(K) ⊆ range(W ), and WI = RIW .

Given an arbitrary approximation ĀII , we can build ÃII by solving exactly on
range(WI) (see [13]), i.e.,

Ã−1
II := WI(W t

I Ā
−1
II WI)−1W t

I+EIĀ
−1
II E

t
I , EI := I−AIIWI(W t

I Ā
−1
II WI)−1W t

I .

Due to the block-diagonal nature of K, this correction is local. The definition
of the kernel-correction for K̂rr is defined analogously. Finally, for the approx-
imation of the coarse matrix KC we study two different options. A difference
with respect to the previous problems is the fact that KC is not available when
using inexact solvers. (It involves the exact computation of Φ.) One option is

to assemble the Galerkin projection of K onto the inexact coarse basis Φ̂, i.e.,
Φ̂tKΦ̂, and consider an approximation of this matrix such that:

δCx
t(Φ̂tKΦ̂)x ≤ xtK̃Cx ≤ ∆Cx

t(Φ̂tKΦ̂)x, ∀x. (11)

Another approach, the one used in [13], is to consider an approximation of the

coarse matrix Φ̂tK̂Φ̂:

δCx
t(Φ̂tK̂Φ̂)x ≤ xtK̃Cx ≤ ∆Cx

t(Φ̂tK̂Φ̂)x, ∀x. (12)

Remark 4.1. In general, the inexact matrices K̃rr, K̄rr, and ĀII are not ex-
plicitly built, and only the action of their inverses is approximated in the algo-
rithm, e.g., using one/several AMG cycles. Further, K̂rr, and ÃII are dense
matrices, due to the kernel correction. However, when using the coarse problem
approximation in (12), K̂rr seems to be explicitly needed. Fortunately, using
the inexact version of (5) (Equations (15)-(16) below) we can easily check that

K
(i)
rr Φ(i) = −CtΛ, which makes possible to compute Φ̂tK̂Φ̂ as −Φ̂tCtΛ. In any

case, when K̄−1
rr stands for a preconditioned Krylov solver up to some tolerance,

this approach leads to a generally nonsymmetric indefinite matrix. In these sit-
uations, it is better to use (11). Besides, we have used (11) in Section 6 due to
slightly better performance.

Finally, the inexact BDDC preconditioner reads as:

M̃ = P̃D + H̃(EΦ̂K̃−1
C Φ̂tEt + EF K̃

−1
F Et

F )H̃t, (13)

10



where

H̃ :=

[
0 −Ã−1

II AIΓ

0 IΓ

]
, P̃I = Rt

IÃ
−1
II RI , (14)

and the inexact coarse basis is computed as

Φ̂(i) =

[
Φ̂

(i)
c

Φ̂
(i)
r

]
, Φ̂(i)

c =
[
I 0
]
, Φ̂(i)

r = −(K̂(i)
rr )−1Ct

r,iΛ
i
r −

[
K

(i)
rc 0

]
, (15)

Cr,i(K̂
(i)
rr )−1Ct

r,iΛ
(i)
r = −Cr,i(K̂

(i)
rr )−1

[
K

(i)
rc I

]
. (16)

Theorem 4.1. Let us assume that (8)-(10) hold. When K̃C satisfies (11), we
have:

λmin(M̃A) ≥
δI min(1,∆−1

F , δΦ∆−1
C )

∆Φ∆I
,

λmax(M̃A)

λmax(MA)
≤

∆2
I max(1, δ−1

F ,∆Φδ
−1
C )

δΦδ2
I

.

Alternatively, when K̃C satisfies (12), we get:

λmin(M̃A) ≥
δI min(1,∆−1

F ,∆−1
C )

∆Φ∆I
,

λmax(M̃A)

λmax(MA)
≤

∆2
I max(1, δ−1

F , δ−1
C )

δΦδ2
I

.

Proof. The proof of this result readily follows from the analysis in [13], the
only difference being the fact that the fine correction and Φ can in general be
computed using different preconditioners. It can easily be handled using the
fact that KF is a Galerkin projection of K and a result like (11) for this matrix.

Further, when the coarse preconditioner is built from Φ̂tKΦ̂, the result is readily
obtained using the fact that

δC
∆Φ

xtΦ̂tK̂Φ̂x ≤ xtK̃Cx ≤
∆C

δΦ
xtΦ̂tK̂Φ̂x,

which is obtained by combining (10)-(11).

Remark 4.2. In the inexact preconditioner M̃ we have replaced the local/coarse
problems by optimal approximations. Due to their block-diagonal structure, the

(possibly different) preconditioners K̃−1
rr and K̂−1

rr are locally built from K
(i)
rr ,

that can be obtained, e.g., as one AMG cycle of this matrix. Analogously, Ã−1
II

is built from local approximations of A
(i)
II .

Remark 4.3. The preconditioners for the computation of Φ and the Dirichlet
problems, i.e., K̂rr and K̃II , must include the kernel correction (see [13]). On
the other hand, it is not needed for the fine and coarse correction preconditioners
K̃rr and K̃C .

11



Remark 4.4. To compute Φ̂, we must compute (K̂
(i)
rr )−1Ct

r,i. It implies to ap-
ply at every subdomain the local preconditioner to as many vectors as local coarse
corners. This computation can be reused to build the Schur complement matrix
for the edge/face constrained Neumann problem in (4), as soon as K̃rr = K̂rr.

Otherwise, we must compute (K̃
(i)
rr )−1Ct

r,i. It makes suitable to consider the
same preconditioner (with kernel correction) for both Φ and the fine correction.

5. A highly scalable distributed-memory implementation

In this section we adapt the highly scalable distributed-memory implemen-
tation of the method proposed in [12] to consider inexact solvers. The global
linear system (1) is solved by means of a Krylov subspace method, where the

inexact BDDC preconditioner M̃ is used as a global system matrix precondi-
tioner (see Section 4). In our implementation we can consider different Krylov
subspace methods (e.g. PCG, IPCG [32], FGMRES [33]) which can be used
for the solution of the global problem with a BDDC preconditioner or for the
solution of the local problem with an AMG preconditioner [34, 3, 35]. This
feature was exploited to test some combinations not reported here, e.g., PCG-
AMG methods for local problems (with coarse tolerances), and IPCG [32] for
the global system. However, inexact variants based on Krylov methods turned
out to be less efficient than a fixed number of AMG cycles in all cases. These
results have not been reported for the sake of brevity.

In a distributed-memory implementation of a BDDC preconditioned Krylov
subspace solver, all data structures (i.e., matrices and vectors) and computations
are split and distributed among MPI tasks in concordance with the underlying
non-overlapping partition of the domain. We refer the reader to [29] for a com-
prehensive coverage of these implementation aspects. In the rest of the section,
we only identify and briefly describe those computations and communications
required to implement the BDDC preconditioner with inexact solvers.

The initial set-up of the BDDC preconditioner is in turn split into a symbolic
and a numerical phase in Algorithms 1 and 2, respectively, while its application
to a residual is depicted in Algorithm 3. Communication stages are labeled
as “GC” or “LC” depending on whether they are of global (i.e., all MPI tasks
involved) or local (i.e., MPI tasks communicate with each other within subsets of
tasks) nature, respectively. Algorithms 1, 2, and 3 require global gather/scatter
communication, and local exchanges among nearest neighbors.

During the symbolic set-up of the BDDC preconditioner presented in Al-

gorithm 1, the adjacency graph (denoted by G∗) of matrices A
(i)
II and K

(i)
rr

required by the Dirichlet and constrained Neumann problems is computed in
lines 12 and 13. The coarse solver tasks in lines 1- 11 are identical as for the
exact BDDC method in [12].

The numerical set-up of the BDDC preconditioner is presented in Algo-
rithm 2. The operations required during this phase depend on the inexact
solvers being used. E.g., the solver set-up is an incomplete numerical factoriza-
tion for ILU methods, whereas it involves the construction of the hierarchy in

12



Algorithm 1: M̃ set-up (symbolic)

1: Identify and count (nicts) local coarse DoFs
2: Gather nicts GC
3: Gather global identifiers of the geometric entities corresponding to each

coarse DoF GC
4: Compute a global ordering of coarse DoFs (define RC,i and its transpose)
5: Scatter global ordering of coarse DoFs GC
6: Fetch nicts of/from my neighbors LC
7: Fetch global identifiers of the coarse DoFs of my neighbors LC
8: Compute row counts of GKC

corresponding to local coarse DoFs
9: Gather row counts of GKC

GC
10: Compute adjacency lists of GKC

corresponding to local coarse DoFs
11: Gather adjacency lists of GKC

GC
12: Construct G

K
(i)
rr

from GK(i)

13: Construct G
A

(i)
II

from GK(i)

AMG. The tasks in Algorithm 2 can be subdivided into fine tasks (lines 1-6)

and coarse tasks (lines 7-9). Fine MPI tasks include the extraction of A
(i)
II and

K
(i)
rr in lines 1 and 2 and the set-up of their approximations, e.g., their AMG

hierarchy and (possibly) the kernel-correction set-up, in lines 3 and 4, respec-
tively. The fine duties also involve the computation of the coarse space matrix
Φ in line 5 and the coarse matrix coefficients in line 6. The MPI task (or tasks)
in charge of the coarse problem then gathers these contributions and performs
the matrix assembly corresponding to RC,i in order to build KC in lines 7 and 8,
respectively. Finally, the MPI task in charge of the coarse problem performs
the coarse preconditioner, e.g., the AMG hierarchy set-up of the inexact coarse
matrix (see line 9).

Algorithm 2: M̃ set-up (numerical)

1: Extract A
(i)
II and A

(i)
IΓ from K(i)

2: Extract K
(i)
rr and K

(i)
rc from K(i)

3: Set-up for Ã
(i)
II

4: Set-up for K̃
(i)
rr and (possibly) K̄

(i)
rr

5: Compute Φ(i) using (15)-(16)

6: Compute K
(i)
C ← (Φ̂(i))tK(i)Φ̂(i) (or alternatively, K

(i)
C ← −(Φ̂(i))tC(i)Λi)

7: Gather K
(i)
C GC

8: Compute KC ←
∑nsbd

i=1 Rt
C,iK

(i)
C RC,i

9: Set-up for K̃C

13



Algorithm 3 describes the algorithm that applies the BDDC preconditioner
to a residual. First, the computation of an interior precorrection, and corre-
sponding residual update are performed in lines 1 and 2, respectively. Then,
the updated residual is extended to the BDDC space via Et (see line 3). On the
one hand, the fine-grid tasks include the computation of the fine correction by
means of constrained local Neumann problems (see line 6). Once the contribu-
tions from each subdomain to the coarse-grid residual are computed in line 4,
the MPI tasks in charge of the coarse problem gather these contributions and
perform the vector assembly associated to RC,i in order to build rC in lines 5
and 7, respectively. Next, the coarse problem is solved in an inexact way, e.g.,
by one/several AMG cycle(s). Finally, the solution is scattered from this task to
all subdomains, so that all subdomains get the coarse-grid correction on its local
coarse DoFs. Finally, both corrections are injected into V̄ via the projection E,
and corrected in the interior in line 12.

Algorithm 3: z := M̃r

1: Compute δ
(i)
I ← (Ã

(i)
II )−1r

(i)
I

2: Compute r
(i)
Γ ← r

(i)
Γ −A

(i)
ΓIδ

(i)
I

3: Compute r(i) ← Etr LC

4: Compute r
(i)
C ← (Φ̂(i))tr(i)

5: Gather r
(i)
C GC

6: Compute x
(i)
F using (3)-(4)

7: Compute rC ←
∑nsbd

i=1 Rt
C,ir

(i)
C

8: Solve zC = K̃−1
C rC

9: Scatter zC into z
(i)
C , i = 1, 2, . . . , nsbd

10: Compute s
(i)
C ← Φ̂(i)z

(i)
C

11: Compute z(i) ← E(s
(i)
F + s

(i)
C ) LC

12: Compute z
(i)
I = −(Ã

(i)
II )−1A

(i)
IΓz

(i)
Γ + δ

(i)
I

The typical implementation of the BDDC preconditioner [36, 37] is illus-
trated in Figure 1 (a), where a one-to-one mapping between subdomains, MPI
tasks, and computational cores is used. Fine and coarse duties are serialized.
The vast majority of cores only have fine duties, and only some cores have both
fine and coarse duties. This is due to the dramatic reduction of size between the
original and coarse matrix. As a consequence, there is a tremendous amount
of parallel overhead caused by idling, i.e., the wall-clock time required to solve
the coarse problem TC times the number of cores with fine duties only. Further,
cores with both coarse and fine duties require more memory resources. This is
a problem for current multicore-based distributed-memory architectures (in the
range 1-4 GBytes per core); these memory limitations are expected to be more
restrictive in the future exascale supercomputers [1].

As an alternative, we have proposed in [12] a highly scalable implementa-

14



tion of the exact BDDC method that solves the aforementioned problems by
exploiting the algorithmic property that makes possible to compute coarse and
fine duties in parallel. This technique is illustrated in Figure 1 (b). The global
set of MPI tasks (i.e., the global MPI communicator) is split into fine and coarse
MPI tasks, i.e., those that have fine duties only (fine MPI communicator), and
those with coarse duties only (coarse MPI communicator), so that the compu-
tation of fine and coarse corrections can be overlapped in time. Two possible
approaches for the parallel solution of the coarse-grid problem are proposed in
[12]: using an OpenMP coarse-grid solver within a dedicated node, as shown in
Figure 1 (b), and its generalization into a MPI-based solution that distributes
the coarse-grid problem.

global communication

fine-grid
correction

coarse-grid
correction

c
o
re

 1

c
o
re

 2

c
o
re

 3

c
o
re

 4

c
o
re

 P

TC

TF

time

idling

main MPI communicator

c
o
re

 1

c
o
re

 2

c
o
re

 3

c
o
re

 4

c
o
re

 P
F

global communication

fine-grid MPI
communicator

c
o
re

 1

c
o
re

 2

c
o
re

 P
C

coarse-grid MPI
communicator

TF

TC

PC

OpenMP-based coarse-grid
solution

(a) (b)

Figure 1: Comparison of (a) the typical parallel distributed-memory implementation of Algo-
rithms 1, 2 and 3 and (b) the highly scalable one proposed in [12] implemented with multi-
threading.

The efficient exploitation of this idea requires an important remapping and
re-scheduling of the communications and computations as well as some code
refactoring, which is comprehensively described in [12]. The final result is de-
picted in Table 1, which is similar to the one in [12] but includes the modi-
fications needed to use inexact solvers. Table 1 clearly evidences two areas or
regions (three in the exact version [12], due to symbolic factorization), separated
by global communication stages, where overlapping among fine and coarse du-

ties is possible: the first one after gathering K
(i)
C in line 7 of Algorithm 2 and

the last one after gathering r
(i)
C in line 5 of Algorithm 3. We stress the fact that

all coarse duties, that produce severe idling and, as a result, a loss of parallel
efficiency, can be overlapped with fine duties. Table 1 as a whole only considers
the M̃ set-up stages and the header of the Krylov phase. During the Krylov
loop, overlapping among fine-grid/coarse-grid duties is present within each ap-
plication of the preconditioner, as depicted on the region of Table 1 below the
dashed horizontal line.

15



Fine-grid MPI tasks Coarse-grid MPI task

Identify and count (ni
cts) local coarse

DoFs

Gather ni
cts

Gather global identifiers of the geometric entities corresponding to each coarse DoF
Compute a global ordering of coarse DoFs

(define RC,i and its transpose)
Scatter global ordering of coarse DoFs

Fetch ni
cts of/from my neighbors

Fetch global identifiers of the coarse DoFs
of my neighbors

Compute row counts of GKC

corresponding to local coarse DoFs
Gather row counts of GKC

Compute adjacency lists of GKC

corresponding to local coarse DoFs
Gather adjacency lists of GKC

Construct G
A

(i)
II

from GK(i)

Construct G
K

(i)
rr

from GK(i)

Construct K
(i)
rr and K

(i)
rc from K(i)

Set-up for (K̂
(i)
rr ) and (possibly) K̄

(i)
rr

Compute Φ(i) using (15)-(16)

Compute K
(i)
C ← (Φ̂(i))tK(i)Φ̂(i)

(or K
(i)
C ← −(Φ̂(i))tC(i)Λi)

Gather K
(i)
C

Construct A
(i)
II and A

(i)
IΓ from K(i) Compute KC ←

∑nsbd
i=1 (RC,i)

tK
(i)
C RC,i

Set-up for Ã
(i)
II

Set-up for K̃C

r0 := f −Ax0

x0 := x0 −A−1
II r0

r0 := f −Ax0

Compute δ
(i)
I ← (Ã

(i)
II )−1r

(i)
I

Compute r
(i)
Γ ← r

(i)
Γ −A

(i)
ΓI δ

(i)
I

Compute r(i) ← Etr

Compute r
(i)
C ← Φ(i)tr(i)

Gather r
(i)
C

Compute x
(i)
F using (3)-(4) Compute rC ←

∑nsbd
i=1 Rt

C,ir
(i)
C

Solve KCzC = rC

Scatter zC into z
(i)
C , i = 1, 2, . . . , nsbd

Compute s
(i)
C ← Φ(i)z

(i)
C

Compute z(i) ← E(s
(i)
F + s

(i)
C )

Solve A
(i)
II z

(i)
I = −A(i)

IΓz
(i)
Γ

z
(i)
I

:= z
(i)
I + δ

(i)
I

Table 1: Mapping of the PCG-BDDC algorithm to fine-grid and coarse-grid MPI tasks to
achieve the maximum degree of overlapping in time.

16



6. Numerical experiments

The main goal underlying the numerical experiments section in this paper is
to comprehensively assess, on state-of-the-art supercomputers, the weak scala-
bility of the overlapped implementation of the two-level BDDC preconditioner
equipped with the machinery that allows to inexactly solve the internal problems
(i.e., computation of coarse-grid space basis, local Dirichlet, and constrained
Neumann problems, and global coarse-grid problem) while still preserving pre-
conditioner optimality (see [13] and Section 4). The benefit of such techniques
has to be viewed in the light of future parallel architectures: the trend is that
that the most scalable architectures (e.g., IBM BlueGene) will have more limited
memory per core. The study presented in the paper complements the mathemat-
ical analysis in [13] and answers how far can the overlapped/inexact BDDC
codes go in the number of cores and the scale of the problem to still be within
reasonable ranges of efficiency.

This section is structured as follows. Section 6.1 briefly introduces the paral-
lel codes, and the software/hardware stack of the supercomputers on which they
are tested. In section 6.2 we comprehensively analyze the performance and scal-
ability on JUQUEEN of the overlapped implementation of the inexact BDDC
preconditioning codes when applied to a discrete 3D Poisson problem with uni-
form meshes and partitions, and constant physical coefficients. Section 6.2.1 in
particular describes the target problem, and the mapping of the parallel codes to
the underlying supercomputer. Prior to the actual raw weak scalability study,
in Section 6.2.2, we evaluate the effect that the inexact solution of each internal
problem in isolation has on preconditioning efficiency (i.e., number of PCG it-
erations). In view of the results of this evaluation, in Section 6.2.3, we define a
set of inexact BDDC variants that differ in the particular solvers used for each
internal problem, leading to different trade-offs among total computation time
versus preconditioner efficiency. Then, the weak scalability of these variants is
comprehensively studied in order to meet the objectives of the section. Finally,
Section 6.3 evaluates the application on platform Marenostrum III of the al-
gorithms/codes to the 2D and 3D (pressure) Poisson equations arising in the
pressure segregation solution of the backward-facing step benchmark discretized
with unstructured meshes split by means of automatic partitioners.

6.1. Code and parallel framework

The inexact/overlapped implementation of the BDDC preconditioner to be
studied in this paper has been implemented in the FEMPAR (Finite Element
Multiphysics and massively PARallel) numerical software. FEMPAR is an in-
house developed, parallel hybrid OpenMP/MPI, object-oriented (OO) frame-
work which, among other features, provides the basic tools for the efficient
parallel distributed-memory implementation of substructuring DD solvers [29].
The parallel codes in FEMPAR heavily use standard computational kernels pro-
vided by (highly-efficient vendor implementations of) the BLAS and LAPACK.
Besides, through proper interfaces to several third party libraries, the local
fine-grid and the global coarse-grid problems in two-level DD methods can be

17



solved by either sparse direct or approximate solvers. In this work, we explore
HSL MI20 [38] software package for the approximate solution of these prob-
lems. HSL MI20 is a serial implementation of the classical Ruge-Stüben AMG
preconditioner (as described, e.g., in [39] and [40]) to be used as a convergence
accelerator of Krylov subspace solvers. AMG preconditioners, while being less
robust than sparse direct methods in general, are particularly well-suited for
systems arising from the discretization of the Poisson problem. Indeed, AMG
preconditioning leads to optimal convergence rates (i.e., independent of mesh
characteristic size) with linear arithmetic/memory complexity for a number of
applications.

The experiments reported in this section were obtained on a pair of PRACE
Tier-0 supercomputers, namely MareNostrum III (MN-III), located in Barcelona
(Spain), at the Barcelona Supercomputing Center (BSC), and JUQUEEN, lo-
cated in Jülich (Germany) at the Jülich Supercomputing Center (JSC). MN-III
is composed of 3,056 IBM dx360 M4 compute nodes interconnected by a FDR10
Infiniband high performance network. Each compute node is equipped with a
pair of 8-core Intel E5-2670 SandyBridge-EP CPUs (i.e., 16 cores/node), run-
ning at 2.6GHz, and 32 GBytes of DDR3 memory. Each compute node runs a
standard Linux SuSe Distribution (v11, SP3). On the other hand, JUQUEEN
belongs to the last generation of IBM Blue Gene family of supercomputers,
the so-called BG/Q supercomputer. JUQUEEN is configured as a 28-rack sys-
tem, featuring a total of 28,672 compute nodes interconnected by an extremely
low-latency five-dimensional (5D) torus interconnection network. Each compute
node is equipped with a 16-core, 64-way threaded, IBM Power PC A2 proces-
sor, and 16 GBytes of SDRAM-DDR3 memory (i.e., 1GByte/core), and runs a
lightweight proprietary CNK Linux kernel.

The codes were compiled either using the Intel Fortran compiler (14.0.2) or
the IBM XLF Fortran compiler for BG/Q (v14.1) on MN-III and JUQUEEN,
respectively, with recommended optimization flags. OpenMPI (1.8.1) and a
customized MPICH2 were used for message-passing on MN-III and JUQUEEN,
respectively. The codes were linked against the BLAS/LAPACK available on
the single-threaded Intel MKL (11.1.2) and IBM ESSL library for BG/Q (v5.1),
respectively, HSL MI20 (v1.5.1), and HSL MA87 (v2.1.1).

6.2. Inexact BDDC for 3D Poisson with structured meshes on JUQUEEN

6.2.1. Problem and parallel set-up

We consider as benchmark the solution of the Poisson problem on a rect-
angular prism Ω = [0, 2] × [0, 1] × [0, 1] with homogeneous Dirichlet boundary
conditions and a constant force term on the whole domain. A global conforming
uniform mesh (partition) of Ω into hexahedra is used for the trilinear FE dis-
cretization (i.e., Q1 FEs) of the continuous equation. The 3D mesh is partitioned
into cubic grids of P = 4m × 2m × 2m cubic subdomains. These subdomains
are handled by as many MPI tasks as subdomains, which are distributed over
m3 = 23, 33, . . . , 183 compute nodes (128, 432, . . . , 93, 312 cores), with 4× 2× 2
subdomains/MPI tasks per compute node and one MPI task per physical core.

18



An additional specialized MPI task is spawn in order to perform coarse-grid
related computations. This task is mapped to an additional compute node, al-
though it has only access to one core and 1 GByte of memory. This is due to
limitations in the hardware/software stack of JUQUEEN, which does not al-
low to mix different execution modes on different compute nodes (e.g., 16 MPI
tasks/1 thread per task on fine-grid nodes and 1 MPI task/16 threads per task
on the coarse-grid node). Despite this, at first glance, severe restriction, we will
demonstrate that these resources are already sufficient to solve very large-scale
problems.1

The quotient among subdomain and mesh characteristic sizes, i.e., H
h , pro-

vides a measure of the local problem size. The number of FEs (i.e., hexahedra)
on each local cubic subdomain is indeed H

h ×
H
h ×

H
h , and that of the global mesh

is given by 4mH
h ×2mH

h ×2mH
h . The experiments performed in this section are

selected in order to evaluate at which rate the computation time evolves with
fixed H

h and increasing number of cores (within the aforementioned range). As
the trade-off among the factors determining the scalability of the codes depends
on H

h , we perform the study with a pair of values of fixed problem size H
h = 40

and 60.
At this point, it is worth noting that an effort was done to set up the

HSL MI20 parameters to reach the fastest solution times. In particular, the
same subset of values for these parameters as those considered in [38] were
tested, with θ = 0.67, RS1 coarsening, and Damped Jacobi smoothing being
the winner combination for all internal problems. Besides, with this parameter-
value combination, mesh independent convergence rates were achieved.

6.2.2. The impact of approximately solving the internal problems

In this section we evaluate the effect that the inexact solution of each in-
ternal problem in isolation has on the efficiency of the BDDC preconditioner.
The objective of this section is two-fold. First, to confirm experimentally the
results of the mathematical analysis presented in [13] and Section 4. Special
attention will be paid on whether preconditioner optimality is preserved (i.e.,
number of PCG iterations asymptotically constant for fixed local problem size
and increasing number of subdomains) no matter which of the internal problems
is perturbed. Second, to determine to what extent there is margin for improve-
ment (in terms of number of PCG iterations) by the usage of more accurate
solvers for the internal problems. In such cases, it might be possible in practical
scenarios to reach a trade-off among total computation time and preconditioner
efficiency which leads to a faster solution of the problem.

Figures 2, 3, and 4 compare the number of PCG iterations of the exact BDDC
preconditioner with that of its inexact variant, for BDDC(c), BDDC(ce) and
BDDC(cef), respectively. Each figure provides the impact that the perturba-

1One way to deal with this restriction would be to distribute the coarse-grid problem
among several MPI coarse-grid tasks, possibly spanning multiple compute nodes. This is not
explored here, but left as future work.

19



tion of each internal problem in isolation has on the number of PCG iterations.
For example, Figures 2 (a), 3 (a), and 4 (a) are focused on the impact of the
inexact solution of the coarse-grid problem, while the rest of internal problems
are solved exactly. The same applies for (b), (c), and (d), but for the solu-
tion of the Dirichlet problem, computation of coarse-grid basis, and solution
of the constrained Neumann problem, respectively. For each experiment, three
different inexact solvers were considered, namely “AMG(1)”, “AMG(2)”, and
“AMG(4)”, which stand for a single, two and four AMG cycles, respectively.
The more AMG cycles, the more accurate the solution of the corresponding in-
ternal problem is expected to be, resulting in a beneficial impact on the number
of inexact BDDC-PCG iterations. In Figures 2, 3, and 4, the global prob-
lem size was scaled linearly with the number of subdomains to keep a local
problem size of H/h = 40, i.e., 64K FEs per core; this is the largest local
problem size that can be solved provided that the exact BDDC preconditioner
implementation is based on sparse direct solvers, and the 1GByte/core memory
constrain on JUQUEEN. The results obtained with smaller local problem sizes
(H/h = 10, 20, 30) are omitted for brevity; similar conclusions to the ones with
H/h = 40 can be raised.

 0

 50

 100

 150

 200

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(c) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 50

 100

 150

 200

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(c) with (H/h)3=403 (64K) FEs/core

BDDC with inexact coarse
Exact BDDC

 0

 50

 100

 150

 200

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(c) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 50

 100

 150

 200

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(c) with (H/h)3=403 (64K) FEs/core

BDDC with inexact Dirichlet
Exact BDDC

(a) (b)

 0

 50

 100

 150

 200

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(c) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 50

 100

 150

 200

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(c) with (H/h)3=403 (64K) FEs/core

BDDC with inexact coarse basis
Exact BDDC

 0

 50

 100

 150

 200

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(c) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 50

 100

 150

 200

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(c) with (H/h)3=403 (64K) FEs/core

BDDC with inexact Neumann
Exact BDDC

(c) (d)

Figure 2: Sensitivity of the number of outer BDDC(c)-PCG iterations in the presence of per-
turbations in the solution of the (a) coarse, (b) Dirichlet, (c) coarse-grid basis, and (d) Neu-
mann problems. Three different internal solvers, AMG(1), AMG(2) and AMG(4), were tested
for the solution of these problems.

20



 0

 5

 10

 15

 20

 25

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(ce) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 5

 10

 15

 20

 25

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(ce) with (H/h)3=403 (64K) FEs/core

BDDC with inexact coarse
Exact BDDC

 0

 5

 10

 15

 20

 25

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(ce) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 5

 10

 15

 20

 25

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(ce) with (H/h)3=403 (64K) FEs/core

BDDC with inexact Dirichlet
Exact BDDC

(a) (b)

 0

 5

 10

 15

 20

 25

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(ce) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 5

 10

 15

 20

 25

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(ce) with (H/h)3=403 (64K) FEs/core

BDDC with inexact coarse basis
Exact BDDC

 0

 5

 10

 15

 20

 25

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(ce) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 5

 10

 15

 20

 25

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(ce) with (H/h)3=403 (64K) FEs/core

BDDC with inexact Neumann
Exact BDDC

(c) (d)

Figure 3: Sensitivity of the number of outer BDDC(ce)-PCG iterations in the presence of per-
turbations in the solution of the (a) coarse, (b) Dirichlet, (c) coarse-grid basis, and (d) Neu-
mann problems. Three different internal solvers, AMG(1), AMG(2) and AMG(4), were tested
for the solution of these problems.

Figures 2, 3, and 4 overall confirm the mathematical analysis in [13] and
Section 4. In particular, provided that the inexact BDDC preconditioner is
equipped with spectrally equivalent approximations of the Neumann and coarse
problems, and a spectrally equivalent kernel preserving approximations of the
Dirichlet problem and the constrained Neumann problems at the computation
of the coarse basis functions, preconditioner optimality is preserved. This can
be observed in Figures 2, 3, and 4 by the number of PCG iterations being
asymptotically constant no matter which of the internal problems is perturbed,
and to what extent it is perturbed. While this is true, it is also worth noting
that the impact that the inexact solution of the internal problems has on the
number of PCG iterations is highly depending on the constraints considered for
the coarse space, and the internal problem being perturbed. To see this, the
y-axis of the four plots in Figures 2, 3, and 4 were scaled accordingly to the
one corresponding to the internal problem whose perturbation has the largest
impact on the number of PCG iterations.

If we focus on Figures 2 (a) and (c), it can be observed that the inexact
solution/computation of the coarse-grid problem/coarse-grid basis has a very
mild impact on the number of PCG iterations. Indeed, the number of PCG

21



 0

 5

 10

 15

 20

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(cef) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 5

 10

 15

 20

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(cef) with (H/h)3=403 (64K) FEs/core

BDDC with inexact coarse
Exact BDDC

 0

 5

 10

 15

 20

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(cef) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 5

 10

 15

 20

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(cef) with (H/h)3=403 (64K) FEs/core

BDDC with inexact Dirichlet
Exact BDDC

(a) (b)

 0

 5

 10

 15

 20

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(cef) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 5

 10

 15

 20

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(cef) with (H/h)3=403 (64K) FEs/core

BDDC with inexact coarse basis
Exact BDDC

 0

 5

 10

 15

 20

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(cef) with (H/h)3=403 (64K) FEs/core

AMG(1)
AMG(2)
AMG(4)

 0

 5

 10

 15

 20

128 1K 2K 3.5K 5.5K 8K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(cef) with (H/h)3=403 (64K) FEs/core

BDDC with inexact Neumann
Exact BDDC

(c) (d)

Figure 4: Sensitivity of the number of outer BDDC(cef)-PCG iterations in the presence
of perturbations in the solution of the (a) coarse, (b) Dirichlet, (c) coarse-grid basis, and
(d) Neumann problems. Three different internal solvers, AMG(1), AMG(2) and AMG(4),
were tested for the solution of these problems.

iterations of the inexact BDDC(c) preconditioner with a single AMG cycle is
very close to that of the exact BDDC(c). Increasing the number of AMG cycles
leads, as expected, to a reduction of the number of PCG iterations, which is
almost negligible in this case. We consider this a very nice property of the
BDDC preconditioning approach provided that the coarse-grid problem is the
main scalability bottleneck, so that the overall solution approach immediately
benefits from any savings in memory/time that can be achieved in this part
of the algorithm. However, Figures 2 (b) and (d), reveal a high impact of the
inexact solution of the Dirichlet and Neumann problems, respectively, with a
higher impact in the latter case. For example, with AMG(1), a roughly 50%
and 100% increase in the number of PCG iterations with respect to the exact
BDDC(c) preconditioner is observed, respectively. With additional AMG cycles
for the approximation of the Dirichlet problem, the preconditioner efficiency of
the exact BDDC(c) preconditioner can be rapidly recovered. However, in the
case of the Neumann problem, still a 50% increase is observed with AMG(4).

The picture is quite different in the case of the BDDC(ce) preconditioner.
While the inexact solution of the coarse-grid problem has a very mild impact on
the number of PCG iterations (see Figure 3 (a)), the inexact computation of the

22



coarse-grid basis has the highest impact (a roughly 80% increase in the number
of PCG iterations for AMG(1)) among all internal problems. The impact of the
inexact solution of the Dirichlet and Neumann problems is milder than that of
the inexact computation of the coarse-grid basis, and similar to each other, with
a 50% increase for AMG(1) (compare Figures 3 (b) and (c)).

Figures 4 (b) and (c) reveal a very close response of the BDDC(cef) precondi-
tioner to that of the BDDC(ce) preconditioner in the presence of perturbations
of the Dirichlet problem and computation of the coarse-grid basis, respectively.
However, Figure 4 (a) reveals higher sensitivity of the BDDC(cef) precondi-
tioner under perturbations in the solution of the coarse-grid problem.1 Indeed,
with AMG(1), a 60% increase in the number of PCG iterations is observed
with respect to the exact BDDC(cef) preconditioner. On the other hand, Fig-
ure 4 (d) reveals a very mild impact of the inexact solution of the Neumann
problem, with AMG(1) already almost recovering the preconditioner efficiency
of the exact BDDC(cef) preconditioner.

6.2.3. Scalability of the overlapped implementation with inexact solvers

In the previous section it has been shown that there is margin for improve-
ment (at least in terms of the number of PCG iterations) by the usage of a more
accurate solver than AMG(1) for the internal problems. In light of this observa-
tion, Table 2 presents a set of four selected inexact variants of the BDDC precon-
ditioner. The columns labeled as “Φ”, “Dirichlet”, “Neumann”, and “Coarse”
refer to the computation of the coarse-grid basis vectors, Dirichlet, Neumann,
and coarse-grid internal problems, respectively. “AMG(1)”, and “AMG(2)”
stand for a single, and a pair of AMG cycles, respectively.

Φ Dirichlet Neumann Coarse
Var. 1 AMG(1) AMG(1) AMG(1) AMG(1)
Var. 2 AMG(1) AMG(2) AMG(1) AMG(1)
Var. 3 AMG(2) AMG(1) AMG(2) AMG(1)
Var. 4 AMG(2) AMG(2) AMG(2) AMG(1)

Table 2: A set of four selected inexact variants of the two-level BDDC method.

We stress that the inner solver combinations that are shown in Table 2 are
not the only ones possible, but the ones that have been selected from a much
wider set after comprehensive experimentation. First, we observed that it does
not pay off a more accurate solver for the coarse-grid problem (e.g., AMG(2) or
even an internal PCG-AMG iteration), as the reduction of the number of outer
PCG iterations did not compensate for the decreased scalability at large core
counts caused by a most costly solution of the coarse-grid problem. Second, we

1We remind that the BDDC(cef) coarse matrix is denser than the one for BDDC(ce). The
AMG approximation seems to be less effective due to this fact.

23



also considered variants where K̃rr 6= K̂rr, e.g., AMG(2) for the Neumann prob-
lem, and AMG(1) for the computation of the coarse-grid vectors and vice versa.

As stated in Remark 4.4, under this scenario one must compute (K̃
(i)
rr )−1Ct

r,i to

preserve symmetry, instead of re-using (K̂
(i)
rr )−1Ct

r,i from the constrained Neu-
mann problem required for the computation of the coarse-grid basis vectors.
This involves the solution of an extra linear system with multiple right-hand
sides, as many as local coarse constraints, during preconditioner set-up. We ex-
perimentally observed that this extra computation significantly outweighs any
gain derived from the usage of such variants.

A pair of details underlying the inexact variants in Table 2 are worth noting.
First, the coarse-grid problem was built using the Galerkin projection of K onto
the inexact coarse basis Φ̂ (see (11)) instead of the approach used in [13], that

builds the coarse-grid problem as Φ̂tK̂Φ̂ (see (12)). We consistently observed
that the former approach leads at most to the same number of PCG iterations
than the latter, with up to a 25% reduction in some cases (in particular, with
the inexact BDDC(cef) preconditioner and the largest local problem size of
H/h = 60). Second, although Var 3. and 4 put more effort than Var. 1 and 2,
respectively, in the (more accurate) computation of the coarse-grid basis vectors
and Neumann problem, note that in Var. 3 and 4 there is more potential for
overlapping fine-grid and coarse-grid computations, in particular during precon-
ditioner application at the bottom-most overlapping area of Table 1. We next
study to what extent this property of Var. 3 and 4 leads to increased scalability
and reduced computation times compared to those of Var. 1 and 2.

Figures 5 (a), (b), and (c) provide a comparative view of the weak scalabil-
ity for the total computation time (in seconds) for the inexact variants of the
BDDC(c), BDDC(ce) and BDDC(cef) solvers, respectively. The local problem
sizes went from 403=64K (left side) to 603=216K FEs per core (right side), while
the number of cores from 168 to 93,312 (see Section 6.2.1). For those variants,
and local problem size combinations where a “high” degradation in the weak
scalability was already observed up to 43.9K cores, we did not run the codes
beyond because we were limited in the consumption of the underlying parallel
resources. On the other hand, Figures 6 (a), (b), and (c) report the number
of PCG (outer solver) iterations for the same variants, and local problem size
combinations in Figure 5. We set the initial solution vector guess x0 = 0 for the
outer iterations, that were stopped whenever the residual rk at a given iteration
k satisfies ‖rk‖2 ≤ 10−6‖r0‖2.

The shape of the different scalability curves shown in Figure 5 depends on
the particular balance among fine-grid and coarse-grid computations achieved,
for each inexact variant, in each of the three overlapping areas shown in Table 1,
together with the preconditioner efficiency achieved by each variant, which de-
termines the number of external outer solver iterations. For example, for the
inexact BDDC(ce), and BDDC(cef) variants, and a load per core of 64K FEs/-
core, the total computation time becomes dominated by the coarse-grid solver
beyond 16K and 8K cores, respectively, rendering the overlapping technique less
successful (i.e., given such load per core there is a limited potential for overlap-

24



 0

 50

 100

 150

 200

 250

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(c) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 50

 100

 150

 200

 250

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(c) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 200

 400

 600

 800

 1000

 1200

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(c) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 200

 400

 600

 800

 1000

 1200

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(c) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

(a)

 0

 10

 20

 30

 40

 50

 60

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(ce) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 10

 20

 30

 40

 50

 60

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(ce) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(ce) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(ce) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(cef) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 10

 20

 30

 40

 50

 60

 70

 80

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(cef) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(cef) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 16K 27.6K 43.9K 65.5K 93.3K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#cores

Approximate BDDC(cef) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

(c)

Figure 5: Weak scalability for the total computational time of the inexact variants of
(a) BDDC(c), (b) BDDC(ce), and (c) BDDC(cef) solvers for the 3D Poisson problem on
JUQUEEN. Left: H

h
= 40. Right: H

h
= 60. The solution of the coarse-grid linear system was

mapped to an additional blade.

25



 0

 50

 100

 150

 200

 250

 300

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(c) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 50

 100

 150

 200

 250

 300

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(c) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(c) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(c) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(ce) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 5

 10

 15

 20

 25

 30

 35

 40

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(ce) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(ce) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(ce) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

(b)

 0

 5

 10

 15

 20

 25

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(cef) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 5

 10

 15

 20

 25

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(cef) with (H/h)3=403 (64K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 5

 10

 15

 20

 25

 30

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(cef) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

 0

 5

 10

 15

 20

 25

 30

1K 16K 27.6K 43.9K 65.5K 93.3K

N
um

be
r 

of
 P

C
G

 it
er

at
io

ns

#cores

Approximate BDDC(cef) with (H/h)3=603 (216K) FEs/core

Var. 1
Var. 2
Var. 3
Var. 4

(c)

Figure 6: Weak scalability for the number of PCG iterations for the inexact variants of
(a) BDDC(c), (b) BDDC(ce), and (c) BDDC(cef) solvers for the 3D Poisson problem on
JUQUEEN. Left: H

h
= 40. Right: H

h
= 60.

26



ping). This can be observed in the left-hand side of Figures 5 (b), and (c) by
the total computation time of all variants for increasing number of cores. As
expected, the degradation in the weak scalability is linear (with a higher slope in
the case of inexact BDDC(cef) due to a larger, with denser stencil, coarse-grid
problem) with the number of subdomains, given the linear arithmetic complex-
ity of AMG preconditioning.

However, as the local problem size is increased, overlapping of fine-grid/coarse-
grid duties becomes progressively more successful in tackling the bottleneck as-
sociated to the coarse-grid problem. For example, for inexact BDDC(c), Var.
3, and a load per core of 64K FEs per core, and for all variants in the case
of the largest load per core of 216K FEs/core, the weak scalability is solely
determined by how fast the outer preconditioner solver achieves asymptotically
constant converge rates with fixed problem size and increasing number of cores,
meaning that the overlapping technique was successful to completely overlap
coarse-grid related computations in the 128-93.3K cores range; see the right-
hand side of Figures 5 (a), and 6 (a). As shown in the right-hand side of
Figure 5 (b), the same holds for inexact BDDC(ce), but in the 128-43.9K cores
range; a similar observation can be made for inexact BDDC(cef) with tighter
core ranges in Figure 5 (c), due to a larger, with denser stencil, coarse-grid
problem for the latter algorithm. Beyond 43.9K cores, the computation time
of coarse-grid problem related computations in overlapping areas #1 and #2
(see Table 1) starts exceeding that of the fine-grid related computations for the
inexact BDDC(ce) variants, justifying the (very) mild degradation of roughly
20% and 50% that is observed for Var. 3 and 1, respectively, in the 43.9K-93.3K
cores range, rendering a third level in the hierarchy necessary.

If we now turn our attention to Figures 6 (a), (b), and (c), we can observe
that Var. 4 is consistently the one that leads to a smaller number of iterations,
followed by Var. 3, 2 and 1. This certainly makes sense given that Var. 4 is
the one that solves more accurately all internal problems. However, in terms of
computation times, and provided that the total computation times are dominated
by fine-grid related computations, the relative rank of the variants subject of
study change, with Vars. 1 and 3 being the faster, and Var. 4 the slowest; see
Figures 5 (a), (b), and (c).

An interesting observation can be made, e.g., from the left hand side of
Figure 5 (a) and Figure 5 (b), where Var. 3 becomes faster than Var. 1 for
“sufficiently large” core counts, even with the extra computation time incurred
by AMG(2) in the computation of the coarse-grid basis and the solution of
the Neumann problem. As mentioned above, Var. 3 puts more computational
effort in the solution of the Neumann problem. This increases the potential
of the implementation to fully overlap the solution of the coarse-problem at
each preconditioner application during the PCG phase, resulting in increased
scalability.

Further, it is very important to note the overall effect of a more accurate
computation of the coarse system matrix on scalability. When the coarse basis
is computed with AMG(2) (Vars. 3 and 4) instead of AMG(1) (Vars. 1 and 2),
the scalability loss is much less severe. As expected, this degradation is linear,

27



due to the linear complexity of AMG. However, the slope is noticeably worse
for Vars. 1 and 2 than Vars. 3 and 4. As a conclusion, for large core counts, the
reduced number of PCG iterations, increased scalability, and lower degradation
make Var. 3 the winning choice at large core counts.

To conclude our study, we report in Table 3, for the exact and inexact vari-
ants of the BDDC preconditioner, and increasing values of the local problem
size H

h , the memory consumption figures of the fine-grid preconditioning level;
Table 4 reports those of the coarse-grid preconditioning level. 1 The exact vari-
ant was supplied with HSL MA87 [41], a highly-efficient parallel multi-threaded
DAG-based code implementation of the supernodal sparse direct Cholesky solver.
We note that the figures reported in Tables 3 and 4 correspond to the amount
of (permanent) memory consumed by the preconditioner once it has been com-
puted, and not to the (temporary) memory used during its computation.

H
h

Solver Var. 10 20 30 40 60
BDDC(c) Inexact 20.8M 38.2M 81.2M 157.1M 516.5M

Exact 21.9M 64.2M 218.4M 613.6M O.M.
BDDC(ce) Inexact 22.6M 42.3M 86.7M 158.9M 522.2M

Exact 21.7M 64.0M 219.9M 618.8M O.M.
BDDC(cef) Inexact 22.6M 42.3M 86.7M 160.6M 527.5M

Exact 21.7M 64.3M 219.6M 625.2M O.M.

Table 3: Memory consumption of the highest memory consuming fine-grid task for the exact
and inexact variants of the 2-level BDDC preconditioner. O.M.: out of memory.

m (#subdomains=16m3)
Solver 6 8 10 12 14 16 18

Inexact BDDC(c) 17.1M 23.1M 33.9M 51.5M 63.5M 94.2M 133.9M
Inexact BDDC(ce) 30.3M 56.2M 100.3M 167.8M 263.5M 392.7M 582.7M
Inexact BDDC(cef) 54.9M 118.9M 228.5M 396.6M 604.0M O.M. O.M.

Table 4: Memory consumption on coarse-grid task for the inexact variant of the 2-level BDDC
preconditioner. O.M.: out of memory.

As expected, the inexact variant of the BDDC preconditioner is less memory
demanding than the exact one. This is clearly justified by the linear order of
memory complexity of AMG solvers that the inexact variant fully exploits. In
absolute terms, it consumes a moderate amount of memory, with roughly half
a GByte for the largest local problem size. This is only a 50% of the memory
available on JUQUEEN, meaning that larger problem sizes can still be solved
on this machine (i.e., we did not still reach the memory limits of the proposed
solver machinery), enabling improved scalability results. The (mild) increase of

1Memory consumption was obtained on JUQUEEN by a call to malloc stats right after
preconditioner set-up.

28



memory consumption with additional constraints can be easily explained by the
fact that extra number of coarse-grid basis vectors have to be stored in memory.
On the other hand, if we take a look at the memory consumption of the coarse-
grid solver in Table 4 we observe, as expected, a moderate (linear) increase
with the number of subdomains, with the higher the number of constraints, the
higher the slope. In absolute terms, we can observe that for the largest number of
subdomains tested (i.e., 93.3K), the inexact BDDC(ce) preconditioner consumed
roughly a 58% (i.e., 582.7MBytes) of the memory available, meaning that the
solver machinery proposed can still solve larger problems on larger number of
subdomains.

6.3. Inexact BDDC with a complex domain and unstructured meshes on MN-III

In this section we apply the overlapped implementation of the inexact BDDC
preconditioner to the solution of the Poisson problem on unstructured meshes,
which is required for the numerical simulation of the (turbulent) incompress-
ible flows using typical pressure segregation techniques [26, 27]. In particular,
we analyze the applicability of the inexact BDDC method to the solution of
the pressure Poisson equation in the classical benchmark of the incompressible
flow over backward facing step. Unstructured FE meshes are split by means of
an automatic mesh (actually dual graph) partitioner. The combination of these
factors, which to some extent increases the degree of irregularity to be addressed
(e.g., automatic partitioners typically lead to an irregular decomposition of the
domain into subdomains), posses a challenge to the techniques used to precon-
dition the local Dirichlet/Neumann problems, and the global coarse-grid one
(in our case, classical Rüge-Stuben AMG), and therefore to the inexact BDDC
preconditioning approach as a whole. We stress, however, that the purpose of
the section is not to comprehensively assess the weak scalability of the code as
we did with the structured test case in Section 6.2, but to grasp what to expect
from the algorithmic machinery subject of study when applied to more complex
test cases. A more comprehensive assessment would require, on the one hand, to
consider a wider range of test cases. On the other hand, this would also require
to explore wider ranges for the number of subdomains and scale of the problem
to the ones considered here. Nevertheless, we will be able to compare the per-
formance of both the exact and inexact variants provided that the exact BDDC
preconditioner fits into available memory for the number of cores and scale of
the problems considered here (in contrast to the experiments in Section 6.2).

6.3.1. 2D experiments

The codes subject of study were applied to the linear FE discretization (i.e.,
P1-elements) of the 2D Poisson problem on the backward-facing step domain
depicted in Figure 7. Boundary conditions are set to homogeneous Dirichlet on
the whole boundary except for the left-most (perpendicular to the x-axis) edge
of the boundary, where the unknown is constrained to be equal to a constant
function gD = 1 (i.e., non-homogeneous Dirichlet boundary conditions). Finally,
we set f = 1 (i.e., constant force term) on the whole domain.

29



We have considered four local problem sizes of L1 ≈ 20.9K, L2 ≈ 39.2K, L3
≈ 80K, and L4 ≈ 157.8K triangles per subdomain, respectively. For every local
problem size, we have considered four meshes, corresponding to 64, 256, and
1024 subdomains. All meshes were partitioned on a shared-memory multipro-
cessor with 256GBytes of main memory using the multilevel graph partitioning
algorithms available in METIS 5.1.0 [42]. The (irregular) partition (resulting
from METIS) of the mesh depicted in Figure 7 (b) into 64 parts is shown in
Figure 7 (a) using colors to represent subdomains

Load per core
L1 L2 L3 L4

#cores #nodes #FEs #nodes #FEs #nodes #FEs #nodes #FEs
16 168K 334K 316K 628K 643K 1.28M 1.26M 2.52M
64 671K 1.34M 1.26M 2.51M 2.56M 5.12M 5.07 10.1M
256 2.68M 5.35M 5.03M 10.0M 10.3M 20.5M 20.2M 40.4M
1024 10.7M 21.4M 20.1M 40.2M 41M 82.0M 80.7M 161M

Table 5: Number of nodes and triangles (#FEs) in the unstructured computational meshes
used for the scaling study. These meshes were partitioned into 16, 64, 256, and 1024 subdo-
mains using METIS 5.1.0 [42], such that four different computational loads per subdomain of
L1 ≈ 20.9K, L2 ≈ 39.2K, L3 ≈ 80K, and L4 ≈ 157.8K triangles per subdomain are considered
for the study.

(a)

(b)

Figure 7: (a) 2D backward facing step domain and partition into 64 subdomains using METIS.
(b) Zoomed view of the unstructured mesh for the area delimited by the grey coloured contour
in Figure 7 (a).

In Table 6 we compare the number of PCG iterations of the (exact) 2-level
BDDC preconditioner with that of the four variants of the inexact precondi-
tioner sketched in Table 2. The number of cores and size of the problem were

30



scaled as described in Table 5. An effort was done to set up the HSL MI20 pa-
rameters to reach the best memory/time trade-offs for this particular problem,
with θ = 0.25, RS1 coarsening, and Damped Jacobi smoothing being the winner
combination for all internal problems (see [38] for details).

The comparison in Table 6 reflects, on the one hand, that the exact 2-level
BDDC preconditioner reaches faster (with the number of cores) an asymptot-
ically constant number of iterations compared with any of the four inexact
variants. On the other hand, one may observe that, as expected, the asymp-
totically constant number of iterations reached is smaller for BDDC than for
inexact BDDC. In any case, we stress that the difference among the number
of iterations of the exact and inexact BDDC preconditioners does not depend
on the number of cores, provided that all methods subject of evaluation finally
reach an asymptotically constant number of iterations. Besides, we consider a
remarkable property of the inexact variants that such moderate loss of precon-
ditioner robustness came at the benefit of a reduced order of arithmetic and
memory complexity (in particular, O(n1.5) order of arithmetic complexity of
sparse direct solvers versus O(n) for AMG during preconditioner set-up, and
O(nlogn) versus O(n) during preconditioner application).

If we now turn our attention into the relative merits of the inexact variants
in Table 6, we can first observe that Var 1. and Var 3. converge in (almost)
the same number of iterations. This observation reveals that a more accurate
computation of the coarse-grid basis vectors, and the solution of the Neumann
problem at each iteration (AMG(2) for Var. 3 versus AMG(1) for Var. 1),
has very little impact on preconditioner robustness for this particular problem.
This can also be confirmed by comparing the number of iterations of Vars. 2
and 4, which are also (almost) coincident. However, if we compare the number
of iterations of Vars. 1. and 3, to those of Vars. 2. and 4, we can observe
a significant reduction in the number of iterations for the latter two variants,
revealing that, for the problem subject of study, there is margin for improvement
(in terms of the number of iterations) by a more accurate solution of the Dirichlet
problem (AMG(2) for Vars. 2 and 3 versus AMG(1) for Vars. 1 and 4). The
higher the load per core, and the number of cores, the larger the improvements.

Figure 8 reports the weak scalability for the computational time of the over-
lapped implementation of the (exact) 2-level BDDC preconditioner (see [12])
and those of inexact variants, with L1 and L2 (Figure 8 (a)), and L3 and L4 as
fixed loads per core (Figure 8 (b)). The y-axis of the plots in the right part of
Figs. 8 (a) and (b) was scaled to match the corresponding ones in the left part
to simplify the comparison among BDDC(c) and BDDC(ce)-based variants. At
this point, it is important to stress that, for all preconditioners subject of study,
and all loads per core explored, the time spent in the coarse-grid problem could
be fully overlapped in the full 16-1024 cores range. This observation justifies
why any exact or inexact variant equipped with corner and edges constraints is
always faster than its counterpart equipped with only corner constraints (com-
pare the left and right parts of Figure 7, and complement this comparison with
the number of iterations of BDDC(c) versus BDDC(ce) in Table 7). Overall,
in Figure 7, remarkable time scalability is observed in the 16-1024 cores range

31



Solver Var.

Load per core
L1 L2 L3 L4

#cores #cores #cores #cores
16 64 256 1K 16 64 256 1K 16 64 256 1K 16 64 256 1K

BDDC(c) Exact * 10 14 16 17 10 14 16 17 11 15 18 18 12 16 18 19
Inexact 1 20 34 40 41 23 41 49 50 28 48 60 60 31 58 75 76

2 13 21 23 24 15 24 26 26 17 25 28 29 17 28 31 30
3 21 33 38 40 25 41 48 49 30 50 61 61 35 62 75 77
4 12 18 21 24 13 21 22 23 16 22 25 26 16 24 26 27

BDDC(ce) Exact * 8 8 8 8 9 8 8 8 9 8 9 9 9 9 9 9
Inexact 1 21 25 26 27 24 29 31 32 30 36 38 39 34 45 46 48

2 13 14 15 16 14 14 15 15 16 15 16 16 16 16 16 17
3 21 25 25 27 24 30 32 33 30 37 39 40 34 46 48 49
4 12 13 15 15 14 14 15 16 15 14 15 16 15 15 16 17

Table 6: Weak scalability for the number of PCG iterations of the exact and four inexact
variants (see Table 2) of the BDDC(c), and BDDC(ce) preconditioners for the 2D Poisson
problem on a backward facing step domain (see Figure 7).

despite the high irregularity of the problem at hand.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

16 64 256 1024T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#subdomains

Var. 1
Var. 2

Var. 3
Var. 4

Exact

 0.5

 0.6

 0.7

 0.8

 0.9

 1

16 64 256 1024T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

) Weak scaling for BDDC(c)

L1
L2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

16 64 256 1024T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#subdomains

Var. 1
Var. 2

Var. 3
Var. 4

Exact

 0.5

 0.6

 0.7

 0.8

 0.9

 1

16 64 256 1024T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

) Weak scaling for BDDC(ce)

L1
L2

(a) Loads per core L1 and L2.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 64 256 1024T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#subdomains

Var. 1
Var. 2

Var. 3
Var. 4

Exact

3.0

4.0

5.0

6.0

7.0

8.0

16 64 256 1024T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

) Weak scaling for BDDC(c)

L3
L4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 64 256 1024T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#subdomains

Var. 1
Var. 2

Var. 3
Var. 4

Exact

3.0

4.0

5.0

6.0

7.0

8.0

16 64 256 1024T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

) Weak scaling for BDDC(ce)

L3
L4

(b) Loads per core L3 and L4.

Figure 8: Weak scalability on MN-III for the total computation time of the exact and four
inexact variants (see Table 2) of the BDDC(c) (left) and BDDC(ce) (right) preconditioners
for the 2D Poisson problem on a backward facing step domain (see Figure 7).

32



If we compare the timings of the four inexact variants in Figure 8, we can
recurrently observe that Var. 2 is the fastest variant, (closely) followed by Var.
4, then (further) by Var. 1, and, finally, (further) by Var. 3. This should not
be surprising at first glance provided that: (1) Vars. 2 and 4 took significantly
less iterations to converge than Vars. 1 and 3 (see Table 6); (2) Vars. 4 and 3
perform an extra AMG cycle in the computation of the coarse-grid basis vectors
and the solution of the Neumann problem at each PCG iteration (compared to
Vars. 2 and 1, respectively). However, note that despite Var. 2 converging in
less iterations than Var. 1, Var. 2 involves the application of an extra AMG
cycle for the solution of the (pre and post) Dirichlet corrections at each PCG
iteration. Therefore, we conclude that a (remarkable) trade-off was reached such
that the reduction in the number of iterations incurred by this extra pair of AMG
cycles (at each iteration) more than compensated the extra time required for
their application (at each iteration).

By comparing the computation time of the fastest inexact variant, i.e., Var.
4, to that of the exact BDDC preconditioner, we can observe that, in most cases,
both methods achieved a similar trade-off among the number of iterations and
time spent in the solution of the internal problems. This reflects that, for the
range of local problems subject of study, any gain derived from a less costly
set of inner solvers for the inexact variant was outweighed by the extra number
of outer iterations resulting from the lost of robustness. (We expect, however,
significant gains from the inexact solver as far as the local problem size is scaled
further.) In any case, the inexact variants saved significant memory compared
to the exact counterparts, due to the reduced order of memory complexity of
AMG solvers over sparse direct solvers. For example, for L4 and 1K cores, the
exact BDDC(ce) preconditioner consumed 411 MBytes on the highest memory
demanding fine-grid task, while the inexact variants, only 309 MBytes.

6.3.2. 3D experiments

In this section we apply the inexact BDDC preconditioner to the solution of
the three-dimensional extension of the problem targeted in Section 6.3.1. The
computational domain of this problem is shown in Figure 9, together with one of
the unstructured computational meshes of tetrahedra used in the scaling study,
and its partition into 64 subdomains.

Nine meshes were generated keeping the ratio between the total number of
FEs and the number of subdomains approximately equal to 20K, for 128, 256,
512, 1024, and 2048 subdomains, respectively. In Table 7 we show the minimum,
maximum, and average number of nodes per subdomains. We can observe that
the maximum number of nodes slightly increases, but reaches an asymptotical
regime. This also applies to other factors with a (significant) impact on perfor-
mance, such as the average number of coarse DoFs per subdomain. On the other
hand, we were limited to a more moderate load per core than those considered
in Section 6.3.1, given constraints inherent to the (mesh partitioning) code, and
limited memory/disk capacity available on the underlying shared-memory com-
puter (recall that the code we are using for mesh partitioning relies on METIS,
i.e., no distributed-memory parallelization). The load per core considered is the

33



Figure 9: 3D backward facing step domain, unstructured computational mesh of tetrahedra
and its partition into 64 subdomains using METIS.

largest one from those in Section 6.3.1 such that the code is able to partition
the meshes required to perform the scalability study up to 4K cores.

Table 7 compares the number of PCG iterations of the (exact) 2-level BDDC
preconditioner with that of the four inexact BDDC variants subject of study.
The same set of values for HSL MI20 parameters to those considered in Sec-
tion 6.3.1 were considered here. To keep the presentation shorter, we omitted the
results corresponding to BDDC(c)-based preconditioners. Similar observations
to those already made in Section 6.2 can be made in this case, with BDDC(c)-
based preconditioners being (significantly) less robust than BDDC(ce/cef)-based
ones.

Solver Var. #cores
16 32 64 128 256 512 1K 2K 4K

BDDC(ce) Exact * 13 16 16 14 16 18 20 21 23
Inexact 1 19 22 24 23 27 35 45 49 52

2 16 20 21 19 23 28 35 37 39
3 20 22 24 24 28 35 46 51 53
4 16 18 19 18 21 27 34 37 39

BDDC(cef) Exact * 13 16 16 13 16 17 19 21 23
Inexact 1 19 22 24 23 27 35 44 49 52

2 16 20 22 21 25 31 37 41 40
3 20 22 24 24 28 35 45 50 53
4 16 19 22 20 23 31 36 40 41

Table 7: Weak scalability for the number of PCG iterations of the exact and four inexact
variants (see Table 2) of the BDDC(ce) and BDDC(cef) preconditioners for the 3D Poisson
problem on a backward facing step domain (see Figure 9).

Overall, very close observations to those made for Table 6 are derived from
Table 7. The exact 2-level BDDC preconditioner reaches faster (with the number

34



of cores) an asymptotically constant number of iterations compared with any of
the four inexact variants, and besides, the constant reached is smaller for the
former. We stress that this difference becomes asymptotically constant with the
number of cores (confirming preconditioner optimality for the inexact variants).
For the load per core explored, a maximum increase by a factor of 2.3 and 1.7
is seen for Vars. 1 and 3, and 2 and 4, respectively. If we compare the inexact
variants, we can also see that a more accurate solution of the Dirichlet problem
has a significant positive impact on preconditioner quality (compare Vars. 2
with 1, and 4 with 3), while it does not for the computation of the coarse-grid
basis vectors and the constrained Neumann problem at each iteration (compare
Vars. 3 with 1, and 4 with 2). Finally, the results of Table 7 also confirm
that, for both the exact and inexact variants, there is no gain derived from
the addition of face constraints into the coarse-grid space, as the number of
iterations of the BDDC(cef)-based preconditioners was (at most) the same as
that of the BDDC(ce)-based counterparts.

Figure 10 reports the weak scalability for the computational time of the over-
lapped implementation of the (exact) 2-level BDDC(ce) (left) and BDDC(cef)
(right) preconditioners (see [12]) and those of the inexact variants, with a mod-
erate load of 20K FEs/core. The y-axis of the plot in the right part of Fig. 10
was scaled to match the corresponding one in the left part to simplify the com-
parison among BDDC(ce) and BDDC(cef)-based variants.

 0

 5

 10

 15

 20

 25

 30

16 256 512 1K 2K 4K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#subdomains

Weak scaling for BDDC(ce)

Var. 1
Var. 2
Var. 3
Var. 4
Exact

 0

 5

 10

 15

 20

 25

 30

16 256 512 1K 2K 4K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e 
(s

ec
s.

)

#subdomains

Weak scaling for BDDC(cef)

Var. 1
Var. 2
Var. 3
Var. 4
Exact

Figure 10: Weak scalability on MN-III for the total computation time of the exact and the four
inexact variants (see Table 2) of the BDDC(ce) (left), and BDDC(cef) (right) preconditioners
for the 3D Poisson problem on a backward facing step domain (see Figure 9) and a moderate
load of 20K FEs/core.

A first (remarkable) observation that can be made from Figure 10 is that
time scalability of the exact variant starts degrading at a much more higher
pace beyond 512 and 256 subdomains for BDDC(ce) and BDDC(cef), respec-
tively, compared with any of the four inexact variants. This factor also causes
the exact variant being slower than the inexact variants beyond that point. Ta-
ble 8 complements Figure 10 by providing the size (n) and number of nonzeros
(nnz) in the coarse-grid matrix (in the columns labeled as “Ac”), and the min-
imum, maximum, and average local degrees of freedom among all subdomains

35



(in the columns labeled as “#Local DoFs”). By comparing the number of global
coarse DoFs (n), with the number of local DoFs, we can see that beyond the
aforementioned number of subdomains, the former already (largely) exceeds the
latter. It is therefore not surprising that beyond that point the time spent in
coarse-grid computations becomes larger than fine-grid ones (rendering fine/-
grid overlapping no longer fully effective), and more and more dominant with
the number of subdomains, such that the scalability curve finally reflects the
order of complexity of the underlying coarse-grid solver (i.e., O(n2) versus O(n)
for sparse direct solvers compared to AMG preconditioners). The slope of the
curve is higher for BDDC(cef) than for BDDC(ce), provided that the former
requires additional coarse degrees of freedom (see Table 8).

Solver #cores
Ac #Local DoFs #Local coarse DoFs

n nnz min. max. avg. min. max. avg.

BDDC(ce)

16 39 487 3.04K 3.45K 3.32K 1.0 9.0 6.3
32 89 1437 3.18K 3.78K 3.52K 1.0 13.0 7.6
64 308 12734 3.27K 4.08K 3.63K 4.0 36.0 15.5

128 968 66268 3.22K 4.29K 3.71K 8.0 52.0 24.9
256 8213 180074 2.97K 4.74K 3.84K 7.0 66.0 28.7
512 5578 621522 3.07K 4.70K 3.85K 4.0 88.0 36.1

1024 12579 1612669 2.89K 4.86K 3.91K 6.0 102.0 40.8
2048 28272 4021436 2.91K 4.93K 4.00K 4.0 98.0 46.0
4096 61177 9299555 2.93K 4.86K 3.97K 6.0 96.0 49.8

BDDC(cef)

16 66 1236 3.04K 3.45K 3.32K 2.0 13.0 9.7
32 151 3533 3.18K 3.78K 3.52K 2.0 18.0 11.4
64 511 27323 3.27K 4.08K 3.63K 6.0 46.0 21.9

128 1485 123815 3.22K 4.29K 3.71K 12.0 66.0 33.0
256 3368 326426 2.97K 4.74K 3.84K 11.0 81.0 37.6
512 8213 1059719 3.07K 4.70K 3.85K 7.0 108.0 46.4

1024 18229 2676749 2.89K 4.86K 3.91K 10.0 125.0 51.8
2048 40374 6538298 2.91K 4.93K 4.00K 7.0 118.0 57.8
4096 86592 14954200 2.93K 4.86K 3.97K 10.0 118.0 62.2

Table 8: Number of coarse-grid DoFs (n) and number of nonzero elements (nnz) in the sparse
coarse-grid matrix, minimum, maximum, and average number of local degrees of freedom
(among all subdomains), and minimum, maximum, and average number of local coarse degrees
of freedom (among all subdomains), for the BDDC(ce) and BDDC(cef) preconditioners.

7. Conclusions and future work

In this work, we have analyzed the scalability of inexact BDDC precondi-
tioners. Inexact AMG solvers are considered, due to their linear complexity
and low memory requirements. Further, a highly scalable implementation of
fine/coarse duties in time has been used, which is an extension of the work in
[12] to inexact solvers. It allows us to fully overlap the coarse problem tasks
that harm scalability with embarrassingly parallel fine tasks and reduce both
check-pointing and idling. All these choices are motivated by the future exascale
scenario, with very large core counts and reduced memory per core.

36



We have numerically tested the overlapped/inexact implementation of the
algorithms in [13] (with a slight modification for the coarse solver approxima-
tion) that complements their mathematical analysis. This work shows how far
the implementation proposed herein can scale with respect to the number of
cores and the size of the global problem when using a serial AMG software
package like HSL MI20 [38].

As inexact solvers, we have considered a fixed (one or two) number of AMG
cycles. (The use of PCG-AMG local/coarse solvers was considered, but it turned
out to be less efficient than a fixed number of AMG cycles in all cases.) First, we
have carried out a sensitivity analysis, to analyze the effect of inexact solvers on
iteration counts/condition numbers. Next, we have performed a comprehensive
weak scalability analysis up to 93,312 cores and more than 20 billion unknowns
on JUQUEEN, at the Jülich Supercomputing Center (JSC). As far as we know,
these are the largest scale scalability analyses and simulations performed so far
with DD methods. Even using a single core with 1 GByte of memory for the
coarse-grid problem, the scalability of the inexact variants represent a dramatic
improvement compared to the largest scale scalability analyses of exact BDDC
methods so far (see [12]), justifying the approach considered herein.

Out of this analysis, we can conclude that for moderate core counts, less than
35K, the best option is to use one AMG cycle for all the local and coarse prob-
lems. However, as we run on larger sets of processors, to compute slightly more
accurately the coarse basis and Neumann problems (using two AMG cycles)
certainly pays the price; the resulting coarse problem is easier to approximate
with AMG, the number of iterations is reduced, and there is more fine work
load to fully overlap the coarse tasks. With respect to the three variants of
BDDC methods, namely BDDC(c), BDDC(ce), and BDDC(cef), the increased
number of iterations of BDDC(c) preconditioner in three dimensions does not
compensate its smaller coarse problem in the scales considered herein, since the
coarse problem CPU cost (at least in part) is being overlapped with fine du-
ties. In general, the BDDC(ce) preconditioner has the best compromise between
number of iterations and computational cost.

Scalable Poisson solvers on unstructured meshes are of great importance
when dealing with LES simulations of turbulent flows on general geometries.
Pressure segregation techniques are used, leading to a pressure Poisson problem
[26, 27]. We have analyzed the effectiveness of the inexact BDDC setting on the
typical backward-facing step benchmark for unstructured meshes, both in two
and three dimensions.

The next step in our effort to push forward balancing DD scalability till
extreme core counts is to distribute the coarse-grid problem among several MPI
coarse-grid tasks, possibly spanning multiple compute nodes. It can be ac-
complished by linking our inexact/overlapped BDDC implementation with a
MPI-distributed AMG solver like BoomerAMG [18], or alternatively, to extend
the overlapping BDDC techniques described above to a multilevel setting, using
a recursive use of our implementation at FEMPAR. Based on our current ex-
perience (overlapped two-level implementations can scale up to several tens of
thousands of processors) and existing mathematical analyses, we can naturally

37



expect a three-level overlapped implementation of BDDC to perfectly scale in
the largest HPC systems today. This is not explored here, but left as an exciting
future line of research.

Acknowledgements

This work has been funded by the European Research Council under the FP7
Program Ideas through the Starting Grant No. 258443 - COMFUS: Computa-
tional Methods for Fusion Technology and the FP7 NUMEXAS project under
grant agreement 611636. A. F. Mart́ın was also partially funded by the Generali-
tat de Catalunya under the program “Ajuts per a la incorporació, amb caràcter
temporal, de personal investigador júnior a les universitats públiques del sis-
tema universitari català PDJ 2013”. We acknowledge PRACE for awarding us
access to resource JUQUEEN based in Germany at the Jülich Supercomputing
Centre (JSC), and the Gauss Centre for Supercomputing (GCS) for provid-
ing computing time through the John von Neumann Institute for Computing
(NIC) on the GCS share also on JUQUEEN. GCS is the alliance of the three
national supercomputing centres HLRS (Universität Stuttgart), JSC, and LRZ
(Bayerische Akademie der Wissenschaften), funded by the German Federal Min-
istry of Education and Research (BMBF) and the German State Ministries for
Research of Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-
Westfalen (MIWF). We gratefully acknowledge JSC’s staff in general, and Dirk
Broemmel in particular, for their support in porting/debugging FEMPAR and
its dependencies to/on JUQUEEN. Finally, the authors thankfully acknowledge
the computer resources, technical expertise and assistance provided by the Red
Española de Supercomputación.

References

[1] Report on the workshop on extreme-scale solvers: Transition to future
architectures, Tech. rep., U.S. Department of Energy (2012).

[2] P. T. Lin, J. N. Shadid, M. Sala, R. S. Tuminaro, G. L. Hennigan,
R. J. Hoekstra, Performance of a parallel algebraic multilevel precondi-
tioner for stabilized finite element semiconductor device modeling, Jour-
nal on Computational Physics 228 (17) (2009) 6250–6267. doi:http:

//dx.doi.org/10.1016/j.jcp.2009.05.024.

[3] K. Stüben, A review of algebraic multigrid, Journal of Com-
putational and Applied Mathematics 128 (12) (2001) 281 – 309.
doi:10.1016/S0377-0427(00)00516-1.
URL http://www.sciencedirect.com/science/article/pii/

S0377042700005161

[4] A. Toselli, O. Widlund, Domain Decomposition Methods - Algorithms and
Theory, Springer-Verlag, 2005.

38

http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2009.05.024
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2009.05.024
http://www.sciencedirect.com/science/article/pii/S0377042700005161
http://dx.doi.org/10.1016/S0377-0427(00)00516-1
http://www.sciencedirect.com/science/article/pii/S0377042700005161
http://www.sciencedirect.com/science/article/pii/S0377042700005161


[5] J. Mandel, Balancing domain decomposition, Communications in Numeri-
cal Methods in Engineering 9 (3) (1993) 233–241.
URL http://dx.doi.org/10.1002/cnm.1640090307

[6] C. R. Dohrmann, A preconditioner for substructuring based on constrained
energy minimization, SIAM Journal on Scientific Computing 25 (1) (2003)
246–258. doi:10.1137/S1064827502412887.
URL http://link.aip.org/link/?SCE/25/246/1

[7] C. Farhat, K. Pierson, M. Lesoinne, The second generation FETI methods
and their application to the parallel solution of large-scale linear and
geometrically non-linear structural analysis problems, Computer Meth-
ods in Applied Mechanics and Engineering 184 (2–4) (2000) 333–374.
doi:10.1016/S0045-7825(99)00234-0.
URL http://www.sciencedirect.com/science/article/pii/

S0045782599002340

[8] S. Badia, A. F. Mart́ın, J. Principe, Enhanced balancing Neumann-
Neumann preconditioning in computational fluid and solid mechanics, In-
ternational Journal for Numerical Methods in Engineering 96 (4) (2013)
203–230.

[9] P. Amestoy, I. Duff, J.-Y. L’Excellent, Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers, Computer Methods
in Applied Mechanics and Engineering 184 (24) (2000) 501–520.
doi:10.1016/S0045-7825(99)00242-X.
URL http://www.sciencedirect.com/science/article/pii/

S004578259900242X

[10] B. Soused́ık, J. Š́ıstek, J. Mandel, Adaptive-multilevel BDDC and
its parallel implementation, Computing 95 (12) (2013) 1087–1119.
doi:10.1007/s00607-013-0293-5.
URL http://link.springer.com/article/10.1007/

s00607-013-0293-5

[11] V. Hapla, D. Horak, M. Merta, Use of direct solvers in TFETI massively
parallel implementation, in: Applied Parallel and Scientific Computing, no.
7782 in Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2013, pp. 192–205.
URL http://link.springer.com/chapter/10.1007/

978-3-642-36803-5_14

[12] S. Badia, A. F. Mart́ın, J. Principe, A highly scalable parallel implementa-
tion of balancing domain decomposition by constraints, SIAM Journal on
Scientific Computing (2014) C190–C218doi:10.1137/130931989.
URL http://epubs.siam.org/doi/abs/10.1137/130931989

[13] C. R. Dohrmann, An approximate BDDC preconditioner, Numerical Linear
Algebra with Applications 14 (2) (2007) 149168. doi:10.1002/nla.514.

39

http://dx.doi.org/10.1002/cnm.1640090307
http://dx.doi.org/10.1002/cnm.1640090307
http://link.aip.org/link/?SCE/25/246/1
http://link.aip.org/link/?SCE/25/246/1
http://dx.doi.org/10.1137/S1064827502412887
http://link.aip.org/link/?SCE/25/246/1
http://www.sciencedirect.com/science/article/pii/S0045782599002340
http://www.sciencedirect.com/science/article/pii/S0045782599002340
http://www.sciencedirect.com/science/article/pii/S0045782599002340
http://dx.doi.org/10.1016/S0045-7825(99)00234-0
http://www.sciencedirect.com/science/article/pii/S0045782599002340
http://www.sciencedirect.com/science/article/pii/S0045782599002340
http://www.sciencedirect.com/science/article/pii/S004578259900242X
http://www.sciencedirect.com/science/article/pii/S004578259900242X
http://dx.doi.org/10.1016/S0045-7825(99)00242-X
http://www.sciencedirect.com/science/article/pii/S004578259900242X
http://www.sciencedirect.com/science/article/pii/S004578259900242X
http://link.springer.com/article/10.1007/s00607-013-0293-5
http://link.springer.com/article/10.1007/s00607-013-0293-5
http://dx.doi.org/10.1007/s00607-013-0293-5
http://link.springer.com/article/10.1007/s00607-013-0293-5
http://link.springer.com/article/10.1007/s00607-013-0293-5
http://link.springer.com/chapter/10.1007/978-3-642-36803-5_14
http://link.springer.com/chapter/10.1007/978-3-642-36803-5_14
http://link.springer.com/chapter/10.1007/978-3-642-36803-5_14
http://link.springer.com/chapter/10.1007/978-3-642-36803-5_14
http://epubs.siam.org/doi/abs/10.1137/130931989
http://epubs.siam.org/doi/abs/10.1137/130931989
http://dx.doi.org/10.1137/130931989
http://epubs.siam.org/doi/abs/10.1137/130931989
http://onlinelibrary.wiley.com/doi/10.1002/nla.514/abstract
http://dx.doi.org/10.1002/nla.514


URL http://onlinelibrary.wiley.com/doi/10.1002/nla.514/

abstract

[14] X. Tu, Three-level BDDC in three dimensions, SIAM Journal on Scientific
Computing 29 (4) (2007) 1759–1780. doi:10.1137/050629902.
URL http://epubs.siam.org/doi/abs/10.1137/050629902

[15] J. Mandel, B. Soused́ık, C. Dohrmann, Multispace and multilevel BDDC,
Computing 83 (2) (2008) 55–85. doi:10.1007/s00607-008-0014-7.
URL http://www.springerlink.com/content/112v4w1821r584u0/

abstract/

[16] J. Mandel, C. R. Dohrmann, R. Tezaur, An algebraic theory for primal and
dual substructuring methods by constraints, Applied Numerical Mathemat-
ics 54 (2) (2005) 167–193.

[17] J. Li, O. B. Widlund, On the use of inexact subdomain solvers for BDDC
algorithms, Computer Methods in Applied Mechanics and Engineering
196 (8) (2007) 1415–1428. doi:10.1016/j.cma.2006.03.011.
URL http://www.sciencedirect.com/science/article/pii/

S0045782506002611

[18] V. E. Henson, U. M. Yang, BoomerAMG: a parallel algebraic multigrid
solver and preconditioner, Applied Numerical Mathematics 41 (1) (2002)
155–177. doi:10.1016/S0168-9274(01)00115-5.
URL http://www.sciencedirect.com/science/article/pii/

S0168927401001155

[19] O. Rheinbach, Parallel iterative substructuring in structural mechanics,
Archives of Computational Methods in Engineering 16 (4) (2009) 425–463.
doi:10.1007/s11831-009-9035-4.
URL http://link.springer.com/article/10.1007/

s11831-009-9035-4

[20] A. Klawonn, O. Rheinbach, Highly scalable parallel domain decom-
position methods with an application to biomechanics, ZAMM -
Journal of Applied Mathematics and Mechanics 90 (1) (2010) 532.
doi:10.1002/zamm.200900329.
URL http://onlinelibrary.wiley.com/doi/10.1002/zamm.

200900329/abstract

[21] O. Schenk, K. Gärtner, On fast factorization pivoting methods for sparse
symmetric indefinite systems, Electronic Transactions on Numerical Anal-
ysis 23 (2006) 158–179.

[22] O. Colomés, S. Badia, R. Codina, J. Principe, Assessment of variational
multiscale models for the large eddy simulation of turbulent incompress-
ible flows, Computer Methods in Applied Mechanics and Engineering 285
(2015) 32–63.

40

http://onlinelibrary.wiley.com/doi/10.1002/nla.514/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nla.514/abstract
http://epubs.siam.org/doi/abs/10.1137/050629902
http://dx.doi.org/10.1137/050629902
http://epubs.siam.org/doi/abs/10.1137/050629902
http://www.springerlink.com/content/112v4w1821r584u0/abstract/
http://dx.doi.org/10.1007/s00607-008-0014-7
http://www.springerlink.com/content/112v4w1821r584u0/abstract/
http://www.springerlink.com/content/112v4w1821r584u0/abstract/
http://www.sciencedirect.com/science/article/pii/S0045782506002611
http://www.sciencedirect.com/science/article/pii/S0045782506002611
http://dx.doi.org/10.1016/j.cma.2006.03.011
http://www.sciencedirect.com/science/article/pii/S0045782506002611
http://www.sciencedirect.com/science/article/pii/S0045782506002611
http://www.sciencedirect.com/science/article/pii/S0168927401001155
http://www.sciencedirect.com/science/article/pii/S0168927401001155
http://dx.doi.org/10.1016/S0168-9274(01)00115-5
http://www.sciencedirect.com/science/article/pii/S0168927401001155
http://www.sciencedirect.com/science/article/pii/S0168927401001155
http://link.springer.com/article/10.1007/s11831-009-9035-4
http://dx.doi.org/10.1007/s11831-009-9035-4
http://link.springer.com/article/10.1007/s11831-009-9035-4
http://link.springer.com/article/10.1007/s11831-009-9035-4
http://onlinelibrary.wiley.com/doi/10.1002/zamm.200900329/abstract
http://onlinelibrary.wiley.com/doi/10.1002/zamm.200900329/abstract
http://dx.doi.org/10.1002/zamm.200900329
http://onlinelibrary.wiley.com/doi/10.1002/zamm.200900329/abstract
http://onlinelibrary.wiley.com/doi/10.1002/zamm.200900329/abstract


[23] O. Colomés, S. Badia, Segregated runge-kutta methods for the incompress-
ible navier-stokes equations, In press.

[24] S. Badia, A. F. Martn, R. Planas, Block recursive LU precondi-
tioners for the thermally coupled incompressible inductionless MHD
problem, Journal of Computational Physics 274 (2014) 562–591.
doi:10.1016/j.jcp.2014.06.028.
URL http://www.sciencedirect.com/science/article/pii/

S0021999114004355

[25] S. Badia, R. Planas, J. V. Gutirrez-Santacreu, Unconditionally stable op-
erator splitting algorithms for the incompressible magnetohydrodynamics
system discretized by a stabilized finite element formulation based on
projections, International Journal for Numerical Methods in Engineering
93 (3) (2013) 302–328. doi:10.1002/nme.4392.
URL http://onlinelibrary.wiley.com/doi/10.1002/nme.4392/

abstract

[26] H. C. Elman, D. J. Silvester, A. J. Wathen, Finite elements and fast iter-
ative solvers: with applications in incompressible fluid dynamics, Oxford
University Press, 2005.

[27] S. Badia, R. Codina, Algebraic Pressure Segregation Methods for the In-
compressible Navier-Stokes Equations, Archives of Computational Methods
in Engineering 15 (3) (2008) 343–369.

[28] P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud’homme, N. Spillane,
High performance domain decomposition methods on massively parallel
architectures with FreeFEM++, J. Numer. Math. 20 (3-4) (2012) 287–302.

[29] S. Badia, A. F. Mart́ın, J. Principe, Implementation and scalability anal-
ysis of balancing domain decomposition methods, Archives of Compu-
tational Methods in Engineering 20 (3) (2013) 239–262. doi:10.1007/

s11831-013-9086-4.

[30] J. Š́ıstek, M. Čert́ıková, P. Burda, J. Novotný, Face-based selection of
corners in 3D substructuring, Mathematics and Computers in Simulation
82 (10) (2012) 1799–1811. doi:10.1016/j.matcom.2011.06.007.
URL http://www.sciencedirect.com/science/article/pii/

S0378475411001820

[31] J. Mandel, C. R. Dohrmann, Convergence of a balancing domain decompo-
sition by constraints and energy minimization, Numerical Linear Algebra
with Applications 10 (7) (2003) 639–659. doi:10.1002/nla.341.
URL http://dx.doi.org/10.1002/nla.341

[32] G. Golub, Q. Ye, Inexact preconditioned conjugate gradient method with
inner-outer iteration, SIAM Journal on Scientific Computing 21 (4) (1999)
1305–1320. doi:10.1137/S1064827597323415.
URL http://epubs.siam.org/doi/abs/10.1137/S1064827597323415

41

http://www.sciencedirect.com/science/article/pii/S0021999114004355
http://www.sciencedirect.com/science/article/pii/S0021999114004355
http://www.sciencedirect.com/science/article/pii/S0021999114004355
http://dx.doi.org/10.1016/j.jcp.2014.06.028
http://www.sciencedirect.com/science/article/pii/S0021999114004355
http://www.sciencedirect.com/science/article/pii/S0021999114004355
http://onlinelibrary.wiley.com/doi/10.1002/nme.4392/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.4392/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.4392/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.4392/abstract
http://dx.doi.org/10.1002/nme.4392
http://onlinelibrary.wiley.com/doi/10.1002/nme.4392/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.4392/abstract
http://dx.doi.org/10.1007/s11831-013-9086-4
http://dx.doi.org/10.1007/s11831-013-9086-4
http://www.sciencedirect.com/science/article/pii/S0378475411001820
http://www.sciencedirect.com/science/article/pii/S0378475411001820
http://dx.doi.org/10.1016/j.matcom.2011.06.007
http://www.sciencedirect.com/science/article/pii/S0378475411001820
http://www.sciencedirect.com/science/article/pii/S0378475411001820
http://dx.doi.org/10.1002/nla.341
http://dx.doi.org/10.1002/nla.341
http://dx.doi.org/10.1002/nla.341
http://dx.doi.org/10.1002/nla.341
http://epubs.siam.org/doi/abs/10.1137/S1064827597323415
http://epubs.siam.org/doi/abs/10.1137/S1064827597323415
http://dx.doi.org/10.1137/S1064827597323415
http://epubs.siam.org/doi/abs/10.1137/S1064827597323415


[33] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM
Journal on Scientific Computing 14 (12) (1993) 461—469.

[34] P. Vaněk, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggre-
gation for second and fourth order elliptic problems, Computing 56 (1996)
179–196.
URL http://dx.doi.org/10.1007/BF02238511

[35] M. Sala, R. Tuminaro, A new Petrov-Galerkin smoothed aggregation pre-
conditioner for nonsymmetric linear systems, SIAM Journal on Scientific
Computing 31 (1) (2008) 143–166. doi:10.1137/060659545.

[36] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, H. Zhang, PETSc Web page, http:
//www.mcs.anl.gov/petsc (2012).

[37] F. Hecht, FreeFem++ User’s manual. 3rd edition, Version 3.22, available
at http://www.freefem.org/ff++/ftp/freefem++doc.pdf (2013).
URL http://www.freefem.org/ff++/ftp/freefem++doc.pdf

[38] J. Boyle, M. Mihajlović, J. Scott, HSL MI20: An efficient AMG precondi-
tioner for finite element problems in 3D, International Journal for Numeri-
cal Methods in Engineering 82 (1) (2010) 64–98. doi:10.1002/nme.2758.
URL http://onlinelibrary.wiley.com/doi/10.1002/nme.2758/

abstract

[39] J. W. Ruge, K. Stüben, Algebraic multigrid (AMG), in: Multigrid Meth-
ods, S. F. McCormick Edition, Vol. 3 of Frontiers in Applied Mathematics,
SIAM, Philadelphia, PA, 1987, pp. 73–130.

[40] U. Trottenberg, C. C. W. Oosterlee, A. Schüller, MULTIGRID, Academic
Press, 2001.

[41] J. Hogg, J. Reid, J. Scott, Design of a multicore sparse cholesky factor-
ization using DAGs, SIAM Journal on Scientific Computing 32 (6) (2010)
3627–3649. doi:10.1137/090757216.
URL http://epubs.siam.org/doi/abs/10.1137/090757216

[42] G. Karypis, A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse
matrices. Version 5.1.0, Tech. rep., University of Minnesota, Department
of Computer Science and Engineering, Minneapolis, MN, available at
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf

(2013).
URL http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.

pdf

42

http://dx.doi.org/10.1007/BF02238511
http://dx.doi.org/10.1007/BF02238511
http://dx.doi.org/10.1007/BF02238511
http://dx.doi.org/10.1137/060659545
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.freefem.org/ff++/ftp/freefem++doc.pdf
http://www.freefem.org/ff++/ftp/freefem++doc.pdf
http://www.freefem.org/ff++/ftp/freefem++doc.pdf
http://onlinelibrary.wiley.com/doi/10.1002/nme.2758/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.2758/abstract
http://dx.doi.org/10.1002/nme.2758
http://onlinelibrary.wiley.com/doi/10.1002/nme.2758/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.2758/abstract
http://epubs.siam.org/doi/abs/10.1137/090757216
http://epubs.siam.org/doi/abs/10.1137/090757216
http://dx.doi.org/10.1137/090757216
http://epubs.siam.org/doi/abs/10.1137/090757216
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf

	Introduction
	Motivation
	Balancing Domain Decomposition
	Problem setting
	BDDC preconditioner

	Inexact BDDC
	A highly scalable distributed-memory implementation
	Numerical experiments
	Code and parallel framework
	Inexact BDDC for 3D Poisson with structured meshes on JUQUEEN
	Problem and parallel set-up
	The impact of approximately solving the internal problems
	Scalability of the overlapped implementation with inexact solvers

	 Inexact BDDC with a complex domain and unstructured meshes on MN-III
	2D experiments
	3D experiments


	Conclusions and future work

