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1ICFO–Institut de Ciències Fotòniques, Av. C.F. Gauss, 3, E-08860 Castelldefels, Spain
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Entanglement distribution is key to the success of secure communication schemes based on quantum mechanics,
and there is a strong need for an ultimate architecture able to overcome the limitations of recent proposals such
as those based on entanglement percolation or quantum repeaters. In this work we provide a broad theoretical
background for the development of such technologies. In particular, we investigate the question of whether
entanglement distribution is more efficient if some amount of entanglement—or some amount of correlations in
general—is available prior to the transmission stage of the protocol. We show that in the presence of noise the
answer to this question strongly depends on the type of noise and on the way the entanglement is quantified.
On the one hand, subadditive entanglement measures do not show an advantage of preshared correlations if
entanglement is established via combinations of single-qubit Pauli channels. On the other hand, based on the
superadditivity conjecture of distillable entanglement, we provide evidence that this phenomenon occurs for this
measure. These results strongly suggest that sending one half of some pure entangled state down a noisy channel
is the best strategy for any subadditive entanglement quantifier, thus paving the way to a unified approach for
entanglement distribution which does not depend on the nature of noise. We also provide general bounds for
entanglement distribution involving quantum discord and present a counterintuitive phenomenon of the advantage
of arbitrarily little entangled states over maximally entangled ones, which may also occur for quantum channels
relevant in experiments.
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I. INTRODUCTION

Considered as a curiosity in the early days of quantum
theory [1], entanglement has now been recognized as the
essential ingredient for a growing number of applications
in quantum technologies [2,3]. Among them we find, for
example, the celebrated quantum cryptography [4] allowing
for a provably secure communication between distant parties,
and quantum teleportation [5], which offers the possibility of
an intact transmission of a state of a particle over an arbitrarily
long distance using preshared entanglement and classical
communication. Entanglement is also necessary for quantum
nonlocality, which is an even stronger resource for certain
information-processing tasks, including the above-mentioned
secure key distribution [4,6,7] and certified quantum random-
ness generation [8–10].

A common assumption behind entanglement-based pro-
tocols is that long-distance or at least medium-distance en-
tanglement is available beforehand. Several remedies against
this drawback have been recently proposed, with the most
promising one being based on quantum repeaters [11] and
entanglement distillation [12]. However, the necessity of
powerful quantum memories appears as the main limiting
factor in this proposal (cf. [13]). Another method is based
on entanglement percolation [14], but it also suffers problems
when considered in realistic situations in the presence of noise
and decoherence [15].

The aim of the present work is to explore different realistic
scenarios in which the long-distance entanglement can be
distributed. The general framework for such a task we adopt
here is the following (see Fig. 1). Two parties, Alice and Bob,
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initially share a three-particle quantum system. Two of the
particles are with Alice, and the remaining one is in Bob’s
hands. In the most general situation we allow Alice and Bob
to share some correlations established before the beginning of
the protocol. The distribution of entanglement is then achieved
with the aid of a quantum channel which is used to transmit
one of Alice’s particles to Bob.

A remarkable result with respect to such general entan-
glement distribution protocols has been obtained in [16].
There, it was shown that the process is even possible without
sending entanglement directly: for successful entanglement
distribution the exchanged particle does not need to be
entangled with the rest of the system. This phenomenon
has been termed “entanglement distribution with separable
states,” and its experimental verification has also been reported
recently [17–20]. These results suggest that such a distribution
procedure may be advantageous in the presence of noise: it
could be possible to surpass the fragileness of entanglement
by sending a separable particle.

Despite considerable attempts to understand this phe-
nomenon [21–26], one of the most important questions
remains unresolved: Can noisy entanglement distribution with
separable states provide an advantage when compared to
sending one-half of the maximally entangled state through the
same noisy channel? Note that the answer for this question also
has a direct importance for the theory and practice of quantum
repeaters and quantum percolation where the intermediate-
distance entanglement between the involved nodes must be
established in some way. In this work we attack this problem
by focusing on the following closely related questions:

(1) Given a noisy quantum channel, what is the maximal
amount of entanglement that can be distributed with and
without preshared correlations?
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FIG. 1. (Color online) General framework for entanglement dis-
tribution. Alice is initially in possession of two particles, while one
particle is in Bob’s hands. Alice and Bob further have access to
preshared correlations and an additional, possibly noisy quantum
channel which is used for entanglement distribution.

(2) Are preshared correlations helpful for entanglement
distribution via a given quantum channel?
Note that a negative answer to the second question also implies
that entanglement distribution with separable states is not the
best strategy in this situation.

As our study reveals, the answers to these questions depend
on the way entanglement is quantified. In particular, we show
that if the entanglement quantifier is subadditive (that is, its
value for a tensor product of any two states is not greater than
the sum of the values for the individual states), preshared corre-
lations provide no advantage for single-qubit Pauli channels or
any tensor product thereof. In this situation the best distribution
strategy is to send one half of the maximally entangled
state down the noisy channel. However, not all entanglement
quantifiers are subadditive. In particular, it is conjectured that
the distillable entanglement is superadditive [27]. Assuming
this conjecture holds true, we show that preshared correlations
can indeed provide an advantage for the distribution of
distillable entanglement. Another surprising result is obtained
for the logarithmic negativity: for this entanglement measure
states with arbitrarily little entanglement can show better
performance for entanglement distribution when compared to
maximally entangled states. We further present bounds for
noisy entanglement distribution given by quantum discord
[28,29], thus significantly extending the results provided in
[22,23] to the noisy scenario.

Moreover, the results presented in this work strongly
suggest that a unified approach to entanglement distribution
is indeed possible. In particular, based on our findings it
is very reasonable to assume that preshared correlations do
not provide an advantage for any subadditive entanglement
quantifier, regardless of the type of noisy channel used for
the distribution. If this assumption is correct, sending one half
of some pure entangled state down a noisy channel will be
the best strategy in this very general scenario. However, we
also show that maximally entangled states are not necessarily
optimal for this process.

This paper is organized as follows. In Sec. II we study
noiseless entanglement distribution, while the scenario involv-
ing noise is considered in Sec. III. In Sec. IV we investigate the
optimal entanglement distribution without preshared correla-
tions, i.e., we consider the maximal amount of entanglement
that can be distributed via a given noisy channel if Alice and

Bob do not share any correlations initially. Finally, the possible
advantage of preshared correlations for noisy entanglement
distribution is discussed in Sec. V.

II. NOISELESS ENTANGLEMENT DISTRIBUTION

The starting point of this section is the general scenario
for entanglement distribution considered in [22,23]; see also
[29] for a detailed discussion. In particular, we assume that
two parties, Alice and Bob, have access to a general tripartite
quantum state ρ = ρABC . We further assume, without loss of
generality, that the entanglement distribution is realized by
sending the particle C from Alice to Bob, and that during the
entire process particles A and B are in possession of Alice
and Bob, respectively. If the quantum channel used for the
transmission of the particle C is noiseless, the amount of
entanglement distributed in this process is quantified via the
difference EA|BC(ρ) − EAC|B(ρ) between the final amount of
entanglement EA|BC(ρ) and the initial amount of entanglement
EAC|B(ρ).

As it was shown in [16], entanglement distribution is
also possible by sending a particle which is not entangled
with the rest of the system, i.e., there exist states ρ = ρABC

such that EC|AB(ρ) = 0 and, at the same time, EA|BC(ρ) −
EAC|B(ρ) > 0. This finding has triggered a debate about the
type of correlations which are responsible for entanglement
distribution. An important result in this context was provided
in Refs. [22] and [23]. The amount of distributed entanglement
cannot exceed the amount of quantum discord �C|AB between
the exchange particle C and the remaining system AB:

�C|AB(ρ) � EA|BC(ρ) − EAC|B(ρ). (1)

At this point, it is also important to notice that in general
quantum discord does not vanish on separable states. This
inequality was shown to hold for all distance-based quantifiers
of entanglement and discord [22]:

EX|Y (ρXY ) = min
σXY ∈S

D(ρXY ,σXY ), (2)

�X|Y (ρXY ) = min
{�X

i }
D

(
ρXY ,

∑
i

�X
i ρXY �X

i

)
. (3)

Here, S is the set of bipartite separable states, {�X
i } is a

local von Neumann measurement on the subsystem X, and
D can be any general distance which satisfies the following
two properties [22]:

(1) D does not increase under quantum operations:

D(�[ρ],�[σ ]) � D(ρ,σ ) (4)

for any quantum operation � and any pair of quantum states
ρ and σ , and

(2) D satisfies the triangle inequality

D(ρ,σ ) � D(ρ,τ ) + D(τ,σ ) (5)

for any three quantum states ρ, σ , and τ .
As it was further shown in [22,23], the results presented

above also hold for the quantum relative entropy S(ρ||σ ) =
Tr[ρ log ρ] − Tr[ρ log σ ], despite the fact that the relative
entropy in general does not satisfy the triangle inequality. The
corresponding quantifiers of entanglement and discord in this
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case are known as the relative entropy of entanglement ER and
the relative entropy of discord �R:

E
X|Y
R (ρXY ) = min

σXY ∈S
S(ρXY ||σXY ), (6)

�
X|Y
R (ρXY ) = min

{�X
i }

S

(
ρXY

∥∥∥∥ ∑
i

�X
i ρXY �X

i

)
. (7)

The relative entropy of entanglement ER was originally
introduced in [30,31]. By its relation to the relative entropy
[32,33], it plays a fundamental role in quantum information
theory. ER is known to be an upper bound on the distillable en-
tanglement Ed [34,35] and a lower bound on the entanglement
of formation Ef [31]:

Ed � ER � Ef . (8)

The distillable entanglement Ed quantifies the maximal
number of singlets that can be asymptotically obtained per
copy of the given state via local operations and classical
communication (LOCC) [12]. The entanglement of formation
Ef is defined as [36]

Ef (ρXY ) = min
∑

i

piE(|ψi〉XY ), (9)

where the minimum is taken over all pure-state decompositions
{pi, |ψi〉XY } of the state ρXY , i.e., ρXY = ∑

i pi |ψ〉 〈ψ |XY ,
and E(|ψ〉XY ) = S(ρX) is the von Neumann entropy of the
reduced state.

The relative entropy of discord �R was originally intro-
duced in [37], where it was called “one-way information
deficit” [38]. It quantifies the amount of information which
cannot be localized by one-way classical communication
between two parties.

A. Relation to distillable entanglement and entanglement cost

Equipped with these tools, we are now in a position
to present the first results of this paper. In particular, we
will provide a close connection between the relative entropy
of discord �R , the distillable entanglement Ed , and the
entanglement cost Ec. The latter is defined as the minimal
number of singlets per copy required for the asymptotic
creation of a bipartite quantum state via LOCC [3], and
can also be written as the regularized entanglement of
formation [39]:

Ec(ρ) = lim
n→∞

1

n
Ef (ρ⊗n). (10)

The aforementioned relation between �R , Ed , and Ec is
provided in the following theorem.

Theorem 1. Given a tripartite state ρ = ρABC , the follow-
ing inequality holds:

�
C|AB

R (ρ) � E
A|BC

d (ρ) − EAC|B
c (ρ). (11)

Proof. This inequality can be proven by noticing that the
inequality (1) also holds for the regularized relative entropy of

entanglement and discord:

lim
n→∞

�
C|AB

R (ρ⊗n)

n
� lim

n→∞
E

A|BC

R (ρ⊗n)

n
− lim

n→∞
E

AC|B
R (ρ⊗n)

n
.

(12)

By applying Eq. (8) and using the fact that the distillable
entanglement Ed does not change under regularization we
arrive at the inequality

lim
n→∞

�
C|AB

R (ρ⊗n)

n
� E

A|BC

d (ρ) − lim
n→∞

E
AC|B
f (ρ⊗n)

n
. (13)

In the next step we recall that the entanglement cost is equal to
the regularized entanglement of formation, see Eq. (10), and
thus

lim
n→∞

�
C|AB

R (ρ⊗n)

n
� E

A|BC

d (ρ) − EAC|B
c (ρ). (14)

Finally, the desired inequality (11) follows by observing
that the relative entropy of discord does not increase under
regularization: �R(ρ) � lim

n→∞�R(ρ⊗n)/n. �
Notice that Eq. (11) has a clear operational interpretation:

the relative entropy of discord is an upper bound on the number
of singlets gained in the process of entanglement distribution
in the asymptotic limit. This is because E

A|BC

d (ρ) quantifies the
number of singlets Alice and Bob can distill after performing
the entanglement distribution, while E

AC|B
c (ρ) quantifies the

amount of singlets that Alice and Bob need to create the
state ρ = ρABC before the entanglement distribution has been
performed, both in the asymptotic limit. Moreover, as already
mentioned in the proof of Theorem 1, this statement is also true
for the regularized relative entropy of discord lim

n→∞�R(ρ⊗n)/n.

B. Relation to measures of NPT entanglement and distillability

The results presented above demonstrate that the relation
between entanglement and discord in Eq. (1) is more general
than anticipated by the original approach [22,23]. In the
following we will go one step further by extending these
results to general measures of NPT (nonpositive partial trans-
pose) entanglement. In particular, we consider entanglement
quantifiers of the form [3]

E
X|Y
PPT (ρXY ) = min

σXY ∈PPT
D(ρXY ,σXY ), (15)

where PPT is the set of states having positive partial transpose,
and the distance D satisfies Eqs. (4) and (5). The amount of
quantum discord is defined in the same way as in Eq. (3):

�X|Y (ρXY ) = min
{�X

i }
D

(
ρXY ,

∑
i

�X
i ρXY �X

i

)
. (16)

The following theorem shows that inequality (1) also applies
to these measures of NPT entanglement.

Theorem 2. Given a tripartite state ρ = ρABC , the follow-
ing inequality holds:

�C|AB(ρ) � E
A|BC

PPT (ρ) − E
AC|B
PPT (ρ). (17)

Proof. The proof goes along the lines of the one of Eq. (1),
first presented in [22]. We start by introducing the state
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σ = σABC , which is PPT with respect to the bipartition AC|B,
and, moreover, we assume that it is the closest PPT state to ρ:
E

AC|B
PPT (ρ) = D(ρ,σ ). We then define the states

ρ ′ =
∑

i

�C
i ρ�C

i (18)

and

σ ′ =
∑

i

�C
i σ�C

i (19)

to arise from ρ and σ via the local von Neumann measurement
on C, minimizing the distance between ρ and ρ ′, i.e.,
�C|AB(ρ) = D(ρ,ρ ′). Furthermore, we use the fact that the
distance D satisfies the triangle inequality, and thus

D(ρ,σ ′) � D(ρ,ρ ′) + D(ρ ′,σ ′). (20)

Recalling that D does not increase under quantum operations,
it follows that

D(ρ ′,σ ′) � D(ρ,σ ), (21)

and Eq. (20) becomes

D(ρ,σ ′) � �C|AB(ρ) + E
AC|B
PPT (ρ). (22)

In the final step we note that the state (19) is PPT
with respect to all bipartitions, i.e., EAB|C

PPT (σ ′) = E
AC|B
PPT (σ ′) =

E
A|BC

PPT (σ ′) = 0. The fact that E
AB|C
PPT (σ ′) = 0 is obvious,

since σ ′ arises by performing a local von Neumann mea-
surement {�C

i } on the state σ , and thus has the form of
a quantum-classical state: σ ′ = ∑

i �
C
i σ�C

i = ∑
i piσ

AB
i ⊗

|i〉 〈i|C . Moreover, by the very construction, the state σ is PPT
with respect to the bipartition AC|B, and so is σ ′, meaning that
E

AC|B
PPT (σ ′) = 0. This, together with the fact that σ ′ is classical

on the subsystem C, implies that it is also PPT with respect to
the remaining bipartition A|BC: E

A|BC

PPT (σ ′) = 0. This means
that the distance between ρ and σ ′ is an upper bound on
E

A|BC

PPT (ρ), which, when applied in Eq. (22), completes the
proof. �

The above theorem extends the range of applications of
Eq. (1) to distance-based quantifiers of NPT entanglement.
The same arguments can also be applied to measures of
distillability defined as [3]

E
X|Y
ND (ρXY ) = min

σXY ∈ND
D(ρXY ,σXY ). (23)

Here, ND is the set of nondistillable states, and, as before, the
distance D satisfies Eqs. (4) and (5). Using the same arguments
as in the proof of Theorem 2, we see that Eq. (17) generalizes
to these distillability measures:

�C|AB(ρ) � E
A|BC

ND (ρ) − E
AC|B
ND (ρ), (24)

where the quantum discord �C|AB is defined in the same way
as in Eq. (16).

Finally, the above results also hold for measures of NPT
entanglement and distillability based on the relative entropy,
although, as mentioned earlier, the latter does not satisfy the
triangle inequality in general. The fact that Eqs. (17) and
(24) still apply to these measures can be seen using the same
arguments as in the proof of Theorem 2 by observing that for
the relative entropy the inequality (20) becomes equality [22].

C. Relation to Schatten norms

The results presented so far hold for a very general class
of quantifiers for entanglement and discord. In particular, we
have seen that Eq. (1) applies for any entanglement measure
E, which is defined via the minimal distance to the set of
separable, nondistillable, or PPT states, if the amount of
discord � is quantified as in Eq. (3). The corresponding
distance only needs to satisfy two minimal requirements given
in Eqs. (4) and (5): it should not increase under quantum
operations and it should satisfy the triangle inequality. On the
other hand, we have also seen that Eq. (1) can be still valid
even if the distance violates one of these properties. This was
demonstrated for the relative entropy which can violate the
triangle inequality.

In the following we will show that Eq. (1) may also hold for
distances violating Eq. (4), i.e., those that are not contractive
under quantum operations. To this end we will consider the
following distance:

Dp(ρ,σ ) = ||ρ − σ ||p, (25)

with ‖ · ‖p being the Schatten p norm of an operator M defined
through

||M||p = (Tr[(M†M)p/2])1/p, (26)

with p � 1. Clearly, D1 coincides with the trace distance and
thus does not increase under quantum operations [2]. However,
contrary to what had been claimed in [40], already D2 (so-
called Hilbert-Schmidt distance) can increase under quantum
operations as shown in [41]. The arguments from Ref. [41]
can be further generalized to show this fact for any p > 1 (see
also [42,43] for similar considerations).

Now let Ep be defined as

EX|Y
p (ρXY ) = min

σXY ∈T
Dp(ρXY ,σXY ), (27)

with the minimization going over the set T , which here might
denote either of the sets: separable, nondistillable, or PPT
states. Let further �p be defined by Eq. (3) with the distance
taken to be Dp. The following theorem shows that Eq. (1) also
holds in this situation.

Theorem 3. Given a tripartite state ρ = ρABC , the follow-
ing inequality holds:

�C|AB
p (ρ) � EA|BC

p (ρ) − EAC|B
p (ρ). (28)

Proof. The proof follows exactly the lines of the proof of
Theorem 2. The only thing which needs to be proved is the
fact that although Dp may increase under general quantum
operations, it does not for those operations that map the states
ρ and σ to ρ ′ and σ ′ in Eqs. (18) and (19), respectively.
For this purpose, we notice that such mapping is unital, i.e.,∑

i �
C
i 1�

C
i = 1, where 1 = 1ABC is the identity operator, and

it was shown in Ref. [42] that no unital map can increase the
p norm for any p � 1. This implies that for p � 1, Dp does
satisfy Eq. (21) for the states of interest, which completes the
proof. �

While quantifiers of discord based on Schatten norms
have been considered only recently [43–54], entanglement
quantifiers of this type were studied already more than a
decade ago [40,41,55–57]. Despite this fact, it has been an
open question if Ep is a proper entanglement measure, i.e.,
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if it is nonincreasing under LOCC for p > 1 [41]. In what
follows we will put this question to rest by showing that Ep

can increase by simply discarding a part of the system. For this
purpose, let ρAB be a quantum state such that E

A|B
p (ρAB) > 0.

Then, consider its extension to a three-partite state defined
as ρABC = ρAB ⊗ 1C/2, where the particle C is a qubit. We
will now show that the entanglement of ρAB is larger than the
entanglement of ρABC :

EA|B
p (ρAB) > EA|BC

p (ρABC) (29)

for all p > 1. To this end, observe that the amount of
entanglement E

A|BC
p (ρABC) is bounded from above by the

distance Dp(ρABC,σABC) for σABC = σAB ⊗ 1C/2, where
σAB is the closest separable state to ρAB . Moreover, notice that
the distance between ρABC and σABC can also be expressed
as [54]

Dp(ρABC,σABC) =
∥∥∥∥1C

2

∥∥∥∥
p

Dp(ρAB,σAB). (30)

Recalling that the state σAB was defined to be the closest
separable state to ρAB and using the fact that ||1C/2||p =
21/p−1, one obtains

EA|BC
p (ρABC) � 21/p−1EA|B

p (ρAB). (31)

The inequality (29) follows by noting that for p > 1 the
exponent 1/p − 1 is negative, and thus 21/p−1 < 1 in this case.

Similar results with respect to quantum discord were also
obtained recently [43,54]. In particular, it was pointed out in
[43] that the geometric discord �

X|Y
G = (�X|Y

2 )2 can increase
under local operations on any of the parties X or Y , while most
quantifiers of discord known in the literature do not increase
under quantum operations on the subsystem Y . This result
was later extended to all measures of discord �p for p > 1
[54]. On the one hand, this observation together with Eq. (29)
provides strong constraints for the possible applications of
entanglement and discord quantifiers based on Schatten norms.
On the other hand, the close relation of E2 to the problem
of finding optimal entanglement witnesses [56,57] and the
connection between Ep and �p established in Theorem 3
demonstrate the use of these quantities for understanding the
structure of entanglement from a geometric perspective.

III. NOISY ENTANGLEMENT DISTRIBUTION

In the scenario considered so far, Alice and Bob aimed
at distributing entanglement by having access to a noiseless
quantum channel. Since noise is unavoidable in any realistic
experiment; we will now consider the more general situation
in which the channel used for entanglement distribution is
noisy. Similarly to the foregoing discussion, we assume that
Alice and Bob have access to a tripartite initial state ρi =
ρABC , where Alice is initially in possession of the particles
A and C, and Bob is in possession of the remaining particle
B. If Alice uses a noisy channel �C to send her particle C to
Bob, they end up in the final state ρf = �C[ρi]. The amount
of entanglement distributed in this process is then given by
EA|BC(ρf ) − EAC|B(ρi).

Having introduced the concept of noisy entanglement
distribution, we are now in a position to extend Eq. (1) to

A B

C
ΛC

1 ΛC
2

FIG. 2. (Color online) Decomposition of a noisy channel �C in
two channels �C

1 and �C
2 . For an initial state ρi = ρABC the final

state after the application of the channel is given by ρf = �C[ρi] =
�C

2 (�C
1 [ρi]). The figure illustrates the intermediate state ρ̃ = �C

1 [ρi]
after the application of �C

1 only. See main text for details.

this general scenario. In the following theorem we will show
that noisy entanglement distribution is in general limited by
the amount of discord in each of the states ρi and ρf .

Theorem 4. Given a quantum channel �C and two states
ρi = ρABC and ρf = �C[ρi], the following inequality holds:

min{�C|AB(ρi),�
C|AB(ρf )} � EA|BC(ρf ) − EAC|B(ρi).

(32)

Here, E and � are any quantifiers of entanglement and discord
which satisfy Eq. (1).

Proof. We first apply Eq. (1) to the state ρi , thus arriving
at �C|AB(ρi) � EA|BC(ρi) − EAC|B(ρi). Then the inequal-
ity �C|AB(ρi) � EA|BC(ρf ) − EAC|B(ρi) follows by recall-
ing that entanglement does not increase under local noise,
i.e., EA|BC(ρi) � EA|BC(ρf ). Using analogous reasoning one
can also prove the inequality �C|AB(ρf ) � EA|BC(ρf ) −
EAC|B(ρi). Application of Eq. (1) to the state ρf gives us the
inequality �C|AB(ρf ) � EA|BC(ρf ) − EAC|B(ρf ). One then
completes the proof by using EAC|B(ρf ) � EAC|B(ρi), which
again follows from the fact that entanglement does not increase
under local noise. As quantum discord can increase or decrease
under local noise [44,58–60], the claim follows. �

A. Divisible channels

Let us consider a decomposition of the channel �C into
two channels �C

1 and �C
2 such that the successive application

of these channels is equivalent to the application of �C :

ρf = �C[ρi] = �C
2

(
�C

1 [ρi]
)
. (33)

(See also Fig. 2 for an illustration.) If such a decomposition is
possible with nonunitary �C

1 and �C
2 , the channel �C is called

divisible [61]. By introducing an intermediate state

ρ̃ = �C
1 [ρi], (34)

we will now show that the amount of distributed entanglement
is in general bounded above by the amount of discord in the
state ρ̃:

�C|AB(ρ̃) � EA|BC(ρf ) − EAC|B(ρi). (35)

As in the foregoing discussion, we assume that E and � are
quantifiers of entanglement and discord satisfying Eq. (1).
Under this assumption, Eq. (35) can be proven using similar
arguments as in the proof of Eq. (32). In particular, we can
apply Eq. (1) to the intermediate state ρ̃, thus obtaining
the inequality �C|AB(ρ̃) � EA|BC(ρ̃) − EAC|B(ρ̃). The proof
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of Eq. (35) is complete by making use of the fact that
entanglement does not increase under local noise, leading
to the inequalities EA|BC(ρ̃) � EA|BC(ρf ) and EAC|B(ρ̃) �
EAC|B(ρi).

B. Markovian time evolution

Here we will see that the results presented in the previous
section have a nice application in the scenario in which the
particle C used for entanglement distribution is subject to a
Markovian time evolution �C

(t2,t1). If we assume that the process
starts with the initial state ρi = ρABC at the time t = 0, then
for any time t � 0 the time-evolved state is given by

ρt = �C
(t,0)[ρi]. (36)

Denoting then by T the total time required for the process, the
corresponding final state ρf can be written as

ρf = ρT = �C
(T ,0)[ρi]. (37)

We are now in position to prove that the amount of
entanglement distributed via a Markovian time evolution
is bounded from above by the amount of discord in the
time-evolved state ρt for any T � t � 0:

�C|AB(ρt ) � EA|BC(ρf ) − EAC|B(ρi). (38)

Here, E and � are quantifiers of entanglement and discord
satisfying Eq. (1). To prove the above statement, we use
the fact that any Markovian time evolution �C

(t2,t1) obeys the
composition law [62], that is,

�C
(t2,t1)[ρ] = �C

(t2,t)

[
�C

(t,t1)[ρ]
]

(39)

for any state ρ and all t2 � t � t1 � 0. This, together with
Eqs. (36) and (37), leads us to the following expression for the
final state:

ρf = �C
(T ,0)[ρi] = �C

(T ,t)[ρt ], (40)

for all T � t � 0. One then obtains Eq. (38) by applying
Eq. (35) with ρ̃ = ρt .

Let us notice that the inequality (38) also implies that the
distribution of entanglement via a Markovian time evolution
is bounded above by the minimal discord mint �

C|AB(ρt ),
minimized over all times t ranging between 0 and the duration
of the total procedure T . On the other hand, any violation
of Eq. (38) can also be regarded as a witness for the
non-Markovianity of the underlying time evolution. These
results support recent attempts to detect and quantify non-
Markovianity via quantum entanglement [63] and quantum
discord [47,64,65]. Noting that the inequality (38) is valid
for a very general class of quantifiers for entanglement and
discord, further investigation in this direction can lead to
a better understanding of entanglement and discord in the
context of detecting non-Markovianity.

IV. OPTIMAL ENTANGLEMENT DISTRIBUTION
WITHOUT PRESHARED CORRELATIONS

In the foregoing discussion we considered noiseless and
noisy entanglement distribution, and presented several tools
for bounding the amount of entanglement distributed in this
process. In this section we will apply them to the following

problem: How much entanglement can be distributed via a
given quantum channel?

Let us begin with the scenario in which Alice and Bob are
not correlated initially, i.e., the initial and the final state are
given by

ρi = ρAC ⊗ ρB (41)

and

ρf = �C[ρAC] ⊗ ρB, (42)

respectively. We assume again that Alice is initially in
possession of the particles A and C, while Bob holds the
particle B. In the distribution process, the particle C is sent
from Alice to Bob via the quantum channel �C . Thus the initial
entanglement between Alice and Bob is zero, and the amount
of distributed entanglement is given by EA|C(�C[ρAC]).

In the following, we are interested in optimal entanglement
distribution, i.e., we ask which initial states ρAC lead to the
maximal final entanglement after the application of a quantum
channel �C . Clearly, if the quantum channel �C is noiseless,
the optimal distribution strategy is achieved if Alice prepares
her particles A and C in the maximally entangled state,

|φ+〉AC = 1√
dC

dC−1∑
i=0

|ii〉AC , (43)

and sends the particle C to Bob.
Interestingly, as we will see below, this strategy is not

always optimal if the quantum channel �C is noisy. In passing,
it is crucial to notice that all maximally entangled states show
the same performance for entanglement distribution, i.e.,

E(�C[|φme〉〈φme|AC]) = E(�C[|φ+〉〈φ+|AC]) (44)

is true for any maximally entangled state |φme〉AC , any
entanglement measure E, and any noisy channel �C . This
can be seen by first noting that any maximally entangled
state |φme〉AC can be written as |φme〉AC = UA |φ+〉AC , where
UA is a unitary acting on the subsystem A. Then, to get
Eq. (44) one uses the facts that UA commutes with �C and
that any entanglement quantifier E is invariant under local
unitaries [3].

A. Relation to entanglement of formation

In this section we will show that maximally entangled states
are optimal for entanglement distribution for all noisy channels
if the exchanged particle C is a qubit and the amount of
entanglement is quantified via the entanglement of formation
Ef . We then have the following theorem.

Theorem 5. For any mixed state ρAC with dA � dC = 2
and any channel �C , the following inequality holds:

Ef (�C[|φ+〉〈φ+|AC]) � Ef (�C[ρAC]). (45)

Proof. We first recall that the entanglement of formation is
a convex function of the state. This implies that for any mixed
state ρAC there exists a pure state |ψ〉AC which shows at least
the same performance for entanglement distribution:

Ef (�C[|ψ〉〈ψ |AC]) � Ef (�C[ρAC]). (46)
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To complete the proof we will show that the maximally
entangled state has the best performance among all pure states,
i.e.,

Ef (�C[|φ+〉〈φ+|AC]) � Ef (�C[|ψ〉〈ψ |AC]) (47)

for any pure state |ψ〉AC with dA � 2, dC = 2, and any
single-qubit channel �C . At this point, it is important to
note that the state |ψ〉AC is effectively a two-qubit state, even
if the dimension of the subsystem A is larger than 2. This
follows from the Schmidt decomposition of |ψ〉AC , which due
to the fact that the subsystem C is two-dimensional, is of
the form |ψ〉AC = λ0 |00〉 + λ1 |11〉. The state �C[|ψ〉 〈ψ |AC]
can thus be regarded as a mixed state of two qubits. With
this in mind, we can now use the fact that for all two-qubit
states the entanglement of formation admits a simple formula:
Ef = g(C), where g is a nondecreasing function and C is
the concurrence [66]. The final ingredient of our proof is the
factorization law for concurrence (see Eq. (5) in [67]). Adapted
to our notation it reads

C(�C[|ψ〉〈ψ |AC]) = C(�C[|φ+〉〈φ+|AC]) · C(|ψ〉〈ψ |AC).

(48)

Since the concurrence is never larger than 1, we arrive at the
following inequality:

C(�C[|φ+〉〈φ+|AC]) � C(�C[|ψ〉〈ψ |AC]). (49)

Note that this inequality also holds if the concurrence C is
replaced by the entanglement of formation Ef , since the
latter is a nondecreasing function of the concurrence. This
observation completes the proof [68]. �

It is worth mentioning that the above result can be gener-
alized to a larger class of entanglement measures, namely, to
all those measures which for two qubits can be written as a
nondecreasing function of concurrence, that is,

E = g(C). (50)

This can be seen by exploiting the same argumentation as
before. Apart from the entanglement of formation, examples
of such measures are the geometric measure of entanglement
[69,70], the Bures measure of entanglement [30,31], and the
Groverian measure of entanglement [71,72]. For two qubits
all those measures reduce to a nondecreasing function of
concurrence (see Fig. 4 in Ref. [73]).

B. Relation to Pauli channel

We now show that for an important type of noise, the Pauli
channel, the statement made in the previous section can be
generalized to all entanglement measures. The action of the
Pauli channel reads

�C
p [ρAC] =

3∑
i=0

piσ
C
i ρACσC

i , (51)

where the exchanged particle C is a qubit and σi are Pauli
matrices with σ0 = 1. We have the following:

Theorem 6. For any mixed state ρAC with dA � dC =
2 and any Pauli channel �C

p the following inequality

A R

ΛC
p [|φ+ φ+ |R̃C]ρAR

R̃ C

A C
τAC = Λ C

p [ρAC]

FIG. 3. (Color online) The state �C
p [|φ+〉 〈φ+|R̃C] can be used to

teleport the particle R of the state ρAR by performing a joint Bell
measurement on R and R̃, and a conditional rotation on C (upper
figure). This procedure leaves the subsystem AC in the final state
τAC = �C

p [ρAC] (lower figure).

holds:

E
(
�C

p [|φ+〉〈φ+|AC]
)

� E
(
�C

p [ρAC]
)

(52)

for any entanglement measure E.
Proof. Let us start by introducing two additional particles

R and R̃ with dR = dR̃ = 2. We will now show that the

state �C
p [|φ+〉〈φ+|R̃C] can be used for teleportation in the

following way: if two parties share the state �C
p [|φ+〉〈φ+|R̃C]

and apply the standard teleportation protocol [5] for teleporting
the two-dimensional subsystem R of a total state ρAR , they will
end up sharing the state �C

p [ρAC]. (See also [74] for similar
considerations.) This can be seen explicitly by considering
the essential steps of the standard teleportation protocol (see
Fig. 3). In the first step, a joint Bell measurement is performed
on the subsystems R and R̃. Depending on the outcome i of
the measurement, the subsystem AC is found in one of the
four states �C

p [σC
i ρACσC

i ] with 0 � i � 3. In the final step, a
conditioned unitary rotation σC

i is applied on the subsystem
C, leading to the final state

τAC = σC
i �C

p

[
σC

i ρACσC
i

]
σC

i . (53)

At this point, it is crucial to note that the Pauli channel
commutes with the Pauli matrices σC

i , i.e.,

�C
p

[
σC

i ρACσC
i

] = σC
i �C

p [ρAC]σC
i , (54)

which can be seen by inspection using the anticommutation
relation σaσb = −σbσa for 1 � a,b � 3. Using Eq. (54) we
see that the final state τAC becomes independent from the
outcome of the measurement i:

τAC = �C
p [ρAC]. (55)

Finally, note that all steps mentioned above can be performed
by using local operations and classical communication (see
Fig. 3). This implies that the final state τAC cannot have more

entanglement than the state �C
p [|φ+〉〈φ+|R̃C], regardless of the

012335-7



STRELTSOV, AUGUSIAK, DEMIANOWICZ, AND LEWENSTEIN PHYSICAL REVIEW A 92, 012335 (2015)

entanglement measure E used to quantify it. This completes
the proof. �

It should be stressed that the result presented in Theorem 6
can also be extended to the scenario in which the channel used
for entanglement distribution is a tensor product of different
single-qubit Pauli channels. As an example, consider a four-
dimensional particle C consisting of two qubits C1 and C2.
The channel �C

p is now of the form �C
p = �C1

p ⊗ �̃C2
p , where

�C1
p and �̃C2

p are two (possibly different) Pauli channels. The
action of this channel onto an arbitrary state ρAC = ρAC1C2 is
given by

�C
p [ρAC] = �C1

p ⊗ �̃C2
p [ρAC1C2 ]. (56)

Using similar lines of reasoning as in the proof of Theorem 6,
we see that the best performance in this case is also achieved
for the maximally entangled state, i.e., the inequality

E
(
�C

p [|φ+〉〈φ+|AC]
)

� E
(
�C

p [ρAC]
)

(57)

holds for any state ρAC with dA � dC = 4 and the maximally
entangled state |φ+〉AC = (1/2)

∑3
i=0 |ii〉AC . This statement

is also true if the exchanged particle C consists of n qubits,
and the channel �C

p is a combination of n (possibly different)
single-qubit Pauli channels. In this case, the best performance
is achieved for the maximally entangled state (43) with dA �
dC = 2n.

Finally, we note that similar arguments can also be applied
to a more general family of channels defined as follows:

�C[ρAC] =
∑

i

piU
C
i ρAC

(
UC

i

)†
, (58)

where the particles A and C can have arbitrary dimensions and
UC

i are unitary operators that act only on the particle C and
have the following two properties:

(1) The unitaries (UC
i )

†
commute with the channel

�C , i.e.,

�C
[(

UC
i

)†
ρACUC

i

] = (
UC

i

)†
�C[ρAC]UC

i . (59)

(2) For the maximally entangled state |φ+〉AC , the states

|ψi〉AC = UC
i |φ+〉AC (60)

form a complete orthonormal basis, i.e., 〈ψi |ψj 〉 = δij and∑
i |ψi〉 〈ψi | = 1.
As we will show in the following, the maximally entangled

state |φ+〉AC is optimal for entanglement distribution via a
noisy channel given in Eq. (58). We will prove this statement
by following the same reasoning as for Pauli channels (see
also Fig. 3). In particular, we will show that the state

�C[|φ+〉 〈φ+|R̃C] can be used to teleport the particle R of
dimension not larger than dC , such that for any state ρAR

the final state has the form τAC = �C[ρAC]. This can be
proven by considering the state ρAR ⊗ �C[|φ+〉 〈φ+|R̃C], and
applying a joint measurement on the particles R and R̃ in the

basis |ψi〉RR̃ = UR
i |φ+〉RR̃ . Conditioned on the measurement

outcome i, the resulting postmeasurement state of the particles
A and C is then given by �C[(UC

i )†ρACUC
i ]. In the final

step of the proof, we use Eq. (59) and apply conditional
unitary rotations UC

i , arriving at the desired final state τAC =

�C[ρAC]. Using the same reasoning as for the Pauli channels,
this proves the optimality of the maximally entangled state
|φ+〉AC for the channels given in Eq. (58). Examples of
such channels more general than the Pauli channels are the
Weyl-covariant channels.

C. Relation to negativity and amplitude damping channel

All the results presented so far support the intuition that
sending one-half of a maximally entangled state down a
noisy quantum channel represents the optimal strategy if
two parties wish to distribute entanglement between them.
In particular, we have seen that this statement is true for all
single-qubit channels if the figure of merit is the entanglement
of formation, or any other entanglement measure which for two
qubits reduces to a nondecreasing function of concurrence.
Moreover, for Pauli channels we saw that this statement
becomes completely general: in this case maximally entangled
states are the optimal resource, regardless of the entanglement
measure used.

Quite surprisingly, this intuition is generally not correct
[75,76]. In particular, it was shown in Ref. [76] (see Sec. III
therein) that maximally entangled states are not optimal for
entanglement distribution if the amount of entanglement is
quantified by the negativity [77,78], which is defined as
N (ρAC) = ||ρTA ||1 − 1, where TA denotes the partial transpo-
sition over the system A and ||M||1 = Tr

√
M†M is the trace

norm of M . In what follows we will recall this result, using,
however, a slightly different entanglement monotone which is
the logarithmic negativity given by

En(ρAC) = log2 ||ρTA ||1 = log2[N (ρAC) + 1]. (61)

We will also supplement the results of Ref. [76] by noting that
for some quantum channels even arbitrarily little entangled
states can outperform the maximally entangled state.

The effect of suboptimality of maximally entangled states
was demonstrated for the single-qubit amplitude damping
channel

�C
ad[ρAC] = K1ρ

ACK
†
1 + K2ρ

ACK
†
2, (62)

with Kraus operators K1 = |0〉〈0|C + √
1 − γ |1〉〈1|C and

K2 = √
γ |0〉〈1|C , and the damping parameter 0 � γ � 1. If

the initial state is chosen as

|α〉AC = √
1 − α |00〉AC + √

α |11〉AC (63)

with the real parameter 0 � α � 1, it is straightforward to
verify that for α̃ = (1 − γ )/2 the state |α̃〉AC shows the same
performance as the maximally entangled state, that is,

En

(
�C

ad[|α̃〉〈α̃|AC]
) = En

(
�C

ad[|φ+〉〈φ+|AC]
)
. (64)

This is illustrated in Fig. 4, where the parameter space of α and
γ is shown. The dashed line for α = α̃ = (1 − γ )/2 divides the
parameter space into two parts. For α � (1 − γ )/2 (lower-left
triangle in Fig. 4), the state |α〉AC shows no advantage when
compared to the maximally entangled state, i.e.,

En

(
�C

ad[|α〉〈α|AC]
)

� En

(
�C

ad[|φ+〉〈φ+|AC]
)
. (65)

However, for (1 − γ )/2 < α < 1/2 (upper right triangle in
Fig. 4) the corresponding state |α〉AC always outperforms
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advantage

no advantage

0.0 0.2 0.4 0.6 0.8 1.0
Γ0.0

0.1

0.2

0.3

0.4

0.5

Α

FIG. 4. The plot shows the relevant parameter regions of the
damping parameter γ and the parameter α which enters the initial
state |α〉AC [see Eq. (63)]. Dashed line α = (1 − γ )/2 separates the
parameter space in two parts. For (1 − γ )/2 < α < 1/2 all states
|α〉AC outperform the maximally entangled state. The solid line shows
the value of αmax which leads to the maximal logarithmic negativity
for a given damping parameter γ . The dotted line shows α = 1/2.

the maximally entangled state for the damping parameter
0 < γ < 1:

En

(
�C

ad[|α〉〈α|AC]
)

> En

(
�C

ad[|φ+〉〈φ+|AC]
)
. (66)

For a given damping parameter γ we can further maximize
the logarithmic negativity of the state �C

ad[|α〉〈α|AC] with
respect to the parameter α. Direct algebra shows that the
maximum is achieved for

αmax = 1
γ√
1−γ

+ 2
(67)

(see the solid line in Fig. 4). The corresponding quantity
En(�C

ad[|αmax〉〈αmax|AC]) is shown in Fig. 5 as a function

0 0.5 1
0

0.02

0.04

0.0 0.2 0.4 0.6 0.8 1.0
Γ0.0

0.2

0.4

0.6

0.8

1.0

En

FIG. 5. The solid line shows the logarithmic negativity En

of the state �C
ad[|αmax〉〈αmax|AC] as a function of the damping

parameter γ . Then the dashed line is the corresponding logarith-
mic negativity of �C

ad[|φ+〉〈φ+|AC]. The inset shows the differ-
ence En(�C

ad[|αmax〉〈αmax|AC]) − En(�C
ad[|φ+〉〈φ+|AC]). The states

|αmax〉AC outperform the maximally entangled state |φ+〉AC in the
whole region 0 < γ < 1.

of the damping parameter γ (solid line). There we also
show the logarithmic negativity En(�C

ad[|φ+〉〈φ+|AC]) for the
maximally entangled state (dashed line).

More interestingly, however, it turns out that for the
logarithmic negativity, maximally entangled states can be out-
performed even by states with arbitrarily little entanglement,
which we prove in the following theorem.

Theorem 7. For any ε > 0 there exists a state ρAC
ε with

logarithmic negativity at most ε and a channel �C
ε such that

En

(
�C

ε [ρAC
ε ]

)
> En

(
�C

ε [|φ+〉〈φ+|AC]
)
. (68)

Proof. We show this result for the amplitude damping
channel �C

ad given in Eq. (62) and the pure state |α〉AC in
Eq. (63). From the fact that the state |α〉AC is separable for
α = 0 and maximally entangled for α = 1/2, it follows that for
any ε > 0 there exists αε ∈ (0,1/2) such that the logarithmic
negativity of the state |αε〉AC is nonzero and at most ε, i.e.,

0 < En(|αε〉AC) � ε. (69)

To complete the proof it is enough to show that for any ε >

0 there exists an amplitude damping channel �C
ad with the

damping parameter γε such that

En

(
�C

ad[|αε〉〈αε|AC]
)

> En

(
�C

ad[|φ+〉〈φ+|AC]. (70)

The existence of such a channel follows directly from
the arguments presented above. Precisely, by virtue of the
inequality (66) we immediately see that Eq. (70) is true for any
damping parameter γε chosen such that 1 − 2αε < γε < 1. �

We have then shown that, in some scenarios, states with
very little entanglement are a better resource for noisy entan-
glement distribution when compared to maximally entangled
states if the logarithmic negativity En is used to quantify
entanglement. It is worth mentioning that this entanglement
measure is closely related to the PPT entanglement cost, i.e.,
the entanglement cost under quantum operations preserving
the positivity of the partial transpose. Precisely, En is always a
lower bound on the PPT entanglement cost [79], while for
all two-qubit states both quantities coincide [80]. For this
reason the logarithmic negativity is equivalent to the PPT
entanglement cost within the framework presented in this
section, and all statements made for one quantity are also
valid for the other.

Moreover, we point out that the result presented in Theo-
rem 7 can also be extended to the multicopy scenario, where
Alice and Bob have access to many copies of a quantum
channel �C . The aim of the process in this case is to distribute
the maximal logarithmic negativity per copy of the channel.
The aforementioned results together with additivity of the
logarithmic negativity [78] imply that for amplitude damping
noise maximally entangled states can be outperformed by
states with arbitrary little entanglement also in this scenario.

Let us finally mention that in Ref. [76] the authors show that
the maximally entangled states are optimal for entanglement
distribution if the single-qubit channel used to transmit the
particle is unital and negativity is used as the entanglement
measure.
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V. OPTIMAL ENTANGLEMENT DISTRIBUTION
WITH PRESHARED CORRELATIONS

In the foregoing discussion on optimal entanglement
distribution, we assumed that initially Alice and Bob do not
share any correlations, i.e., the initial state is fully product, see
Eq. (41). Here, we will relax this assumption and allow for
more general initial quantum states

ρi = ρABC. (71)

The main question we want answer in this section can be
formulated as follows: Are preshared correlations useful for
entanglement distribution?

The answer to this question is negative for any convex
entanglement measure E if Alice and Bob initially share a
separable state:

ρi =
∑

k

pkρ
AC
k ⊗ ρB

k . (72)

In this case the initial entanglement is zero, and the amount
of distributed entanglement is thus given by EA|BC(ρf ) =
EA|BC(

∑
k pk�

C[ρAC
k ] ⊗ ρB

k ). For any convex entanglement
quantifier E these arguments imply that any separable initial
state ρi given in Eq. (72) can be outperformed by some pure
state |ψ〉AC :

EA|C(�C[|ψ〉〈ψ |AC]) � EA|BC(�C[ρi]). (73)

This proves that preshared correlations are not useful for en-
tanglement distribution for any convex entanglement measure
if the preshared state is separable.

A. Subadditive entanglement measures

We will now consider subadditive entanglement measures,
which are the ones that satisfy the following inequality:

EA1A2|B1B2 (ρA1B1 ⊗ σA2B2 )

� EA1|B1 (ρA1B1 ) + EA2|B2 (σA2B2 ) (74)

for any two states ρA1B1 and σA2B2 . Well-known examples of
such measures are the entanglement of formation, the relative
entropy of entanglement, and the logarithmic negativity, which
in fact is additive, i.e., it satisfies Eq. (74) with equality.
Moreover, we will also consider single-qubit Pauli channels
�C

p which were already introduced in Sec. IV B. As it is proven
in the following theorem, for this type of noise preshared
correlations are not useful if the corresponding entanglement
quantifier is subadditive.

Theorem 8. Given a single-qubit Pauli channel �C
p and two

states ρi = ρABC and ρf = �C
p [ρi], the following inequality

holds for any subadditive entanglement measure E:

EA|C(
�C

p [|φ+〉〈φ+|AC]
)

� EA|BC(ρf ) − EAC|B(ρi). (75)

Proof. The proof goes along the same lines as that of
Theorem 6. We denote the initial state by ρi = ρABR , where
Alice is in possession of the particle A and a qubit R, and Bob
is in possession of the remaining particle B. Additionally,
Alice and Bob have access to the qubits R̃ and C of the

state �C
p [|φ+〉〈φ+|R̃C]. By applying the standard teleportation

protocol [5] to teleport the qubit R from Alice to Bob and

using the state �C
p [|φ+〉〈φ+|R̃C] as the resource, we see that

Alice and Bob end up in the final state ρf = �C
p [ρABC].

Using the fact that all steps in the standard teleportation
protocol can be performed by LOCC and that the amount of
entanglement cannot increase in this process, it follows that the
final entanglement EA|BC(ρf ) is bounded from above by the
amount of entanglement in the total initial state: EA|BC(ρf ) �
EARR̃|BC(ρABR ⊗ �C

p [|φ+〉〈φ+|R̃C]). Finally, for a subaddi-
tive entanglement quantifier we can apply Eq. (74), which gives

us EA|BC(ρf ) � EAR|B(ρABR) + ER̃|C(�C
p [|φ+〉〈φ+|R̃C]). To

complete the proof it is enough to notice that the state ρABR is
equivalent to the initial state ρi . �

From the theorem it also follows that sending one-half of a
maximally entangled state down the noisy Pauli channel is the
optimal strategy. Let us notice that similarly as in Sec. IV B,
the above result can further be generalized to the scenario
in which the exchanged particle C consists of n qubits, and
the channel �C

p is a tensor product of n (possibly different)
single-qubit Pauli channels. For any subadditive entanglement
quantifier, preshared correlations do not provide any advantage
also in this scenario, and the best performance is achieved for
the maximally entangled state.

Note that these arguments also cover the situation where
the channel used for entanglement distribution is noiseless.
On the other hand, if the measure of entanglement is not
subadditive, preshared correlations can indeed be helpful even
in the noiseless scenario. This can be seen by considering
the second power of the entanglement of formation: E = E2

f .
Note that E is a proper entanglement quantifier, i.e., it is
nonincreasing under LOCC and zero only on separable states.
If Alice and Bob have access to a noiseless single-qubit channel
and do not share any initial correlations, the optimal strategy
for Alice is to prepare locally two qubits A and C in the
maximally entangled state |φ+〉AC , and to send the qubit
C to Bob. The amount of entanglement distributed in this
way is given by EA|C(|φ+〉AC) = 1. However, Alice and Bob
can achieve a better performance if they initially share the
state |ψ〉 = |ψ〉ABC = (|000〉 + |101〉 + |210〉 + |311〉)/2. In
this case the amount of distributed entanglement is given by
EA|BC(|ψ〉) − EAC|B(|ψ〉) = 3.

B. Distillable entanglement

The results presented so far can also be extended to the
distillable entanglement Ed , which was conjectured to be
superadditive in [27], i.e., it violates the inequality (74) for
some states. Based on this conjecture, we will now show
that preshared correlations can be useful for the distribution
of distillable entanglement. In particular, we will consider
entanglement binding channels �C

eb, i.e., channels that de-
stroy the distillable entanglement in any initial state ρAC :
E

A|C
d (�C

eb[ρAC]) = 0. This implies that this type of channel
cannot be used for the distribution of distillable entanglement
if Alice and Bob do not share any correlations initially.
However, provided the superadditivity conjecture is true, one
can show that entanglement binding channels can still be
used for entanglement distribution if preshared correlations
are available.
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Conjecture 9. There exists a state ρi = ρABC and an
entanglement binding channel �C

eb for which the following
inequality holds:

E
A|BC

d

(
�C

eb[ρi]
)

> E
AC|B
d (ρi). (76)

In the following we will prove this conjecture, assuming
the validity of the superadditivity conjecture for distillable
entanglement. To this end, we consider two bound entangled
states ρ

X1Y1
be and σ

X2Y2
be for which

E
X1X2|Y1Y2
d

(
ρ

X1Y1
be ⊗ σ

X2Y2
be

)
> 0, (77)

and assume that initially Alice and Bob share one of them,
say ρbe. In the next step, Alice and Bob use an entanglement
binding channel to establish the additional state σbe between
them. The existence of such an entanglement binding channel
is assured by results provided in [81]. After this procedure
Alice and Bob share the conjectured distillable state ρbe ⊗
σbe. As a consequence, entanglement binding channels can
be used for entanglement distribution in the presence of
preshared correlations under the assumption that the distillable
entanglement is superadditive.

C. Distance-based entanglement measures

In the last part of this section we consider distance-based
entanglement quantifiers E, as defined in Eq. (2). We have the
following (without loss of generality we assume that dA � dC):

Theorem 10. For any noisy channel �C there exists a pure
state |ψ〉 = |ψ〉AC such that the following inequality holds for
any two states ρi = ρABC and ρf = �C[ρi]:

�C|A(�C[|ψ〉〈ψ |]) � EA|BC(ρf ) − EAC|B(ρi). (78)

Proof. From Theorem 4 it follows that the amount of
distributed entanglement is bounded above by the amount of
discord between the exchanged particle C and the remaining
system AB in the final state ρf = �C[ρi]:

�C|AB(�C[ρi]) � EA|BC(ρf ) − EAC|B(ρi). (79)

Then, to obtain Eq. (78) from Eq. (79), it suffices to show that
for any channel �C there exists a pure state |ψ〉 = |ψ〉AC such
that the following inequality,

�C|A(�C[|ψ〉〈ψ |]) � �C|AB(�C[ρi]), (80)

holds for any initial state ρi = ρABC . For this purpose, let
us first denote by |φ〉 = |φ〉ABCR the purification of ρi , i.e.,
ρi = TrR[|φ〉〈φ|]. Then, we recall that all distance-based
quantifiers of discord �X|Y do not increase under quantum
operations on the subsystem Y if the corresponding distance
does not increase under quantum operations [82]. This implies
that the inequality �C|ABR(�C[|φ〉〈φ|]) � �C|AB(�C[ρi]) is
satisfied. The proof of Eq. (80) is complete by recalling that
dA � dC , and thus there must exist a pure state |ψ〉 = |ψ〉AC

such that �C|A(�C[|ψ〉〈ψ |]) � �C|ABR(�C[|φ〉〈φ|]) is true
for any state |φ〉 = |φ〉ABCR . �

Let us now apply the above result to the single-qubit phase
damping channel �C

pd, which is a special case of a Pauli channel
and is defined as follows:

�C
pd[ρi] = (1 − p) · ρi + p · σC

z ρiσ
C
z , (81)

with an initial state ρi = ρABC and the damping parameter
p ranging from 0 to 1/2. While p = 0 corresponds to
the noiseless scenario, full phase damping is achieved for
p = 1/2. Using Theorem 8, it follows that for this type of
noise maximally entangled states are optimal for entanglement
distribution if the quantifier of entanglement is subadditive. In
particular, this is true for the relative entropy of entanglement
ER defined in Eq. (6). As we will see in the following, for
this entanglement measure the bound provided in Theorem
10 turns out to be tight for any single-qubit phase damping
channel:

�
C|A
R

(
�C

pd[|φ+〉〈φ+|AC]
) = E

A|C
R

(
�C

pd[|φ+〉〈φ+|AC]
)

� E
A|BC

R (ρf ) − E
AC|B
R (ρi). (82)

Here, �R is the relative entropy of discord defined in Eq. (7),
ρi = ρABC is an arbitrary initial state with dA � dC = 2, and
ρf = �C

pd[ρi] is the final state after the application of the noisy
channel.

To prove Eq. (82), let us notice that the following chain of
inequalities holds:

S

(
ρXY

∥∥∥∥∑
i

�X
i ρXY �X

i

)
� �

X|Y
R (ρXY ) � E

X|Y
R (ρXY )

� S(ρX) − S(ρXY ), (83)

where {�X
i } is a local von Neumann measurement on the

particle X, and the last inequality was proven in [83]. If we
now choose the projectors �C

i = |i〉〈i|C , it can be verified
that for the state σAC = �C

pd[|φ+〉〈φ+|AC] the upper and the
lower bounds in Eq. (83) coincide: S(σAC || ∑i �

C
i σAC�C

i ) =
S(σC) − S(σAC). Together with Theorem 8, this completes the
proof of Eq. (82). In particular, this also shows that the bound
provided in Theorem 10 is tight for single-qubit phase damping
channels, since for this type of noise the amount of distributed
entanglement is bounded above by �

C|A
R (�C

pd[|φ+〉〈φ+|AC]),
and this bound is also reachable according to Eq. (82).

VI. CONCLUSIONS AND OUTLOOK

A concise summary of our results is presented in
Table I, where we list several entanglement quantifiers and
types of noisy channels considered in this work, show the
corresponding optimal state, and discuss the advantage of
preshared correlations. In two of the cases it remains unclear if
preshared correlations provide an advantage for entanglement
distribution. We leave this question open for future research.

The results presented in this work can be regarded as a major
step towards a unified approach to entanglement distribution.
In particular, it can be seen from the first row in Table I
that preshared correlations do not provide an advantage for
any subadditive entanglement quantifier if entanglement is
distributed via a combination of single-qubit Pauli channels. In
this context, it is tempting to assume that these results extend
to arbitrary noisy channels, and thus preshared correlations
do not provide an advantage for any subadditive entanglement
measure and any type of noise. Sending one-half of a pure
entangled state down a noisy channel would then be the
optimal strategy for any subadditive entanglement measure.
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TABLE I. Overview of the entanglement quantifiers and types of noisy channels considered in this paper. The table shows also the optimal
state for entanglement distribution without preshared correlations for the corresponding entanglement measure and quantum channel. As can
be seen from the fourth column, in some situations preshared correlations show an advantage for entanglement distribution. The last column
shows the section in this article where the corresponding result has been obtained.

Optimal states (without Advantage of preshared
Entanglement measure Type of noisy channel preshared correlations) correlations Section

Subadditive entanglement Single-qubit Pauli Maximally entangled No advantage V A
measures channel or any states

combination thereof

Entanglement measures Noiseless channel Maximally entangled Some of these measures V A
which are not subadditive states show advantage even in

the noiseless scenario

Distillable entanglement Entanglement binding Without preshared Conjectured advantage, based on V B
channels correlations, no entanglement the superadditivity conjecture of

distribution possible distillable entanglement

Measures which for two qubits Single-qubit noise Maximally entangled Unknown IV A
reduce to a nondecreasing states
function of concurrence

Logarithmic negativity Single-qubit amplitude Maximally entangled states Unknown IV C
damping channel are not always optimal

While we cannot prove this conjecture in full generality at this
point, our results strongly support this statement. In particular,
the advantage of preshared correlations was only found
for measures which are not subadditive and for distillable
entanglement, which is conjectured to be superadditive.

Regarding entanglement distribution with separable states,
our results show that this strategy is not reasonable for any
subadditive entanglement measure if a combination of single-
qubit Pauli channels is used for the process. On the other hand,
this result does not rule out the superiority of separable states
for other types of noise. In this direction we have found, sup-
plementing the results of Ref. [76], that states with arbitrarily
little entanglement can outperform maximally entangled states
for amplitude damping noise, if entanglement is quantified via
the logarithmic negativity. These counterintuitive results also
imply that a closer investigation of entanglement distribution
with separable states is necessary, since, contrary to recent
claims made, e.g., in [17,24], maximally entangled states are
not necessarily the best resource to benchmark this process.

The results of this paper can also be seen as the first step
toward similar considerations in quantum many-body systems.
Note that over the last decade entanglement has proven to
be extremely useful to characterize properties of many-body
systems and the nature of quantum phase transitions [84]. For
instance, in the ground states and low-energy states of quantum
spin models the following properties hold (see [85,86] for a
review):

(1) The two-body reduced density matrix typically exhibits
entanglement for short separations of the spins only, even at
criticality; still, entanglement measures show signatures of
quantum phase transitions [87,88].

(2) One can concentrate entanglement between the chosen
two spins by optimized measurements on the rest of the system,
obtaining in this way the so-called localizable entanglement
[89]; the corresponding entanglement length diverges when the

standard correlation length diverges, i.e., at standard quantum
phase transitions.

(3) For noncritical systems, ground states and low-energy
states exhibit area laws: the von Neumann or Rényi entropy
of the reduced density matrix of a block of size I scales
as the size of the boundary of the block, ∂I ; at criticality
logarithmic divergence occurs frequently [90] (see also [91,92]
for a review).

(4) Ground states and low-energy states can be efficiently
described by matrix product states, or more generally tensor
network states (cf. [93]).

(5) Topological order for gapped systems in one and two
dimensions exhibits itself frequently in the properties of the
entanglement spectrum, i.e., the spectrum of the logarithm
of the reduced density matrix of a block I [94], and in the
appearance of the topological entropy, i.e., negative constant
correction to the area laws in 2D [95,96].
All the above results indicate the importance of few-body
entanglement in the low-energy physics of many-body systems
(cf. [97–99]). It is to be expected that few-body entanglement
will also play a role in characterizing the out-of-equilibrium
dynamics of quantum many-body systems [100].

Note that the scheme of entanglement distribution discussed
in this paper, at least in the noiseless case, can be considered
in the context of the real transfer of particle C to Bob, or as
the change of partition from AC|B to A|BC. In this sense, one
can view our results as a characterization of entanglement in
three-body reduced density matrix in a many-body system.
Generalizations including noisy transfer are possible, for
instance, by coupling C locally to a reservoir or an ancillary
particle. It would also be interesting to consider the entangle-
ment distribution scheme with many recipients (Bobs). Finally,
asking analogous questions for Bell nonlocality or steering
seems to be a fascinating perspective that would also lead to a
better understanding of these phenomena.
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