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Abstract 

The respiratory frequency monitoring is an important indicator to the medical field. Also, 
the need of sensor system solutions for home monitoring is growing as the life expectancy 
of the world population is increasing. For those reasons, this thesis considers the use of an 
impulse-radio (IR) UWB radar system to track respiratory frequency and respiratory 
patterns, as apnoea episodes, in a non-invasive and real-time way. We start our analysis 
with well-known spectral estimators, like the Periodogram or Bartlett estimator to obtain the 
first results and insights over the estimation of steady frequencies in an offline regime. Later, 
we consider the use of adaptive algorithms like the LMS together with AR modelling to 
monitor the breathing rate transitions and variations. Simulations have been performed to 
validate and adjust the parameters of the algorithms, balancing between its trade-offs to 
suit our solution to the problem. Finally, the results of the experiments in different 
environments are presented meeting the expected requirements and performance of the 
system.  
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Resum 

La monitorització de la freqüència respiratòria es un important indicador en el camp de la 
medicina. De la mateixa manera, la necessitat de solucions basades en sistemes de 
sensors per a monitoritzar pacients no hospitalitzats a les seves llars creix a mesura que 
la esperança de vida de la població mundial creix. Per aquestes raons, aquesta tesi 
considera l’ús d’un sistema de radar basat en impulse-radio (IR) UWB per a controlar la 
freqüència respiratòria, i al mateix temps, patrons de respiració, com episodis d’apnea, 
d’una manera no invasiva i a temps real. Comencem el nostre anàlisi amb estimadors 
espectrals com el Periodograma o l’Estimador Bartlett per a obtenir els primers resultats 
en l’estimació de freqüències estables en una configuració no en temps real , per 
continuar amb,  l’ús d’algoritmes adaptatius com LMS junt a modelat AR per a 
monitoritzar les transicions y variacions en la freqüència respiratòria. Hem dut a terme 
simulacions per a validar i ajustar els paràmetres dels algoritmes, intentant compensar 
les seves diferents característiques per a ajustar-los a la nostra problemàtica. Finalment, 
els resultats de experiments en diferent escenaris son presentats acomplint amb els 
requisits i rendiments esperats del sistema.  
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Resumen 

La monitorización de la frecuencia respiratoria es un importante indicador en el campo de 
la medicina. De la misma manera, la necesidad de soluciones basadas en sistemas de 
sensores para monitorizar pacientes no hospitalizados en sus hogares crece al mismo 
ritmo que la esperanza de vida de la población mundial crece. Por esas razones, esta 
tesis considera el uso de un sistema de radar basado en impulse-radio (IR) UWB para 
controlar la frecuencia respiratoria, y a la vez, patrones respiratorios, como episodios de 
apnea, de una manera no invasiva y a tiempo real. Empezamos nuestro análisis con 
estimadores espectrales como el Periodograma o Estimador Bartlett para obtener los 
primeros resultados en la estimación de frecuencias estables en una configuración no en 
tiempo real. Más tarde, consideramos el uso de algoritmos adaptativos como LMS junto 
a modelado AR para monitorizar las transiciones y variaciones en la frecuencia 
respiratoria. Se han llevado a cabo simulaciones para validar y ajustar los parámetros de 
los algoritmos, intentando compensar sus diferentes características para ajustarlos a 
nuestra problemática. Finalmente, los resultados de experimentos en diferentes 
escenarios son presentados cumpliendo con los requerimientos y rendimientos 
esperados del sistema.  
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1. Introduction 

The respiratory frequency monitoring has many uses and applications related to the 

medical field. Some of them are respiratory rate tracking during sleep studies or chronic 

obstructive pulmonary disease (COPD) diagnosis, sudden infant death syndrome (SIDS) 

detection in preterm infants or patient vital signs overseeing in hospitals or residences. Also, 

outside of a strict medical environment, the need for sensor system solutions for home 

monitoring is growing as the life expectancy of the world population is increasing [1]. 

Possible targets for this home monitoring are elderly, disabled or chronically ill people. 

Besides tracking the respiratory rate in a quantitative way, we could detect irregularities in 

that steady frequency, referred as respiratory patterns. One concrete case of a respiratory 

pattern is the apnoea episode. An apnoea is defined as “an unexplained episode of 

cessation of breathing for 20 seconds or longer, or a shorter respiratory pause associated 

with bradycardia, cyanosis, pallor, and/or marked hypotonia[2]”. The appearing of apnoea 

episodes in critical situations like post-operatory [3] or preterm  birth [4] can imply severe 

risks and complications. And even in its most common appearance as sleep apnoea, the 

actual practices to monitor those episodes still entail expensive and unconformable 

overnight stays at healthcare centres.  

Taking all of that into account, the demand of non-invasive, flexible (able to take 

measurements in any scenario), real-time and cost effective solutions to perform vital sign 

monitoring, and more concretely, respiratory frequency, arises.  

Following that need, the main goal of this thesis is to develop a Wireless system able to 

accomplish the following objectives:  

 Monitor the respiratory rate of a patient. 

 Monitor and detect respiratory patterns like apnoea or breathe shortness associated 

with tachycardia episodes. 

In this thesis we develop, from one part, all the corresponding signal processing and from 

the other, all the interaction and configuration the used UWB hardware device, which is in 

charge of doing the UWB sensing and return the raw data to be processed. 

1.1. Work plan 

As in previous documents, we are going to organize the work in a system based on tasks, 

milestones and a Gantt diagram (which is placed at the appendices). 

1.1.1. Work breakdown structure 

1. HW and API interaction 

1.1. First contact with example software 

1.2. Connect the HW to Matlab 

1.3. Test simple measurements  

1.4. Prepare and obtain data in different scenarios 

1.5. Final HW adjustment 

2. Software simulation 

2.1. Obtain and evaluate channel model 

2.2. Adapt channel to our situation 

2.3. Reproduce a “basic” breath detecting system 

3. Signal processing to obtain breath rate  
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3.1. Remove the clutter of the signal 

3.2. Try different algorithms and transformations  

4. Apnea detection 

4.1. LMS Algorithm implementation  

4.2. Adjust LMS algorithm to detect  a steady breath rate 

4.3. Adjust LMS algorithm to detect  a variating breath rate (i.e. apnea episode) 

4.4. Final data acquisitions  

1.1.2. Work packages 

Project: UWB for Medial Apps WP ref: WP1 

Major constituent: HW and API interaction  

Short description: 

 

Comprehend the HW and be able to obtain the desired 

data from it. 

 

 

Start date: 09-03-2015 

End date: 13-09-2015 

Start event: First contact with 

the device. 

End event: Obtain fully 

consistent data for further 

processing. 

Internal task T1: First contact with example software. 

Analyze the given example software to understand the 

basic behavior of the technology and the HW. The 

example software can be found in the manufacturer’s 

site, addressed to developers who want to build 

applications with its devices. 

 

Internal task T2: Connect the HW to Matlab. Time 

Domain supplies a C and Matlab APIs to ease the 

integration with computers or with other 

microprocessors. 

 

Internal task T3: Test simple measurements. Build a 

script able to obtain the raw data directly from the device 

ready for its processing. 

 

Internal task T4: Prepare and obtain data in different 

scenarios. Produce some measurements with human 

target in two situations. First, in the anechoic chamber, 

to obtain a clearer signal and second, in a standard 

scenario with multipath reflections  

 

Deliverables: Dates: 
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Internal task T5: Readjust the device to set the sampling 

frequency to the expected one by adjusting our software 

and doing the pertinent calls to the API of the HW. Some 

issues related to the Matlab intrinsic delays were solved. 

 

Project: UWB for Medial Apps WP ref: WP2 

Major constituent: Software simulation  

Short description: 

 

Reproduce and simulate the work environment and 

breath detection system 

 

 

Start date: 10-04-2015 

End date: 20-05-2015 

Start event: Obtain channel 

model scripts  

End event: Obtain fully 

coherent and reliable 

simulation data to test the 

algorithms with them. 

Internal task T1: Obtain and evaluate channel model. 

Investigate the concrete features of the UWB 

propagation channel, find its differences in front of a 

typical narrowband environment. And finally, look for or 

implement the required channel in the Matlab software. 

 

Internal task T2: Adapt channel to our situation. Once 

we have the impulse response of an indoor UWB 

propagation channel, we modify it to add the multipath 

echoes related to the chest of a human being. 

 

Internal task T3: Reproduce a “basic” breath detecting 

system. Implement the breath detection system that 

most of the found papers propose as basic structure. 

Those systems are based in three stages: Simulate (or 

use of real data if they have it) the radar signal, clutter 

removal (almost always subtracting an average of the 

received signal) and a transformation (like FFT) 

approach to obtain the breath frequency. 

 

Deliverables: Dates: 
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Project: UWB for Medial Apps WP ref: WP3 

Major constituent: Signal processing to obtain breath 

rate 

 

Short description: 

 

Signal processing to extract breath rate information of 

the stored data 

 

 

Start date: 06-04-2015 

End date: 17-05-2015 

Start event: Clutter removal 

process. 

End event: Count with a set of 

different signal processing 

approaches to detect the 

breath rate. 

Internal task T1: Pre-process the data to remove the 

clutter of the signal. We try different techniques to 

extract the static reflections of the obtained data related 

to multipath reflection of steady objects in the scenario. 

This allows an easier processing of the useful signals. 

 

Internal task T2: Try different algorithms and 

transformations to obtain the breath signal. Possible 

transformations could be: Based on spectral techniques 

(like FFT, Periodogram, Bartlett estimator), Based on 

AR modeling (with different approaches to estimate the 

optimal coefficients). Report advantages and drawbacks 

of each solution and chose the optimal one. 

Deliverables: Dates: 

 

 

 

Project: UWB for Medial Apps WP ref: WP4 

Major constituent: Apnea / Respiratory patterns 

detection 

 

Short description: 

 

Apnea is defined as the suspension of external 

breathing. We are able to detect it when the inhalation 

movement that we are monitoring is stopped. Also, we 

are able to detect different respiratory patterns, like the 

breath shortness associated with tachycardia episodes. 

 

Start date: 28-05-2015 

End date: 20-09-2015 

Start event: LMS Algorithm 

purpose approach. 

End event: Fully working 

system. 
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Internal task T1: LMS Algorithm implementation. Design 

and implement a solution based in the Least Mean 

Square adaptive algorithm. Test the first implementation 

with simulation data. 

 

Internal task T2: Adjust LMS algorithm to detect a steady 

breath rate. Tweak the parameters and configurations of 

the algorithm to make it able to detect a steady breath 

signal extracted from real data from the experiments.  

 

Internal task T3: Adjust LMS algorithm to detect a 

variating breath rate (i.e. apnea episode). Tweak the 

parameters and configurations of the algorithm, but this 

time with the objective of balancing the trade-offs of the 

response to make it able to detect rapid transitions in the 

signals. The signal is extracted again from real data from 

the experiments.  

 

Internal task T4: Final data acquisitions and tests. Final 

data acquisitions with all the appropriate configurations. 

Controlled breath rate transitions allow us to obtain 

proper data to do the final analysis. 

 

Deliverables: Dates: 

1.1.3. Milestones 

 

WP# Task# Short title Milestone / deliverable Date 

(week) 

1 4 Obtain first valid working data First working data 9th week 

2 3 Obtain basic breath detecting system Properly working 

software 

10th week 

3 2 Chose optimal signal processing Breath rate 

measurement  

11th week 

4 3 Obtain fully working system to detect 

apnea / respiratory patterns 

Apnea / Respiratory 

patterns detection 

application 

20th week 
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2. State of the art of the technology used or applied in this 

thesis: 

Available solutions in common medical practice include solutions like the impedance 

pneumography [5] and thoraco-abdominal bands and following with tools as inductive 

plethysmography, thermistors and thermocouples, nasal prongs, etc [6]. But the main 

drawback of those techniques is that there is always a wired physical sensor touching the 

skin of the patient in some way, and if we want the system to operate in the least invasive 

way we need to avoid those approaches.  

Systems for remote respiratory rate tracking have also emerged in the last years. Some of 

them are based on Doppler radar techniques [7]. However, Doppler radar techniques 

present some problems, like the difficulty they have in penetrating material, among other 

difficulties [8]. Another case of strictly non-touching technique is the functional magnetic 

resonance imaging (fMRI). This method is actually providing images of moving internal 

organs without physical contact but, as it uses induced field, the patient has to be confined 

in space; while UWB or WiFi solutions, using radiated field, lets the patient be absolutely 

free in space.[10]  

2.1. UWB technology 

To overcome those problems in the wireless sensing the Ultra-wide Band (UWB) 

technology is presented. Impulse Radio (IR) UWB wireless systems are generally based 

on the transmission and reception of sub-nanosecond pulses without carriers or modulated 

short pulses with carriers. The extremely wide bandwidth generated by this technique 

allows UWB systems to have a set of distinct characteristics that make them very suitable 

for biomedical applications. Some of those features are that it radiates and consumes little 

power, coexists well with other instruments, and is robust to interference and multipath. 

Besides that, accomplishing with the proposed requirements, it is claimed that such 

wireless systems can provide low system complexity, low cost and low power consumption 

[9]. 

Multipath resolution down to a fraction of a nanosecond provides excellent spatial 

resolution for short range radar applications in addition to being able to resolve and deal 

with significant multipath fading. The use of IR-UWB signals has been suggested for 

several medical applications because of the high spatial resolution provided by these 

signals [10]. 

2.2. IR-UWB for non-invasive estimation of respiration rates 

As a matter of fact, radar monitoring of human physiologic functions was considered as 

early as the 70’s, but any further development was impeded by the inconvenience and 

expensive technology of those times [10]. 

Now that the technology has sufficiently evolved, this thesis presents a system able to 

estimate and track the breathing rate using an UWB Radar in real time. Given the 

mentioned precise spatial resolution, the basic principle of this measurement relies on 

tracking the chest oscillation of the patient (in the order of few cm) due to the breathing 

process, and with it, detect the respiratory frequency. The fact that the coefficient of 

reflectivity of air-to-dry-skin interface for electromagnetic waves in the 300-900MHz range 

is about 72% [10] eases measuring that signal.  
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Following the proposed approach different authors have presented their solutions to 

estimate the breathing rate [9], [11], [20], [21] and [22]. From those sources, each author 

present different innovations: mathematical frameworks to analyse the harmonic 

contributions in the breath signal measurement, estimation of the amplitude of chest 

movement, theoretical estimation limits, etc. But all the proposed measuring and frequency 

techniques consider no variation in the breathing rate while using UWB. None of the 

mentioned solutions is focused on an adaptive solution, as the one that we are presenting 

in this thesis to address the apnoea problem in a real time regime. Nevertheless, there 

exist wireless solutions to detect apnoea episodes based on Doppler radar but they lead 

to poor characteristics in the response compared to the UWB approach. 
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3. Methodology / project development:  

3.1. Model 

The theoretical model considered in this work is based on [11] and [9] approaches. With 

this model we stablish a mathematical framework so that the spectrum of the received 

signal can be obtained and understood.  

3.1.1. Notation 

To fully describe the sampling process of the received waveforms in the radar we use two 

time axis. The first time-axis is associated to the range along each received waveform and 

is denoted as “fast-time" (𝜏). The sampling period in the fast time-axis 𝑇𝑓 has the order of 

nanoseconds.  

The second time-axis regards the measurement between successive received full 

waveforms and is referred to as “slow-time" (𝑡). The sampling period in this case 𝑇𝑠 is of 

the order of seconds.  

The received waveforms at the radar device are measured at discrete instants in the slow 

time 𝑡 = 𝑛𝑇𝑠 with 𝑛 = 1,2… ,𝑁𝑠. Regarding the fast time, each single waveform is measured 

at sampling period 𝑇𝑓 ,  resulting in the discrete instants = 𝑚𝑇𝑓  with 𝑚 = 1,2… ,𝑁𝑓. 

3.1.2. Mathematical Model 

The subject chest nominal distance 𝑑0 is defined as the distance between the radar device 

and the person to be monitored. However, due to respiration, the chest cavity expands and 

contracts periodically (in a normal regime), and so the distance travelled by the 

corresponding multipath component 𝑑𝑙[𝑛]  also varies periodically around the nominal 

distance as follows: 

 𝑑𝑙[𝑛] =  𝑑0 + 𝑔[𝑛] (1) 

Assuming the variation in the lung and chest movement as a sinusoidal function of time as 

in [9] and [11] with a normalized respiration rate 𝑓𝑏 =
𝑓𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝑓𝑠𝑙𝑜𝑤−𝑡𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
 we can reformulate 

equation (1) as: 

 𝑑𝑙[𝑛] =  𝑑0 + 𝑔[𝑛] = 𝑑0 + ∆𝑑𝑠𝑖𝑛2𝜋𝑓𝑏𝑛  (2) 

where ∆𝑑 represents the maximum deviation of the chest movement. With the assumption 
that the environment (besides the subject to be monitored) is static, the time-varying 
channel impulse response ℎ[𝑛,𝑚] is composed of two terms 

 ℎ[𝑛,𝑚] =∑𝛼𝑖𝛿(𝑚 −𝑚𝑖)

𝑖⏟          
𝑠𝑡𝑎𝑡𝑖𝑐 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

+ 𝛼𝑏𝛿(𝑚 −𝑚𝑏[𝑛])⏟          
𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠

  (3) 

where 𝑛  and 𝑚  denote slow and fast time respectively, 𝛼𝑖  is the amplitude of each 
multipath component and 𝑚𝑖  its delay, 𝛼𝑏  is the amplitude of the multipath component 
corresponding to the chest of the subject. Also, in the equation (3) 𝑚𝑏[𝑛] is given by: 
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𝑚𝑏[𝑛] =  

𝑑𝑙[𝑛]

𝑐
=
𝑑0 + ∆𝑑𝑠𝑖𝑛2𝜋𝑓𝑏𝑛

𝑐
= 𝑚0 +𝑚𝑑𝑠𝑖𝑛2𝜋𝑓𝑏𝑛 

(4) 

where 𝑐 is the speed of light in vacuum. Neglecting pulse distortion and other non-linear 

effects, the signal measured by the receiver antenna can be written as the convolution of 

the transmitted pulse,𝑝[𝑚], and the channel impulse response. Ignoring noise, the received 

signal 𝑦[𝑛,𝑚] measured can be written as: 

 𝑦[𝑛,𝑚] =  𝑝[𝑚] ∗ ℎ[𝑛,𝑚] =∑𝛼𝑖𝑝[𝑚 −𝑚𝑖]

𝑖

+ 𝛼𝑏𝑝[𝑚 −𝑚𝑏[𝑛]] 
(5) 

At this point we already have a representation of the received signal as the sum of the static 
responses of the channel together with the variant response due to the chest movement 
as in the following Figure: 

 

Fig 1: Slow time and fast time axis representation over  𝑁𝑠= 4  captured waveforms (considering 𝑝[𝑛] = 𝛿[𝑛]) 
with an oscillating delay progressing along the slow time of the multipath echo corresponding to the chest 
reflection. 
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As seen in Figure 1, to have a clear distinction between the respiratory variations (red 
multipath echo) and the static channel, we need to have a waveform alignment in the slow 
time axis. This alignment pre-processing is omitted in our case, given that the hardware 
used for the experimental results, that we present later, aligns the samplings automatically. 

To better manage this data along these two different time axis we compose the responses 
matrix 𝑌, the elements of which are: 

 𝑌 = {𝑦[𝑛,𝑚]}, 1 ≤ 𝑛 ≤ 𝑁𝑠, 1 ≤ 𝑚 ≤ 𝑁𝑓 (6) 

In this way, the 𝑖th column of the matrix 𝑌 represents the samples corresponding to the 𝑖th 

received waveform. 

3.1.2.1. Clutter removal 

As seen in many other radar applications, there is a need of removing static channel 
responses (background clutter) to better distinguish the relevant moving signals. Assuming 
in our case of study that the only motion present is the subject’s chest movement, thus, our 
clutter is generated by the stationary scatters in the multipath environment. Since we want 
separate the moving scatters from the stationary scatters, we need to apply a motion-filter 
to the data.  

An easy approach to solve this problem would be to simply average all the received 
waveforms and then, subtract this average from each individual response. We are doing 
nothing more than a high pass filtering, as the average of the signals captures the constant 
features of the responses. 

An implementation of this motion filter would be given by the following expression: 

 
𝑥[𝑛,𝑚] = 𝑦[𝑛,𝑚] −

1

𝑁𝑠
∑ 𝑦[𝑖,𝑚]

𝑁𝑠−1

𝑖=0

 (7) 

Where 𝑦[𝑛,𝑚] is the received response and 𝑥[𝑛,𝑚] is the clutter removed signal. If from 
equation (5) we further develop this expression, it leads to: 

 
𝑥[𝑛,𝑚] = 𝛼𝑏𝑝[𝑚 −𝑚𝑏[𝑛]] −

1

𝑁𝑠
∑ 𝛼𝑏𝑝[𝑚 −𝑚𝑏[𝑖]]

𝑁𝑠−1

𝑖=0⏟                
𝑥0(𝑚)

 
(8) 

In equation (8) the multipath echo of interest is isolated from a residual subtracting 
element 𝑥0(𝑚), where 𝑥0(𝑚) is the averaged signal over the slow time axis corresponding 
to the chest movement multipath. 

3.2. Respiratory rate detection 

The main technique we have considered to track the respiratory rate of the subject is based 

on frequency analysis applied to the received signal in the radar device. In the current 

section we are going to propose different frequency estimators that allow us to visualize 

and obtain that information through different approaches.  

In spite of the fact that there are numerous frequency estimation schemes in the literature, 

they can be generally classified as nonparametric or parametric approaches. The 

nonparametric frequency estimators, including the Periodogram and its variants, are 
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obtained directly from the Fourier transform of the received signal. Although no 

assumptions are made about the observed data sequence, the resolution, or ability to 

resolve closely spaced frequencies using the nonparametric approach is fundamentally 

limited by the length of the data available (number of samples used in the Fourier transform 

calculation). Alternatively, the parametric approach, which assumes that the signal satisfies 

a generating model with known functional form, can attain a higher resolution [12]. 

3.2.1. Spectral techniques 

Starting with a nonparametric estimation of the spectral density of the signal, we implement 

a solution based on the Bartlett’s Method. Bartlett's method (also known as the method of 

averaged periodograms) is an improvement on the standard periodogram spectrum 

estimating method, as it reduces the variation in the estimated power spectra in exchange 

of reducing the frequency resolution [13]. An estimate of the spectrum using this technique 

is obtained by averaging the estimates from the periodograms derived from a non-

overlapping portions of the original signal. 

Considering 𝐾 segments  of  𝐿 samples, and consequently with the length of the signal 𝑁 =

𝐾 × 𝐿, the following equation corresponds to the Bartlett power spectral estimator of the 

clutter removed signal from equation (8): 

 

𝑆̂𝐵[𝑘,𝑚] =
1

𝑁
∑ |∑𝑥[𝑛 + 𝑖𝐿,𝑚]

𝐿−1

𝑛=0

𝑒
−𝑗2𝜋𝑘𝑛

𝐿 |

2

⏟                  
𝑃𝑒𝑟𝑖𝑜𝑑𝑜𝑔𝑟𝑎𝑚

𝐾−1

𝑖=0

 (9) 

So, to obtain this spectral representation, first we have to calculate the Discrete Fourier 

Transform (DFT) of the clutter removed signal 𝑥[𝑛,𝑚] to then calculate the  periodogram 

(see the appendix for the development). 

The spectrum along the slow time of the clutter removed respiratory rate signal is 

composed by several shifted sinc signals placed at the harmonics of the interest frequency, 

𝑓𝑏 in this case. Besides of those harmonics, there is an additional coloured noise 

contribution as result of filtering the AWGN.  

Analysing the results, we can state that between all of the resulting sincs, the one with the 

maximum value can be found at 𝑚 = 𝑚0. Where 𝑚0 corresponds to the fast-time instant 

where the reflection of the chest movement is found. So, to obtain the respiratory rate 

frequency we first need to estimate the  𝑚̂0 value. 

To obtain  𝑚̂0 we can simply average the output of the motion filter along the slow time 

index 𝑛 on equation (8) and choose 𝑚 =  𝑚̂0  that maximizes this average. Taking into 

account that we have assumed that the only movement in the environment is the chest 

oscillation, the average of the motion filter output gives us the position of where that 

movement is. 

 

 𝑚̂0 = max
𝑚

∑ |𝑥[𝑛,𝑚]|2
𝑁𝑠−1

𝑛=0

 (10) 

As seen on equation (10) we are only selecting a single optimal fast time index  𝑚̂0 with a 

broad estimation. But in fact, the chest movement affects more than one fast time index, 

given that the width of the emitted pulse covers more than a single fast time position. This 
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leads to a margin around the most relevant index where there is also a considerable 

amount of information. To take advantage of that margin, we select a range before and 

after the  𝑚̂0fast index sample to enhance the spectral estimation. 

 

𝑆̂𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑[𝑘] =
1

2𝑀
∑ (

1

𝑁
∑ |∑𝑥[𝑛 + 𝑖𝐿,𝑚]

𝐿−1

𝑛=0

𝑒
−𝑗2𝜋𝑘𝑛

𝐿 |

2𝐾−1

𝑖=0

)

 𝑚̂0+𝑀

𝑚= 𝑚̂0−𝑀

 (11) 

Averaging over the Bartlett estimations in the range of 𝑚 =  𝑚̂0 ±𝑀 we achieve a further 

noise reduction and smoothing of the harmonic components without losing frequency 

resolution (as we are not reducing the number of samples). 

3.2.2. AR modelling and linear predictor 

The Fourier technique for spectral analysis assumes that the signal can be modelled by a 

sum of sinusoids (or complex exponential functions). Depending on the particular data to 

be analysed, the Fourier model may not be the best one to describe the process. That 

means that there might be an alternative model that uses fewer parameters to describe the 

signal, or perhaps that would not suffer from the detrimental effects of the model mismatch 

made about the behaviour of the data outside the measured interval [14]. 

Instead, we can consider a parametric approach with no specific assumptions on the signal 

waveform but on the linear dependency of the time-varying process. In particular, we focus 

on the AR model, which assumes that the current value of the process, 𝑥(𝑛) can be 

described by a finite linear composition of the previous values of the process and the 

current value of a white noise driving the source 𝑤(𝑛). An AR process of zero mean and 

order 𝑝 is defined as: 

 
𝑥(𝑛) = 𝑤(𝑛) − 𝑎1𝑥(𝑛 − 1) − 𝑎2𝑥(𝑛 − 2) − 𝑎3𝑥(𝑛 − 3)…− 𝑎𝑝𝑥(𝑛 − 𝑝) 

(12) 

The AR model contains 𝑝 + 1 parameters which have to be estimated from the data: the 

AR coefficients {𝑎𝑖} with 𝑖 = 1,2,… , 𝑝 and the variance of the white noise 𝜎2. 

 

Fig 2: AR scheme 

Once we estimate the parameters, both 𝑎𝑖  and  𝜎2 , the AR Power Spectral Density 

Estimation of the data is given by: 

 

𝑆(𝑘) =
𝜎2

|∑ 𝑎𝑖𝑒
−𝑗2𝜋𝑖𝑘𝑝

𝑖=0 |
 (13) 

Where 𝑎0 = 1 

There are several methods to estimate those coefficients. In the following sections we 

present two different approaches. Each method is going to provide us different trade-offs 

of features, with its advantages and drawbacks. 
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A common way to define the coefficients is through a Linear Predictor. A Linear Predictor 

is a system able to predict future values of a target signal based on its past values. At the 

output of the Linear Predictor we obtain the prediction error, which is the difference between 

the prediction and the signal to predict. Ideally, this error is white noise. 

Here we present the structure of a linear predictor of 𝑝 coefficients: 

 

Fig 3: Linear Predictor scheme 

With 𝑥[𝑛] signal to predict, 𝑥[𝑛] the predicted signal, 𝑒[𝑛] the prediction error defined as: 

 𝑒[𝑛] ≜ 𝑥[𝑛] − 𝑥[𝑛] = 𝑥[𝑛] − ℎ𝐻[𝑛]𝑥[𝑛 − 1]  (14) 

With: 

 𝑥[𝑛 − 1] = [𝑥[𝑛 − 1] 𝑥[𝑛 − 2]…𝑥[𝑛 − 𝑝]]
𝑇
 (15) 

And the coefficients vector ℎ : 

 
ℎ = [

ℎ1
⋮
ℎ𝑝

] (16) 

To compose a linear predictor of this kind we need to find out the value of the 𝑝 optimal 

coefficients of ℎ. A common solution is the minimum mean squared error (MMSE) [ref] at 

the output of the predictor following the equation: 

 ℎMMSE = arg
ℎ
min𝐸{|𝑒[𝑛]|2 }  (17) 

3.2.2.1. Block processing coefficients  

The first approach to find the AR coefficients is to apply a block processing with the well 

know Wiener optimal filter solution [19]: 

 

 

ℎ = −𝑅−𝟏𝑟  (18) 

where: 

 𝑅  =  E{x[n]x[n]𝑇}  (19) 
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 𝑥[𝑛] = [𝑥[𝑛] 𝑥[𝑛 − 1]…𝑥[𝑛 − 𝑝 − 1]]
𝑇
 (20) 

 

 

r  =  E{x[n]x[n − 1]}  (21) 

and  𝑅−𝟏 denotes matrix inversion.  

If we now, invert the AR system proposed in Figure 2 we obtain the following structure: 

 

Fig 4: AR Scheme 

Which resembles the one presented in Figure 3, corresponding to the Linear Predictor, 

given that both systems are whitening the output signal. We can compose the new vector 

coefficients of the inverted AR model as: 

 

ℎ̃ = [

1
−ℎ1
⋮

−ℎ𝑝

] (22) 

Which fulfils equation (14) with a more compact expression of the error at the output of the 

system following: 

 𝑒[𝑛] = 𝑥[𝑛] − ℎ𝐻[𝑛]𝑥[𝑛 − 1] =  ℎ̃𝐻𝑥̃[𝑛]  (23) 

Where: 

 𝑥̃[𝑛] = [𝑥[𝑛] 𝑥[𝑛 − 1]…𝑥[𝑛 − 𝑝]]
𝑇
 (24) 

With the estimated coefficients, we can proceed to calculate the power spectral density 

estimate using equation (11). From there we find the maximum peak value in the estimated 

spectrum, which abscises-index corresponds to the estimated respiratory frequency. 

 

AR technique FFT-periodogram 

 Better stability for short segments 

of signal 

 Better spectral resolution (less 

dependent on the record length) 

 Better temporal resolution 

 FFT is widely available and is the 

first-line engineering approach 

towards spectral analysis 

 Shorter processing time (about four 

times faster in the FFT-

periodogram) 
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 Slightly easier to code 

 Less sensitive to numerical round-

off errors 

 Does not depend in model order 

choices 

Table 1: Comparison between AR technique and  FFT-Periodogram approach 

3.2.2.2. Adaptive coefficients  

As seen in the previous section, the coefficients of the AR filter can be obtained through 

the Wiener Filter solution. To be able to apply that method, second order statistics of the 

signal are required. However, those statistics are not always available. A case under those 

restrictions is the real-time or online processing. More specifically, in the scenario of interest 

we need to detect changes in the respiratory frequency (respiratory patterns like apnoea), 

where the signal arrives sample by sample. A common alternative to solve this type of 

problems is the use of adaptive filters. 

Such filters start from initial conditions that can contain no desired information and then 

update their filter weights based on a sequence of input data. For stationary inputs, it has 

been shown that with a proper algorithm, the mean weight vector of adaptive prediction 

error filters converges to the optimal AR coefficients [15]. 

One of the most commonly used algorithms is the least-mean-square (LMS). Being this 

algorithm one of the most simple yet effective in real applications. 

The idea behind the LMS filter is to use the steepest descent to approach the optimum filter 

weights updating them step by step, in a direction given by the MSE gradient. So, the basic 

weight update equation considering the complex case (as a generic demonstration) is: 

 ℎ̂[𝑛 + 1] =  ℎ̂[𝑛] −  𝜇 ∇ℎ̂𝐻𝐸{|𝑒[𝑛]|
2}⏟        

𝑀𝑆𝐸 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

 (25) 

Being ℎ̂ the estimation of the coefficients vector. Also, 𝜇 is the update step and 𝑒[𝑛] is 

defined as the prediction error in the current instant 𝑛 as in equation (14). 

The negative sign in the factor that modifies the filter weights indicates that, we need to 
change the weights in a direction opposite to that of the gradient slope to readjust the 
approaching direction. In that way our filter progress towards the minimum error of 
prediction. 

To derive the final LMS expression first, we develop the MSE gradient  factor in (43): 

 

 

∇ℎ̂𝐻𝐸{|𝑒[𝑛]|
2} =  ∇ℎ̂𝐻𝐸{𝑒[𝑛]𝑒

∗[𝑛]} = 𝐸 {∇ℎ̂𝐻(𝑒[𝑛] 𝑒
∗[𝑛])} 

  

(26) 

With: 

 

 

∇ℎ̂𝐻𝐸{𝑒[𝑛]} =  ∇ℎ̂𝐻(𝑥[𝑛] − ℎ̂
𝐻𝑥[𝑛 − 1]) =  −𝑥[𝑛 − 1] 

  

(27) 
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By replacing  (45) in (44) yields, 

 

 

∇ℎ̂𝐻𝐸{|𝑒[𝑛]|
2} = −𝐸{𝑥[𝑛 − 1]𝑒∗[𝑛]}  (28) 

Finally, applying (46) to  (43) we obtain: 

 

 

ℎ̂[𝑛 + 1] =  ℎ̂[𝑛] −   𝜇 ∇ℎ̂𝐻𝐸{|𝑒[𝑛]|
2} = ℎ̂[𝑛] + 𝜇𝐸{𝑥[𝑛 − 1]𝑒∗[𝑛]} 

 

(29) 

This is a valid expression of an adaptive algorithm, but, to allow a real-time LMS updating 
we cannot afford doing the expectation with all the samples. Instead, we use an 
instantaneous estimate of the expectation. Using the unbiased estimator: 

 

 𝐸{𝑥[𝑛 − 1]𝑒∗[𝑛]} =
1

𝑁
∑ 𝑥[𝑛 − 1]𝑒∗[𝑛 − 𝑖]

𝑁−1

𝑖=0

 (30) 

And selecting a single sample in (48) with 𝑁 = 1: 

 𝐸{𝑥[𝑛 − 1]𝑒∗[𝑛]} = 𝑥[𝑛 − 1]𝑒∗[𝑛] (31) 

We obtain the final formula introducing (49) in (47): 

 ℎ̂[𝑛 + 1] =  ℎ̂[𝑛]  −  𝜇𝑥[𝑛 − 1]𝑒∗[𝑛] 

 

(32) 

In this way, as we receive each sample from the radar device we are able to update the 

filter using the previous equation, since it only depends on a new sample of the interest 

signal. 

As in the previous section, we reintroduce the parameters in equation (13) composing a 

new vector of coefficients as in equation (22). 

With that, we obtain the power spectral density estimation of the desired signal at each 

update over the filter coefficients. In that way we are able to track the progression in the 

respiratory frequency of the patient if there is any variation in it (like apnoea episodes). 

LMS Block processing 

 Adaptive response 

 Better time resolution 

 Less computational cost 

 More precise  

 No stability problems 

 The only parameter that we need to 

define is the number of coefficients 

Table 2: Comparison between LMS and Block processing coefficient derivation 

3.2.2.2.1. Convergence of the LMS algorithm 

As the LMS does not use the exact values of expectations using this approach will not 

reach the optimum value, but it can converge in terms of its mean value. Even if the updates 
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on the algorithm are small, there will always be a dispersion over the optimal value related 

with the update step. Moreover, if the step in each iteration is too large the system may not 

even converge and turn out unstable. 

To control the evolution of this adaptive system we have to adjust the update step μ. About 

this constant, it can be probed [16] that its value is bounded by: 

 

 
0 < 𝜇 <

2

𝜆𝑚𝑎𝑥
 (33) 

Where 𝜆𝑀𝐴𝑋  corresponds to the largest eigenvalue of the autocorrelation matrix of the 
signal. If this condition is not fulfilled, the system do not converges and the algorithm turns 
out unstable.  

But, we have to take into account that the autocorrelation matrix of the signal may not be 
available, so instead, we can use the following more restrictive condition: 

 

 
0 < 𝜇 <

𝟐

𝒑𝒓𝒙(𝟎)
<

2

𝜆𝑚𝑎𝑥
 (34) 

 

since 

 

 
𝜆𝑚𝑎𝑥 <∑𝜆𝑖

𝑖

= 𝑡𝑟(𝑅) (35) 

Given that  𝑅 is the 𝑝 × 𝑝 autocorrelation matrix of the signal the trace satisfies: 

 

 

𝑡𝑟 (𝑅) =  𝑝 𝑟𝑥(0) (36) 
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4. Results 

This section provides numerical evaluation of the proposed method by means of 

simulations and experimental measurements. 

4.1. Simulations 

For the assessment of the respiratory tracking scheme and apnoea detection we have first 

to evaluate a simulated scenario, a situation where a patient breathes steadily for a specific 

time interval. To do so, first we introduce the channel model we have considered for the 

operation of the UWB radar system. Then, we apply the proposed solutions to estimate the 

respiratory rate frequency in illustrative particular cases. Starting with analysis by Spectral 

Techniques (Periodogram-based solutions in this case) and following with AR modelling. 

Inside the AR modelling, we first obtain the coefficients of the AR model with block 

processing calculation and then, apply the LMS filter. Inside the LMS simulations, we 

modify the parameters of the model to emulate variations in the respiratory rate, and with 

it, test the response of our wireless system to those situations. Finally, we implement a 

series of Monte-Carlo simulations over our different solutions to evaluate its performance. 

4.1.1. UWB channel modelling 

The channel model specifies the channel impulse response in equation (3). First, we 

introduce the channel impulse response in the static regime (static channel) and then we 

add the respiratory variations modelling. 

4.1.1.1. Static channel 

To obtain a set of simulations that are as close as possible to the real working environment 

we developed our own scripts on top of a reliable channel model. 

To do so, after reviewing different literature about the UWB channel modelling, we finally 

used the model proposed by the research group IEEE 802.15.4a [23]. This is a widely 

recognised model for UWB channels, and additionally, they provide a set of Matlab scripts 

for its implementation. Those scripts provide models for several types of channels, and 

among them, different UWB environments in the range from 2 to 10 GHz for different 

situations. To summarize the key features of the model we highlight: 

 model treats only channel, while antenna effects are to be modelled separately 

 𝑑−𝑛 law for the path loss 

 frequency dependence of the path loss 

 modified Saleh-Valenzuela model: 

o arrival of paths in clusters of rays instead of single rays. 

o mixed Poisson distribution for ray arrival times 

o possible delay dependence of cluster decay times 

o the power delay profile is composed accordingly to LOS or NLOS conditions 

(i.e. in some NLOS environments the multipath component with higher 

amplitude is not the first arriving reflection) 
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 Nakagami-distribution of small-scale fading, with different m-factors for different 

components 

 block fading: channel stays constant over data burst duration 

 

 

Fig 5: Saleh-Valenzuela power delay profile distribution 

The structure of the Saleh-Valenzuela model in which the UWB channel modelling is based 

can be explained from a physical viewpoint. The rays within a cluster are formed by multiple 

reflections from objects in the vicinities of the transmitter and the receiver (e.g., room walls, 

furnishings, and people). This is because of the high time domain precision of the UWB 

signal. Due to this resolution, instead of receive a single multipath echo from an object in 

the environment, we receive a cluster corresponding to the different edges or shapes of 

that object. 

Given all the mentioned characteristics, the shape of a single channel realization looks like 

the following: 

 

Fig 6: Example of a single channel realization 

4.1.1.2. Respiratory variations 

At this point we consider the implementation of a single simulation of a patient breathing in 

a static environment to illustrate the aspects of the simulation set-up and model. This 

simulation is composed by 𝑁𝑠 captured waveforms with a slow time sampling frequency 𝐹𝑠. 
Considering a short enough total measuring time and the steadiness assumption of the 
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channel we can assume that the static channel maintains its shape along all the captured 

waveforms. 

Taking that assumption into account, we generate the channel pulse response as in 

equation (3) in the structure of the following scheme in Figure 7: 

 

Fig 7: Channel implementation process 

In this process, we select a single static channel realization following the UWB channel 

modelling description in the past section. Then, we replicate it across the 𝑁𝑠 slow time 

samplings. Following that, we add an additional multipath echo in each repetition of the 

static channel with a variant position over the fast time index 𝑚. The position of that echo 

depends on the slow time index 𝑛 following equation (4). Additionally, we add the AWGN 

noise contribution neglected in the first part of the theoretical approach. 

Now that we have the channel response, we have to populate the matrix 𝒀 from equation 

(6). To do so, we convolve each channel impulse response with the pulse emitted by our 

UWB radar device. 

The shape and features of our simulated pulse are constrained by the real characteristics 

of the pulse generated by our HW device. From the documentation of the PulsOn 410 

series we obtain the following plot: 

 

Fig 8: PulsOn 410 series Pulse 
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Which corresponds to a Gaussian pulse of central frequency 4.3𝐺𝐻𝑧. To model it, we use 

the Matlab function gauspuls[24] with the following characteristics: 

Central Frequency 4.3GHz 

Fractional Bandwidth 60% 

Fractional Bandwidth Reference Level -40dB 

Table 3: Pulse characteristics 

Now, we chose a set of parameters to compose an example of the presented 

implementation of a patient breathing in a static environment. 

𝑵𝒔 1000 

𝒇𝒔 10Hz 

𝒇𝒃 0.24Hz 

𝒎𝒅 0.025m 

𝒎𝟎 2m  

SNR 0dB 

Table 4: Channel implementation example parameters 

The parameters in Table 4 are compliant with real typical values as suggested in [9] 

With those parameters we populate and represent in a heat map the 𝑌 matrix, or in other 

words, our simulated received signal. We obtain the following results: 

 

Fig 9: Heatmap of the received signal in the 𝒀 matrix 
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In Figure 9 we see each captured waveform as a column, where the brighter the color, the 

higher the amplitude in that particular fast time index. So, this plot is represents the 

progression of the channel response to our emitted pulses along the slow time axis. 

In this plot we see some steady values along the slow index corresponding to the static 

channel responses presented in equation (3). Besides that, we see a sinusoidal multipath 

echo, which corresponds to the respiratory variations related to the chest patient, our signal 

of interest. 

4.1.1.3. Clutter removal 

Now, we start with the preprocessing of the signal to remove those steady scatters of the 

received signal before entering in the frequency analysis. 

To accomplish that, we implement the equation (8) of our theoretical proposal with the 

simple built-in function mean of the Matlab software. The heat map result of that processing 

can be seen in Figure 10: 

 

Fig 10: Heatmap of the received signal once the clutter is removed 

In the Figure 10 above we see that any static contribution is successfully removed. We 

have to also highlight that the interest chest movement signal has been distorted by the 

residual term 𝑥0(𝑚) in equation (8). But still, it maintains enough information to posterior 

processing of the signal. 

4.1.2. Spectral techniques results 

Before applying the FFT transform we need to estimate the optimal fast time index  𝑚̂0 to 

maximize the results of the frequency analysis, as discussed in Section 3.2.1 and detailed 

in (28). 

Once we have that index, we apply compute the power spectral density using the Bartlett 

estimator in (9). The simulation parameters are depicted in Table 5.  
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Target Frequency 0.24Hz 

K 5 

L 200 

𝑵𝒔 1000 

Table 5: Bartlett estimation parameters 

 

Fig 11: Bartlett estimation 

Regarding the graphical results in Figure 11, we obtain the peak related to the chest 

frequency at 0.25𝐻𝑧. This result differs a little with the real value (0.24𝐻𝑧) due to the already 

explained characteristics of the Bartlett estimator. Apart of that, the peak is clear and 

without any distortion. 

Continuing with the spectral techniques, we apply the mentioned method of averaged 

Bartlett estimations in equation (11). We use 𝑀 = 4 to clearly see the contribution of each 

individual spectrum estimation: 

Technique Averaged Bartlett Estimation 

Target Frequency 0.24Hz 

K 5 

L 200 

M 4 

𝑵𝒔 (for each Bartlett estimation) 1000 

Table 6: Averaged Bartlett Estimation parameters 
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Fig 12: Averaged Bartlett estimation 

 

Fig 13: Different Bartlett estimations around the optimal 
index 

With this method we see some little harmonic contributions due to non-optimal indexes and 

besides that, the same characteristics as in the Figure 11. In this simulated environment, 

the enhanced robustness of the method cannot be perceived. In later sections with real 

data we appreciate it better. Each single Bartlett contribution is represented in the Figure 

13. 

In these Bartlett estimations, we see different harmonic contributions in each case, relative 

to the different indexes. But, besides of that, we see that most of the signals contribute to 

the objective frequency with different amplitude levels. That is a fact that we are taking 

advantage of. 

4.1.3. AR modelling 

Now, through the AR modelling technique we see the spectral results over different 

coefficient calculations. We start with Block processing coefficients and then we follow with 

the LMS approach, as seen on the theoretical purpose. 

As a first assumption, we work with only the most important fast time index found in 

equation (10), as the presented methods are only considered for one dimension.  

4.1.3.1. Block processing coefficients results 

As mentioned in the theoretical approach, one of the requirements of the AR modelling is 

the selection of some parameters (as number of coefficients 𝑝 in this case) to adjust our 

model to the real signal in exchange of better frequency resolution. 

To select the proper number of coefficients, arbitrarily we choose 8 as start value, as we 

were obtaining enough precision for our application. Due to the nature of our signal, if we 

chose a number of filters lower or equal than 7 we are not be able to properly detect the 

desired peak. And if we start increasing the number of filters, the response of the system 

is more fitted to the real spectrum of the signal. As consequence of that, unnecessary 

harmonics shows up, which can be even produce misleading results in the peak detection. 

Also the computational workload unnecessary increases. 
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In this first approach, we use Matlab functions as xcorr, together with the toepliz method to 

build the correlation matrix needed in equation (18). Once we have obtained the coefficients, 

we plot the spectral density estimation from the AR model coefficients using equation (11): 

Technique AR Power Spectral Density Estimation 

Target Frequency 0.24Hz 

𝒑 8 

𝑵𝒔 1000 

Table 7: AR Power Spectral Density Estimation parameters 

 

fig 14: AR power spectral density estimation 

As we can see in the previous Figure 14, the spectral density estimation is smothered in 

comparison with the Bartlett approach in Figure 11 and 12. Also we could highlight that at 

first sight the results are more precise, as we are getting closer results to the 0.24𝐻𝑧. 

Although we cannot state that this method has better precision only with one realization, 

this higher precision was expected from the already presented theoretical study. 

4.1.3.2. Adaptive coefficients results 

As mentioned, in the AR modelling we have to choose some parameters to get a well suited 

modelling of our real signal. In the case of the LMS approach, we have some additional 

parameters to tune up, and with it, obtain different system responses. 

Those parameters are the number of coefficients 𝑝 (as in the previous case), the update 

step 𝜇 and the coefficient initializations. 

4.1.3.2.1. Zeroes initialization 

About the configuration of the system, first we start with a vector of zeros as initialization 

of the coefficients, an arbitrary step of 𝜇 = 1 (accomplishing the restriction in equation (30) 

with 𝜆𝑚𝑎𝑥 = 1  , given that the signal is normalized) and  

𝑝 = 12  coefficients. Later, we comment the combination of those two last parameters and 

how they affect the system response: 
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Technique LMS 

Target Frequency 0.24Hz 

𝒑 12 

𝝁 1 

Initialization Vector of zeros 

𝑵𝒔 1000 

Table 8: LMS with zeroes initialization parameters 

 

 

Fig 15: Frequency estimation evolution over the iterations of the 
algorithm (zeroes initialization) 

 

Fig 16: Predicted signal, in front of signal to predict over the 
iterations of the algorithm (zeroes initialization) 

As we can see in Figure 15, the system properly detects the breath frequency converging 

in the range of 0.244𝐻𝑧 –  0.249𝐻𝑧.  

At first sight, we could think that as soon as the predicted signal is adapted to the signal to 

predict (Figure 16) the frequency prediction should already reach the right estimated value. 

The reality is that as aforementioned in section 3.2.2, the AR Spectral estimation is sensible 

to errors in the coefficient values. So, we have to wait for the signal to really finish its 

adaptation and fit the signal to predict as tightly as possible to have proper spectral density 

estimations. 

Thus, those values at 0𝐻𝑧 are related to the peak detection in those particular estimated 

spectral density representations at the first stages of the algorithm. In those first estimated 

spectral density representations the peak related to the estimated frequency is not the 

highest one yet given the early evolution of the coefficients. 

 

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Freq estimation evolution

iterations

fr
e
q
 [

H
z
]

0 100 200 300 400 500 600 700 800 900 1000
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04
Signal to predict vs predicted signal

iterations

 

 

Signal to predict

predicted signal



 

 37 

In Figure 16 and corresponding with the estimated frequency, we can see the progressive 

adaptation of the predicted signal (red) in front of the signal to predict (blue). We can see 

a really good adaptation in the last periods given the regularity and steadiness of the 

oscillation of the simulated signal. 

 

Fig 17: Prediction error evolution over the iterations of the 
algorithm (zeroes initialization) 

 

Fig 18: Final spectral density estimation with LMS approach 
(zeroes initialization) 

  

 

 

Now, we analyze the representation error evolution of equation (20) in Figure 17. At the 

very first periods we are visualizing the error with the same shape as signal to predict, given 

that the signal prediction starts at null value and consequently we are not yet able to 

compensate it. As we move forward in the plot, the progression ends up in a shape which 

is pretty close to white noise, which corresponds to the added noise contribution that the 

predictor cannot foretell. 

And Figure 18 is the representation of the spectral density of the last iteration of equation 

(11). The plot is quite similar to the results of the block processing calculation Figure 14 in 

previous stages.  

4.1.3.2.2. Block coefficients initialization 

With the same exact settings as before, but initializing the system with the precalculated 

filter coefficients obtained with a block processing of 𝑁0 samples (with 𝑁0 ≪ 𝑁𝑠). In this 

case, for  𝑁0 = 15: 
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𝝁 1 

Initialization Block of 𝑁0 coefficients 

𝑵𝟎 15 

𝑵𝒔 1000 

Table 9: LMS with block initialization parameters 

 

fig 19: Spectral density estimation of the initialization block with 15 samples 

First, this is the spectral density estimation of the initialization with only 15 samples. As we 

can see in the peak, we are getting good first approximation (0.19𝐻𝑧) given the low number 

of required samples.  
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Fig 20: Frequency estimation evolution over the iterations of the 
algorithm (block initialization) 

 

Fig 21: Predicted signal, in front of signal to predict  over the 
iterations of the algorithm (block initialization) 
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If we compare this frequency evolution graph in Figure 20 with the one with zeros as 

initialization in Figure 15 we can realize some interesting differences. First, the steady error 

margin is the same, although it seems bigger in this last one. That is because of the Matlab 

representation, which has a larger dynamic range in the zeroes initialization. The steady 

error is the same because it is related with the update step, which is equal in both cases. 

Second, the system in Figure 20 reaches the steady oscillation much faster. In the previous 

case of Figure 15 we were reaching it at the 650th iteration, while in this case we already 

have it at the 200th iteration. And third, the converged frequency estimation value in this 

case has a little shift in mean of approximately 0.01 𝐻𝑧. To solve that, and taking into 

account that with this initialization we reach faster the steady error state, we could lower 

the update step. 

In the signal prediction plot in Figure 21 we see the expected response. Already in the first 

periods the prediction is really good and as we move ahead on the progression the 

prediction gets more fitted. 

4.1.3.2.3. Frequency shift response 

Now that we have checked the response of the system to different initializations, we are 

going to proceed with testing the adaptation of the system in front of a frequency shift in 

the signal, which is a required functionality to be able to detect respiratory variations like 

apnoea episodes or sudden increases in the respiratory rate (due to a tachycardia episode, 

for example). 

To do so, we modify the generation of the breath signal loop adding a new statement. At 

half of the signal length we are going to double the breath frequency. Maintaining the same 

exact setup as in the last case the results are the following: 

Technique LMS 

Target Frequency 0.24Hz (1st section) & 0.48Hz (2nd section) 

𝒑 12 

𝝁 1 

Initialization Block of 𝑁0 coefficients 

𝑵𝟎 15 

𝑵𝒔 1000 

Table 10: LMS with frequency shifted signal parameters 
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Fig 22: Frequency shifted signal. Frequency estimation evolution 
over the iterations of the algorithm (block initialization) 

 

Fig 23: Frequency shifted signal. Predicted signal, in front of 
signal to predict over the iterations of the algorithm (block 
initialization) 

In the frequency evolution plot, Figure 22, we can see the frequency shift and the 

corresponding pair of converges. First around 0.25𝐻𝑧 (we still have the little shift) and 

finally 0.47𝐻𝑧, which is really close to 0.24 × 2 = 0.48𝐻𝑧. If we compare both halves of the 

plot, in the first case we are getting to the right value fast enough, but in the second half 

we need the whole trace to arrive finally at the desired value. 

In the signal prediction, figure 23, we see proper results. At first sight the adaptation is 

proper, and even in the frequency shift the system doesn’t lose a single period. May this 

good adaptation in the shift be due to that we are doubling the frequency, and seems that 

for the system it is easier to readapt to a multiple of the original frequency. To fix that slow 

adaptation we tweak the coefficient numbers and update step in the next sections: 

Technique LMS 

Target Frequency 0.24Hz (1st section) & 0.48Hz (2nd section) 

𝒑 22 

𝝁 1 

Initialization Block of 𝑁0 coefficients 

𝑵𝟎 15 

𝑵𝒔 1000 

Table 11: LMS with frequency shifted signal and increased coefficients parameters 
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Fig 24: Frequency shifted signal. Frequency estimation 
evolution over the iterations of the algorithm (block 
initialization and increased coefficients, table 11) 

 

Fig 25: Frequency shifted signal. Frequency estimation 
evolution over the iterations of the algorithm (block 
initialization and increased update step, table 12) 

In this Figure 24 we have increased the number of coefficients from 12 to 22. If we analyze 

the plot we see an enhanced response in many aspects. To begin with, we get closer to 

the 0.24𝐻𝑧 in the first stage (0.2394𝐻𝑧). And regarding the second stage, we get faster to 

the steady oscillation with 0.478𝐻𝑧.  

Logically, and given those results, we can state that the more coefficients that we have in 

our system, the better the general response is, in both terms of converging speed and 

steady error.  

In the other hand, if instead of increasing the number of coefficients we increase the update 

step from 𝜇 = 1 to 𝜇 = 2  we get to: 

Technique LMS 

Target Frequency 0.24Hz (1st section) & 0.48Hz (2nd section) 

𝒑 12 

𝝁 2 

Initialization Block of 𝑁0 coefficients 

𝑵𝟎 15 

𝑵𝒔 1000 

Table 12: LMS with frequency shifted signal and increased update step parameters 

In this plot in Figure 25 we get similar results to the one with increased coefficients in Figure 

24, but with worst characteristics in some sections. First, we are still converging at 

~0.25Hz given the lesser precision. And second, we arrive later to the optimal value in the 

transition. 
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But still, the response is considerably better in some aspects with no extra computational 

cost. As already mentioned, we should find a compromise between all those settings to 

adapt our system to the real world operating regime. 

4.1.4. Monte-Carlo simulations 

At this point, once we have illustrated with particularly significative cases the behavior of 

each of the estimation solutions, we present a set of simulations to study the general 

response of such solutions. 

To better understand the charactarestics of the solutions we represent its responses 

associated to different noise levels. To obtain results for a particular noise level, we 

generate a number of different UWB channel realizations from the chosen model, and for 

each of them, we generate a corresponding simulation of a patient breathing as described 

in Section 4.1.1.2. with the according noise level. Then, we apply the solution under 

consideration to all of those generated simulations. Applying the solution to the generated 

set of simulations which are based in different channel realizations allows us the extraction 

of averaged results of the parameters to estimate, and with it, obtain results which are less 

depending in a particular channel realization. We then sweep across all the noise levels in 

a defined range replicating the just mentioned method to obtain the progression of 

characteristics to analyze. The characteristics of the solutions that we illustrate are the 

averaged frequency estimation and the RMSE (Root Mean Square Error) of the estimation.  

The RMSE plot gives us a notion of distance (in 𝐻𝑧) between the estimated respiratory rate 

and the target frequency. This figure provides us more insights of the error progression, 

since it has the same units as the quantity plotted on the vertical axis in front of, for example, 

the straight MSE which its units are the squared value (𝐻𝑧2 in this case). 

We present a series of graphs where we observe the progression both the mentioned 

characteristics in front of the noise level. 

Number of channels 300 

Target Frequency 0.24Hz 

SNR range  -30 to -5dB 

𝑵𝒔 1000 

Table 13: Monte-Carlo simulations parameters 

We analyse each of the solutions following the Monte-Carlo parameters defined in Table 

13. Within each particular case, we specify the configuration of the estimator and then we 

illustrate and present the statistical results. 

4.1.4.1. Averaged Bartlett estimator 

In this first situation we evaluate the characteristics of the mentioned Averaged Bartlett 

estimator. The configuration of the estimator is the same as the one used in the illustrative 

case of Section 4.1.2, specified in table 6.  
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Fig 26: Root Mean Squared Error of the estimation, Bartlett Estimator 

Starting by Figure 29, in the trace related to the Bartlett Estimator, first we visualize some 

oscillation arround 2.5𝐻𝑧  at the lowest values of SNR, continuing to a steep descend 

towards the final estimated value (0.25𝐻𝑧) starting from −25𝑑𝐵𝑠 and reaching it at around 

−16𝑑𝐵𝑠. The detected averaged frequency of 2.5𝐻𝑧 in the first and lowest values of the 

SNR is due to the total random results obtained because of the effect of the noise masking 

the respiratory rate signal. Specifically, we obtain 2.5𝐻𝑧, which corresponds the mean 

value between 0  and 5𝐻𝑧 , the maximum and minimum posible ranges to measure. 

Following the same progression and accordingly, the RMSE representation of Figure 26 

depicts a clear decay towards the minimum error following the transition from totally noisy 

measuraments to meaningful measuraments. 

4.1.4.2. AR block processing coefficients  

Follwing the analisis, we evaluate the results of the AR spectral density estimation with the 

obtention of the coefficients in block. The configuration of the estimator is the same as the 

one used in the illustrative case of Section 4.1.3.1 , specified in table 7. 
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Fig 27: Root Mean Squared Error of the estimation, AR block processing 

The progression in the trace related to the AR block processing in Figure 29 is simillar at 

the beginning to the one of the Averaged Bartlett estimation due again to the excess of 

noise, but differes at getting stuck at 0𝐻𝑧 in the range from −17𝑑𝐵𝑠 to −10𝑑𝐵𝑠, where we 

finally detect the right respiratory rate. In the RMSE we can see both decays, first, the one 

related to entering in a zone not masked by noise, and the second one, with a much 

smoother slope corresponding to the section where we successfully detect the respiratory 

rate value. 

4.1.4.3. AR Adaptive coefficients  

The used configuration of the estimator is specified in table 8 and based in the case of 

Section 4.1.3.2.2, but increasing the number of coefficients to 20 (closer to the real 

experiment setup, where we need a higher number of coefficients to obtain proper results).  

 

 

Fig 28: Root Mean Squared Error of the estimation, AR LMS 
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Finally, in the adaptive coefficients approach (LMS estimator) in Figure 29, the estimated 

frequency decays in the first stage with the same shape and position as in the past systems. 

But, in difference with the other two estimators, once it gets to a relatively good result at 

−17𝑑𝐵𝑠 it keeps improving its accuracy on the estimation, as seen in the close-up of Figure 

30, heading to the lowest RMSE of the three systems at the end of the graph. 

 

Fig 29: Averaged Estimated Frequency of all three estimators 

 

Fig 30: Averaged Estimated Frequency of all three estimators  
(close-up of the last 5 dBs) 

If we want to do a general evaluation of all three estimators, we have to highlight the 

difficulty of proposing a fair comparison between them, given that each solution depends 

on different parameters (signal length, coefficients, update step, etc.). Considering that, it 

is clear that the large number of samples generated for each simulation (𝑁𝑠 = 1000) works 

in favour of the Spectral techniques results, outperforming the AR with block processing 

and getting a similar shape to AR LMS trace. In an experimental setup with less available 

samples, the AR modelling approach would take advantage of its parametric configuration, 

yielding better results in more hostile scenarios. At its part, the LMS estimator, in addition 

of being the only approach able to work in real-time, shows good performance as 

aforementioned. This can also be a consequence of the large number of samples, given 

that depending of the update step of the LMS algorithm (in this case it is not set at the 

theoretical maximum), it takes a higher number of iterations to achieve the most precise 

results. 

4.2. Experimental results 

In this last section we are going to test our algorithms into real data extracted from 

experimental realizations. At the same time we validate our initial suppositions in the 

modelling and see the real response of our system. 

4.2.1. Equipment description 

First of all, we further introduce the used equipment to perform such measurements. 

The used device is PulsON 410 Series, this hardware device by Time Domain is a small 

and low power coherent UWB module. Depending on the software used in the hardware 
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module we can obtain different operation modes. For example, if we use the RCM (Ranging 

Communications Module) our hardware works as a ranging and communication terminal. 

On the other hand, if we use the MRM (Monostatic Radar Module) or CAT (Channel 

Analysis Tool) we obtain radar capabilities. In our case we use the MRM module to use the 

hardware as a standalone monostatic radar. 

 

 

Fig 31: PulsON 410 MRM with both antennas connected 

The main characteristics of our device are: 

- Good performance in high multipath and high clutter environments 

- Coherent signal processing extends operating range at low signal power levels 

- P410 MRM provides raw scans for post processing 

- UWB chipset enables low cost, small size, and low power operation 

- UWB waveform and pseudo random encoding ensures noise-like transmissions 

with a very small RF footprint 

- Seven separate channels provided 

- RF transmissions from 3.1𝐺𝐻𝑧 to 5.3𝐺𝐻𝑧, with center at 4.3𝐺𝐻𝑧 

- Two user-configurable antenna ports for dual antenna operation 

- RF emissions compliant with FCC limits 

- Single 7.6 x 8.0 x 1.6 cm board 

- USB or Serial interface 

- Several sleep modes allow user to reduce power consumption 

Another high important characteristic of the hardware is that it has a C and, more 

importantly, Matlab API, which suites for our prototyping development. 

4.2.2. Experiment setup 

Most of the test measurements are performed in the Engineering Lab of the CTTC. Actually, 

we could consider that environment as a pretty hostile scenario.  

The laboratory is composed by several metal scatters (metal structures, computers, 

shelves, etc.) so the static interferences are going to be of a great importance. 

Besides the Lab environment, we first start doing measurements in the anechoic chamber 

of the CTTC. There we expect to obtain clearer measures given the fact that we obtain 

much less reflections and scatters. 

To perform the measurements in both environments we follow a simple structure: 

- We connect the HW device to the computer through the USB cable and we place 

it on the edge of the lab table (or metal structure in the anechoic chamber) 

- We place the sitting subject approximately at 1.5 m (3 m in the anechoic chamber) 

of the device with clear LOS 
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- We aim the device and its antennas (even though they are omnidirectional) to the 

chest of the subject 

- We perform the measures 

 

Fig 32: Device setup in anechoic chamber 

The needed time to obtain a set of samples to work with in an offline regime is about 50 

seconds to get 500 samples (sampling at 10Hz). 

In the schematic representation of Figure 33, we can see the interaction between our host 

computer and the P410 module though the API calls and responses. At the same time, the 

P410 is in charge of performing the UWB sensing towards the patient represented at the 

rightmost. In our use case, the P410 module is configured to return raw scan data, without 

any of the additional processing (like motion filters) implemented by default in the HW 

device. We deal directly with the raw data to gain complete control of the signal processing. 

 

 

Fig 33: Scheme of the measurement set up 

4.2.3. Anechoic chamber results 

The results that we are going to present are from a subject whose breath frequency was 

of 0.24𝐻𝑧. The slow time sampling frequency we set to 6𝐻𝑧. To measure this real value in 

the anechoic chamber and in the lab results we have used the methodology most 

commonly used in real cases at hospitals: count the number of breathings and measuring 

the total lapsed time. 

First, we start by visualizing the data in the heatmap plots: 
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Fig 34: Raw data heatmap, anechoic chamber 

 

Fig 35: Clutter removal heatmap, anechoich chamber 

In both plots we obtain the coherent results with the simulations. Starting from the raw data 

heatmap in the Figure 34, we visualize the variation of the chest movement around the 

100th fast sample index. Also, besides that, we see some other dimmed static scatters. 

Those can be due the external structure to hold on the computer inside the chamber or 

also due to the non-completely closed door of the chamber. 

If we continue with the clutter removed one at Figure 35 we can see that the steady scatters 

are removed completely and we only see information related to the chest movement. 

In general, we can highlight some insights from the first approach to the real data. First, 

both plots in Figure 34 and 35 look similar to the ones generated in the simulations, so we 

could assume that the model chosen was right and coherent with the reality. And second, 

the chest movement cannot be seen clearly at first sight as in the raw heatmap of the 

simulations, instead of that, we can see a slight modulation over the first fast time samples 

of the matrix. 

4.2.3.1. Spectral techniques results 

If we apply the first spectral technique, the averaged Bartlett estimation we obtain: 

Technique Averaged Bartlett estimation 

Target Frequency 0.24Hz 

K 2 

L 150 

M 4 

𝑵𝒔 300 

Table 14: Averaged Bartlett estimation parameters, anechoic chamber  
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Fig 36:  Averaged Bartlett estimation, anechoic chamber 

In the Averaged Bartlett estimator we see a clear peak, with almost no harmonic 

contribution. Also, the result 0.238𝐻𝑧 considerably close to the 0.24𝐻𝑧 to estimate. This 

first frequency result is still coherent with the simulated model, as we are already seeing 

from the first plots in Figures 34 and 35. 

4.2.3.2. AR modelling results 

In this case, for the same number of coefficients as in the simulations 𝑝 = 8 we apply our 

AR modelling solution, which leads to: 

Technique AR Power Spectral Density Estimation 

Target Frequency 0.24Hz 

𝒑 8 

𝑵𝒔 300 

Table 15: AR Power Spectral Density estimation parameters, anechoic chamber  

 

Fig 37: AR Power Spectral Density estimation, anechoic chamber 
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The obtained result, 0.2238𝐻𝑧 is a little distant from the original value, but still we detected 

the right peak. This result could be due to some low frequency contributions that our motion 

filter could not discriminate. Those movements were related to the steadiness of the 

measured patient, which in this case was standing instead of sitting (as in the laboratory 

measurements). 

4.2.4. Laboratory results 

In this case, the subject’s breath frequency was of 0.25𝐻𝑧 and he was positioned according 

to the Experiment setup section. The sampling frequency of these tests is now the 

proposed in the theoretical study, 10𝐻𝑧. 

We start by representing the heatmap matrix of the measured signals. First, directly from 

the device and then, the clutter removal one: 

 

Fig 38: Raw data heatmap, laboratory 

 

Fig 39: Clutter removal signal, laboratory 

In this plot in Figure 38 we can observe a lot more static contributions in comparison with 

Figure 34 in the anechoic chamber. Besides that, the measuring was quite stable, allowing 

us to almost visualize the oscillation of the chest movement at first glance in the first 

samples of the fast time index. 

Seeing the clutter removed heatmap in comparison with the anechoic chamber results in 

Figure 35, we have more residual signals corresponding to secondary reflections along the 

fast time index. But still, and coherently with the first plot, we can spot the moving reflections 

with enough clarity. 

We see the frequency results in the following sections, and with it, if our system is capable 

to handle real experiment data in a hostile scenario: 

4.2.4.1. Spectral techniques results 

Applying the first method of Averaged Bartlett estimation we obtain: 
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Target Frequency 0.25Hz 

K 2 

L 200 

M 4 

𝑵𝒔 400 

Table 16: Averaged Bartlett estimation parameters, laboratory 

 

 

Fig 40: Averaged Bartlett estimation, laboratory 

Leading to good results with predicted frequency at 0.25𝐻𝑧. The shape of the obtained 

spectrum is really close to the obtained in the simulations. Once more, the results of now 

a completely non ideal scenario (with high static scatter contribution) leads to predicted 

results in the simulations and theoretical approaches. 

4.2.4.2. AR modelling results 

Given the good results on the spectral techniques analysis, we apply the AR modelling 

solutions. 

4.2.4.3. Block processing coefficient calculation 

In our first proposal for AR modeling with block processing calculation we obtain: 

Technique AR Power Spectral Density Estimation 

Target Frequency 0.25Hz 

𝒑 10 
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𝑵𝒔 400 

Table 17: AR power spectral density estimation parameters, laboratory 

 

Fig 41: AR power spectral density estimation, laboratory 

In the above plot we can see a good approximation to the right value, getting the 0.2508𝐻𝑧. 

In the simulation scenario we implemented our LP solution with 8 coefficients, being this 

number the minimal number of coefficients that was giving us good enough estimations. 

But, in this real data case 8 coefficients weren’t enough given the inherent irregularities in 

the signal. We were getting the right peak but it was slightly shifted in frequency. To ensure 

good results we gave some margin by selecting 10 coefficients. 

4.2.4.4. Adaptive coefficients results 

As we have already done with the other estimators, now we are going to apply the LMS 

based solution to real data. First, we start with the same measurement to have the same 

reference, also, we are going to use the same LMS setup as in the simulations. We set 𝑝 =

20, update step 𝜇 = 1 and zeroes initialization. We chose that initialization given the first 

instabilities in the measuring. The results are the following: 

Technique LMS 

Target Frequency 0.25Hz 

𝒑 20 

𝝁 1 

Initialization Vector of zeros 

𝑵𝒔 200 

Table 18: LMS parameters, laboratory 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25
AR Power Spectral Density estimation

Freq [Hz]



 

 53 

 

Fig 42: Frequency estimation evolution of LMS algorithm, 
laboratory 

 

Fig 43: Signal to predict in comparison with predicted signal, 
laboratory 

In Figure 42 we can see that with this implementation we estimate values oscillating really 

close from the original, ending at 0.25𝐻𝑧.If we further analyze it, we can see that the filter 

detects the right frequency component really fast thanks to the increased number of 

coefficients. Also we could highlight that given the instability of the signal the system 

maintains the estimated value most of the time, only staying away from the original value 

at the beginning, while the system is stabilizing.  

In Figure 43, in the prediction of the signal we can see a rapid adaptation increasing the 

amplitude gradually, until we reach the adaptation. Ending in the system adjustment quickly. 

4.2.4.5. Frequency shifted measurements (apnoea episodes) 

At this point, we need to test the system over a kind of frequency shifted measuring to 

check the algorithm response.  

To start with, we use a new measuring. We concatenate first, a steady respiratory rate at 

0.3𝐻𝑧, continuing with a section of signal without chest movement (apnea episode) and 

finally we come back breathing at a higher frequency, 0.5𝐻𝑧. We have combined this 

different respiratory rates in the spite of simulate a real apnea episode, in which the 

returning respiration rate in which the patient breathes again may be different (normally 

higher due the lack of oxygen). 

If we now apply the LMS approach with the following configuration we obtain: 

Technique LMS 

Target Frequency 0.3 Hz (from 0 - 150)  

0 Hz (from 150 - 300)  

0.5 Hz (from 300 - 500) 
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𝒑 45 

𝝁 2 

Initialization Vector of zeros 

𝑵𝒔 500 

Table 19: LMS algorithm setup for respiratory patterns (apnoea) detection parameters, laboratory 

 

 

Fig 44: Frequency estimation evolution of LMS algorithm,  
laboratory 

 

Fig 45: Signal to predict in comparison with predicted signal, 
laboratory 

As it is depicted in Figure 44, the system successfully detects the frequency variation and 

falls towards 0𝐻𝑧 quickly. In fact, the first measurement at 0𝐻𝑧 is around the 138th 

sample. If we take into account the number of coefficients, 45, and the reference of the 

apnoea episode starting at around the 150th sample, the system only takes about 33 
samples to fully detect the lack of chest movement.  

Thus, the total delay to detect a lack of chest movement is 
33

10𝐻𝑧
+

45

10𝐻𝑧
= 7.8 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 in 

this concrete case. This delay results in a very good and fast adaptation to the apnoea 
episodes, taking into account that those episodes are given in periods of lack of 
respiration of 20 seconds or more. 

In the same way, we return to the breathing state quite fast, but this time falling in a 
higher respiratory rate at 0.5𝐻𝑧, which could be considered a fact of interest.  

Further analysis on those type of patterns, were the respiratory rate is above the normal, 
is purposed in the following case of study. This is a measured case where we force a 
shortness of breath period, normally associated to tachycardia episodes: 
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Technique LMS 

Target Frequency 0.3 Hz (from 0 - 200)  

1 Hz (from 200 - 350)  

0.5 Hz (from 350 - 500) 

𝒑 45 

𝝁 2 

Initialization Vector of zeros 

Table 20: LMS algorithm setup for respiratory patterns (shortness of breath associated to tachycardia) 
detection parameters, laboratory 

 

 

Fig 46: Frequency estimation evolution of LMS algorithm, 
laboratory 

 

Fig 47: Signal to predict in comparison with predicted signal, 
laboratory 

In the above Figures 46 and 47 we present the results for a different respiratory pattern 
following the configuration in table 20. In this case, and with the same estimator 
parameters as in the past situation, we are able to detect the shortness of breath (high 
respiratory rate) often associated with a tachycardia episode. 

In this case the response of the system is quite fast even though we have some 
instabilities at the beginning of the episode probably due the movement in the patient, as 
we can see in the predicted signal in Figure 47. This results show off the flexibility of the 
system in front of different situations and applications 

Seeing table 19 and 20, the configuration of the algorithm, we can highlight the update 
step set up at its theoretical boundary, and also, the number of coefficients is increased. 
Both this modifications shape up the algorithm to a quick response even though we might 
lose some precision. Given the main target of this system being the rapid detection of 
respiratory pattern episodes, it seems a fair trade-off losing a little precision in the steady 
measurement in exchange of a quicker response.  
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5. Budget 

Time 
computation 

HW and API 
interaction 

Software 
simulation 

Signal processing 
to obtain breath 
rate 

Apnoea/Respiratory 
patterns detection 

Total 

Time (Hours) 21 20 28 33 102 

Breakdown 3h*7 weeks 4h*5 weeks 4h*7 weeks 3h*11 weeks  

 

Considering 35 €/hour, for an amount of 102 hours, the price for the labour of a Jr Engineer 
to complete this project is approximately 3570 €. 

 

 

The final cost of the prototyping of the product would be around 6570 €. The elevated 

price for the HW device is related its exclusiveness, given that nowadays there are not so 
many companies selling UWB devices of this characteristics for research purposes.  

Prototyping cost type items   Cost 

 Licences    

  Matlab  500 € 

 HW    

  1 unity of the 
Pulson 410 Series 

 2500 € 

 Labour    

  102 hrs of Jr 
Engineer 

 3570 € 

   Total 6570 € 
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6. Conclusions and future development:  

In this thesis we have presented a complete system able to detect respiratory rate of a 

patient in a complete non-invasive and non-movement restrictive way. Moreover and 

specially, this system is also able to detect respiratory patterns as apnoea episodes and 

short breathing usually associated with tachycardia episodes. We have been able to fulfil 

the objectives, highlighting the agility of the system to track and detect different respiratory 

patterns with accuracy. 

We start the process of designing the detector system by defining its structure. Following 

that, we focus on obtaining a reliable and coherent set of simulations to test and develop 

our first algorithms. Then, once we have the different estimators working in the simulated 

scenario, we have set up two different experimental environments to further test and adjust 

our approaches. Finally, in the real experiment scenario we focus our efforts in obtaining 

frequency variant measurements to calibrate our adaptive algorithms to the most suitable 

response to our problem.  

There have been issues and setbacks to resolve, which have delayed some parts of the 

development. Particularly the configuration of the hardware device has been challenging 

at some points, but in the end we have gained deep insights of it, allowing us to understand 

and obtain the desired data from it.  

As future development of this thesis there are plenty of complementary applications that 

would lead us to a more complete and reliable overall system. For example, an algorithm 

to track the position of a moving patient in a room would enable home monitoring in 

dynamic situations (maybe with a multistatic radar application, also implementable with the 

Pulson 410 devices). Another highly interesting approach would be to additionally track 

heartbeat of the patients as presented in some studies, like in [9], and combine it with our 

algorithm to detect heart arrhythmias. 

As a final reflexion of this thesis, I value in a high measure all the different processes and 

phases in which I have been involved during this project. From the design, first 

implementations (with different signal processing techniques and methods) and simulations 

(with channel modelling research and implementation), to deal directly with the hardware 

until obtain the final fully functional system. In the end, the obtained final wireless system 

is composed by a set of well-known tools, but this combination of simple tools leads to the 

resolution of a new problematic in terms of application and technology. 

 

  



 

 58 

Bibliography: 

[1] R. Z. Morawski, Y. Yashchyshyn, R. Brzyski, F. Jacobsen, W. Winiecki. "On applicability of impulse-radar 
sensors for monitoring of human movements". 20th IMEKO TC4 International Symposium and 18th 
International Workshop on ADC Modelling and Testing Research on Electric and Electronic Measurement 
for the Economic Upturn, 15-17 September, 2014, Benevento, Italy. pp. 754-759. ISBN-14: 978-92-
990073-2-7. 

[2] National Institutes of Health, Consensus Development Conference on Infantile Apnea and Home 
Monitoring, Sept 29 to Oct 1, 1986. Pediatrics. 1987;79:292–299 

[3] Christopher Voscopoulos, Diane Ladd, Lisa Campana, Edward George.” Non-Invasive Respiratory Volume 
Monitoring to Detect Apnea in Post-Operative Patients: Case Series” J Clin Med Res. 2014;6(3):209-214. 
doi: http://dx.doi.org/10.14740/jocmr1718w 

[4] Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes; 
Behrman RE, Butler AS, editors. Preterm Birth: Causes, Consequences, and Prevention. Washington 
(DC): National Academies Press (US); 2007. Available from: 
http://www.ncbi.nlm.nih.gov/books/NBK11362/ 

[5] Grenvik, A., Ballou, S., McGinley, E., Millen, J., Cooley, W.L., Safar P. (1972) Impedance Pneumography: 
Comparison between Chest Impedance Changes and Respiratory Volumes in II Healthy Volunteers. Chest. 
October 1972;62(4):439-443 

[6] R. Farré, J. M. Montserrat, D. Navajas Eur Respir J. Noninvasive monitoring of respiratory mechanics 
during sleep. 2004 December; 24(6): 1052–1060. doi: 10.1183/09031936.04.00072304 

[7] Othman, M.A.; Sinnappa, M.; Azman, H.; Aziz, M.Z.A.A.; Ismail, M.M.; Hussein, M.N.; Sulaiman, H.A.; 
Misran, M.H.; Said, M.A.M.; Ramlee, R.A.; Jack, S.P.; Ahmad, B.H. "5.8 GHz microwave Doppler radar for 
heartbeat detection",  Radioelektronika (RADIOELEKTRONIKA), 2013 23rd International Conference, On 
page(s): 367 – 370 

[8] Lubecke, O. B., P. W. Ong, and V. M. Lubecke, “10 GHz Doppler radar sensing of respiration and heart 
movement," 2002 IEEE Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference, 55-
56, Apr. 20-21, 2002. 

[9] A. Lazaro, D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an ir-UWB radar," Progress 
In Electromagnetics Research, Vol. 100, 265-284, 2010. doi:10.2528/PIER09120302 

[10] E. M. Staderini, "UWB radars in medicine", IEEE Aerospace and Electronic Systems Magazine, Vol. 17, 

No. 1, pp. 13 - 18, Jan. 2002. 

[11] Venkatesh, S., C. Anderson, N. V. Rivera, and R. M. Buehrer, “Implementation and analysis of respiration-
rate estimation using impulse-based UWB," 2005 IEEE Military Communications Conference (IEEE 
Milcom'05), Vol. 5, 3314-3320, Oct. 2005. 

[12] H. C. So, K. W. Chan, Y. T. Chan, and K. C. Ho, “Linear prediction approach for efficient frequency 
estimation of multiple real sinusoids: algorithms and analyses,” IEEE Trans. Signal Process., vol. 53, no. 
7,pp. 2290–2305, July 2005. 

[13] Bartlett, M.S. (1948). "Smoothing Periodograms from Time-Series with Continuous Spectra". Nature 161: 
686–687. doi:10.1038/161686a0 

[14] F.S. Schlindwein, D.H. Evans, “Autoregressive spectral analysis as an alternative to fast Fourier transform 
analysis of Doppler ultrasound signals”, in: E. Arnold (Ed.), Diagnostic Vascular Ultrasound 8, 1992, pp. 
74–84. 

[15] S. S. Haykin, Adaptive Filter Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1991 

[16] B. Widrow, J. R. Glover, Jr., J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, 
Jr., and R. C. Goodlin. “Adantive noise cancelling: Princinles and annlications.” Proc. IEEE, voi. 63, no. 12, 

pp. 169%1716,.Dec. 1975: A 

[17] Yule, G. Udny (1927) "On a Method of Investigating Periodicities in Disturbed Series, with Special 
Reference to Wolfer's Sunspot Numbers", Philosophical Transactions of the Royal Society of London, Ser. 

A, Vol. 226, 267–298. 

[18] Jump up^ Walker, Gilbert (1931) "On Periodicity in Series of Related Terms", Proceedings of the Royal 
Society of London, Ser. A, Vol. 131, 518–532. 

[19] Vega, Leonardo Rey, Rey, Hernan, A Rapid Introduction to Adaptive Filtering (SpringerBriefs in Electrical 
and Computer Engineering). Springer Publishing Company, Incorporated ©2012 

[20] J. Lai, Y. Xu, E. Gunawan, E. Chua, A. Maskooki, Y. L. Guan, K.-S. Low, C. B. Soh, and C.-L. Poh, 
“Wireless sensing of human respiratory parameters by low power ultrawideband impulse radio radar,” IEEE 
Trans. Instrum. Meas., vol. 60, no. 3, pp. 928–938, Mar. 2011. 

http://dx.doi.org/10.14740/jocmr1718w
http://www.ncbi.nlm.nih.gov/books/NBK11362/


 

 59 

[21] S. Gezici, “Theoretical limits for estimation of periodic movements in pulse-based UWB systems,” IEEE J. 
Select. Topics Signal Process., vol. 1, no. 3, pp. 405–417, Oct. 2007. 

[22] S. Gezici and O. Ankan, “Theoretical limits and a practical estimator for joint estimation of respiration and 
heartbeat rates using UWB impulse radio,” in Proc. IEEE Int. Conf. Ultra-Wideband, Sep. 2007, pp. 606–
611 

[23] A. F. Molisch et al., IEEE 802.15.4a channel Model—Final report Tech. Rep. Doc. IEEE 802.15-04-0662-
02-004a, 2005. 

[24] http://es.mathworks.com/help/signal/ref/gauspuls.html 

 

 

 

  



 

 60 

Appendices (optional): 

DFT calculation of the clutter removed signal: 

Given that 𝑥[𝑛,𝑚] has two temporal axis, we have to apply the spectral analysis in the 

dimension in which our variation of interest progresses (chest movement). As can be seen 

from equation (4), the chest movement only depends on the slow time (𝑛), so we apply our 

analysis along that dimension: 

 
𝑋[𝑘,𝑚] = ∑ 𝑥[𝑛,𝑚]𝑒

−𝑗2𝜋𝑘𝑛
𝑁𝑠

𝑁𝑠−1

𝑛=0

= 𝛼𝑏 ∑ 𝑝[𝑚 −𝑚𝑏[𝑛]]⏟        
𝑎(𝑛,𝑚)

𝑒
−𝑗2𝜋𝑘𝑛
𝑁𝑠

𝑁𝑠−1

𝑛=0

− 𝑥0(𝑚)𝛿𝐷(𝑘) (37) 

With 𝛿𝐷(𝑘) being the Dirac delta function and 𝑥0(𝑚) the residual term from equation (8), 

which does not depend on the slow time. The auxiliary term 𝑎(𝑛,𝑚) can be rewritten in 

terms of its DFT over the fast-time 𝑚: 

 

𝐴[𝑛, 𝑙] = ∑ 𝑎[𝑛,𝑚]𝑒
−𝑗2𝜋𝑙𝑚
𝑁𝑓

𝑁𝑓−1

𝑚=0

= ∑ 𝑝[𝑚 −𝑚𝑏[𝑛]]𝑒
−𝑗2𝜋𝑙𝑚
𝑁𝑓

𝑁𝑓−1

𝑚=0

= 𝑒−𝑗2𝜋𝑙𝑚𝑏[𝑛] ∑ 𝑝[𝑚]𝑒
−𝑗2𝜋𝑙𝑚
𝑁𝑓

𝑁𝑓−1

𝑚=0

= 𝑒−𝑗2𝜋𝑙𝑚𝑏[𝑛]𝑃(𝑙) 

(38) 

Where 𝑃(𝑙) is the DFT of the transmitted pulse  𝑝(𝑚) over the fast time frequency axis. 

Therefore, if we go backwards and we do the inverse Fourier transform of 𝐴[𝑛, 𝑙] we obtain 

a new expression for  𝑎[𝑛,𝑚] : 

 

𝑎[𝑛,𝑚] =
1

𝑁𝑓
∑ 𝑃(𝑙)𝑒

𝑗2𝜋𝑙(𝑚−𝑚𝑏[𝑛])
𝑁𝑓

𝑁𝑓−1

𝑙=0

 (39) 

Replacing (12) in (10) we obtain: 

 

𝑋[𝑘,𝑚] = 𝛼𝑏 ∑ [
1

𝑁𝑓
∑ 𝑃(𝑙)𝑒

𝑗2𝜋𝑙(𝑚−𝑚𝑏[𝑛])
𝑁𝑓

𝑁𝑓−1

𝑙=0

] 𝑒
−𝑗2𝜋𝑘𝑛
𝑁𝑠

𝑁𝑠−1

𝑛=0

− 𝑥0(𝑚)𝛿𝐷(𝑘)

=
𝛼𝑏
𝑁𝑓

∑ 𝑃(𝑙)

𝑁𝑓−1

𝑙=0

∑ 𝑒
−𝑗2𝜋𝑙𝑚𝑏[𝑛]

𝑁𝑓 𝑒
−𝑗2𝜋𝑘𝑛
𝑁𝑠

𝑁𝑠−1

𝑛=0⏟                
𝑍[𝑘,𝑙]

𝑒
𝑗2𝜋𝑙𝑚
𝑁𝑓 − 𝑥0(𝑚)𝛿𝐷(𝑘) 

(40) 

In our case, with the respiratory rate signal being sinusoidal as defined in equation (4), we 

can develop the factor 𝑍[𝑘, 𝑙]: 



 

 61 

 
𝑍[𝑘, 𝑙] = ∑ 𝑒

−𝑗2𝜋𝑙𝑚𝑏[𝑛]
𝑁𝑓 𝑒

−𝑗2𝜋𝑘𝑛
𝑁𝑠

𝑁𝑠−1

𝑛=0

= ∑ 𝑒
−𝑗2𝜋𝑙(𝑚0+𝑚𝑑𝑠𝑖𝑛2𝜋𝑓𝑏𝑛)

𝑁𝑓 𝑒
−𝑗2𝜋𝑘𝑛
𝑁𝑠

𝑁𝑠−1

𝑛=0

= 𝑒
−𝑗2𝜋𝑙𝑚0
𝑁𝑓 ∑ 𝑒

−𝑗2𝜋𝑙𝑚𝑑sin (2𝜋𝑓𝑏𝑛)
𝑁𝑓 𝑒

−𝑗2𝜋𝑘𝑛
𝑁𝑠

𝑁𝑠−1

𝑛=0

 

(41) 

At this point we have to deal with the factor 𝑒

−𝑗2𝜋𝑙𝑚𝑑sin (2𝜋𝑓𝑏𝑛)

𝑁𝑓 . To do so, a function with the 

shape of 𝑒𝑗𝛾sin (2𝜋𝑓𝑏𝑛) can be expanded as a series of Bessel Functions in the following 

way: 

 
𝑒−𝑗𝛾sin (2𝜋𝑓𝑏𝑛) = ∑ 𝐽𝑞(𝛾)𝑒

−𝑗2𝜋𝑞𝑓𝑏𝑛

∞

𝑞=−∞

 (42) 

Therefore, applying (15) to (14) yields: 

 
𝑍[𝑘, 𝑙] = 𝑒

−𝑗2𝜋𝑙𝑚0
𝑁𝑓 ∑ 𝐽𝑞(𝛾)

∞

𝑞=−∞

∑ 𝑒−𝑗2𝜋𝑞𝑓𝑏𝑛𝑒
−𝑗2𝜋𝑘𝑛
𝑁𝑠

𝑁𝑠−1

𝑛=0

= 𝑒
−𝑗2𝜋𝑙𝑚0
𝑁𝑓 ∑ 𝐽𝑞(𝛾)

∞

𝑞=−∞

∑ 𝑒
−𝑗2𝜋(

𝑘
𝑁𝑠
+𝑞𝑓𝑏)𝑛

𝑁𝑠−1

𝑛=0

= 𝑒
−𝑗2𝜋𝑙𝑚0

𝑁𝑓 ∑ 𝐽𝑞(𝛾)

∞

𝑞=−∞

𝛿𝐷(
𝑘

𝑁𝑠
+ 𝑞𝑓𝑏) 

(43) 

Where 𝛾 =
2𝜋𝑙𝑚𝑑

𝑁𝑓
=

𝛽𝑙

𝑁𝑓
  and where subsequently 𝛽 = 2𝜋𝑚𝑑 . Replacing (16) into (13) we 

obtain: 

 
𝑋[𝑘,𝑚] = 𝛼𝑏 ∑ 𝛿𝐷(

𝑘

𝑁𝑠
+ 𝑞𝑓𝑏)𝛺𝑞(𝑚)

∞

𝑞=−∞

− 𝑥0(𝑚)𝛿𝐷(𝑘) (44) 

With the auxiliary expression being 

 

𝛺𝑞(𝑚) =
1

𝑁𝑓
∑ 𝐽𝑞 (

𝛽𝑙

𝑁𝑓
 ) 𝑃(𝑙)

𝑁𝑓−1

𝑙=0

𝑒
𝑗2𝜋𝑙(𝑚−𝑚0)

𝑁𝑓  (45) 

 

It can be verified that |𝛺𝑙(𝑚)| is maximized for 𝑚 = 𝑚0: 

 

𝛺𝑞(𝑚0) ≜ 𝐺𝑞(𝛽) =
1

𝑁𝑓
∑ 𝐽𝑞 (

𝛽𝑙

𝑁𝑓
 ) 𝑃(𝑙)

𝑁𝑓−1

𝑙=0

 (46) 

Finally, manipulating the result from equation (44) we obtain: 
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𝑋[𝑘,𝑚] = 𝛼𝑏 ∑ 𝛿𝐷(

𝑘

𝑁𝑠
+ 𝑞𝑓𝑏)𝛺𝑞(𝑚)

∞

𝑞=−∞

− 𝑥0(𝑚)𝛿𝐷(𝑘)

= 𝛼𝑏 ∑ 𝛿𝐷 (
𝑘

𝑁𝑠
+ 𝑞𝑓𝑏)𝛺𝑞(𝑚)

∞

𝑞=−∞,𝑞≠𝑜

+ (𝛼𝑏𝛺0(𝑚) − 𝑥0(𝑚))𝛿𝐷(𝑘) 

(47) 

And for the optimal value of 𝑚: 

 
𝑋[𝑘,𝑚0] = 𝛼𝑏 ∑ 𝛿𝐷 (

𝑘

𝑁𝑠
+ 𝑞𝑓𝑏)𝐺𝑞(𝛽)

∞

𝑞=−∞,𝑞≠𝑜

+ (𝛼𝑏𝐺0(𝛽) − 𝑥0(𝑚0))𝛿𝐷(𝑘) (48) 

From the expression (47), we see that the DFT along slow-time comprises a train of 

impulses at the harmonics of the respiration frequency 𝑓𝑏. The magnitude of the harmonics 

in |𝑋[𝑘,𝑚]|  are determined by  𝑚 , 𝛽  and 𝑃(𝑙)  and the maximum value is obtained at 

𝑚 = 𝑚0 as seen in equation (46). 

Due to the spectral leakage of the DFT, we apply a window, therefore, we convolve the 

result of the equation (48) with the intrinsic DFT rectangular window of structure: 

 𝜑(𝑛) = 𝑟𝑒𝑐𝑡 (
𝑛

𝑁𝑆
) (49) 

Which in frequency domain translates to: 

 𝜙(𝑓) = 𝑁𝑆𝑠𝑖𝑛𝑐(𝑛𝑁𝑆) (50) 

Applying the convolution to equation (48): 

 𝑋𝑤[𝑘,𝑚0] = 𝑋[𝑘,𝑚0] ∗ 𝜙(𝑘)

= 𝛼𝑏 ∑ 𝜙(
𝑘

𝑁𝑠
+ 𝑞𝑓𝑏)𝐺𝑞(𝛽)

∞

𝑞=−∞,𝑞≠𝑜

+ (𝛼𝑏𝐺0(𝛽) − 𝑥0(𝑚))𝜙(𝑘) 
(51) 

 

As previously mentioned, all this study was neglecting the noise. If we now assume additive 

white Gaussian noise like: 

 
𝑛(𝑛,𝑚) ~ 𝜨(0, 𝜎𝑛

2𝛿𝐷(𝑛)𝛿𝐷(𝑚)) 
(52) 

 

The output of the motion filter from (51) looks like: 

 

𝑋′𝑤[𝑘,𝑚0] = 𝛼𝑏 ∑ 𝜙(
𝑘

𝑁𝑠
+ 𝑞𝑓𝑏)𝐺𝑞(𝛽)

∞

𝑞=−∞,𝑞≠𝑜

+ 

(𝛼𝑏𝐺0(𝛽) − 𝑥0(𝑚))𝜙(𝑘) + 𝑁(𝑘,𝑚0) ∗ 𝜙(𝑘) 

 

(53) 

With the new factor: 
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𝑁(𝑘,𝑚) = ∑ 𝑛(𝑛,𝑚)𝑒
−
𝑗2𝜋𝑘𝑛
𝑁𝑠

𝑁𝑠−1

𝑛=0

 (54) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Task Start Date End Date 
Duration 

(days)                   M a  r                           
Date: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

1 HW and API interaction 2015-03-30 2015-09-13 168                                                 Y Y 

1.1 First contact with example software 2015-03-30 2015-04-05 7                         Y Y 

1.2 Connect the HW to Matlab 2015-04-21 2015-04-27 7                           

1.3 Test simple measurements  2015-04-21 2015-05-04 14                           

1.4 Prepare and obtain data 2015-04-28 2015-05-11 14                           

1.5 Final HW adjustment 2015-09-07 2015-09-13 7                           

2 Software simulation 2015-04-10 2015-05-13 35                           

2.1 Obtain and evaluate channel model 2015-04-10 2015-04-22 13                           

2.2 Adapt channel to our simulation 2015-04-22 2015-04-29 8                           

2.3 Reproduce a "basic" breath detecting system 2015-04-30 2015-05-13 14                           

3. Signal processing to obtain breath rate 2015-04-30 2015-06-06 52 

 

                         

3.1 Remove the clutter of the signal 2015-04-30 2015-05-20 21                           

3.2 Try different algorithms and transformations 2015-05-07 2015-06-06 31                           

4. Apnea/Respiratory patterns detection 2015-05-28 2015-09-20 80                           

4.1 LMS Algorithm implementation  2015-05-28 2015-06-17 21                           

4.2 Adjust LMS algorithm for a steady breath rate 2015-06-11 2015-07-01 21                           

4.3 Adjust LMS algm. for a variating breath rate 2015-06-25 2015-07-25 31                           

4.3 Final data acquisitions and tests 2015-09-14 2015-09-20 7                           

                                                            

 

                         A p r                                                       M a y                               
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
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                         J u n                                                       J u l                               

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 7 2 3 4 5 6 7 8 
 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
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Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                             

          Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                

                                      Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y       

                                                             

                                                                                                                          

 

 

 

 

 

 

 

 

 

 

X                         S e p t                          

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

X Y Y Y Y Y Y Y Y Y Y Y Y Y                                   

X                               

X                               

X                               

X                               

X       Y Y Y Y Y Y Y                  

X                                                             

X                               

X                               

X                               

X                                                             

X                               

X                               

X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                     

X                               

X                               

X                              

 

              Y Y Y Y Y Y Y           

                                                              


