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We show that graphene possesses a strong nonlinear optical response in the form of multiplasmon
absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict
that graphene nanoribbons can be used as saturable absorbers with low saturation intensity in the far-
infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme
localization of plasmon fields in graphene nanodisks can lead to a plasmon blockade effect, in which
a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.
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The field of nonlinear optics ranges from fundamental
questions concerning light-matter interactions to exciting
technological applications [1]. However, usually very large
field intensities are required to observe nonlinear effects.
One is thus always looking for systems that will exhibit
nonlinear phenomena at lower powers, with the ultimate
limit being strong interactions between just two quanta of
light [2]. One possibility to increase nonlinear effects is to
use the strong localization and enhancement of electro-
magnetic fields in the form of surface plasmon excitations
[3]. In that regard, we note that graphene [4] has been
demonstrated to support extremely localized plasmons
[5–14]. While optical nonlinearities in graphene have been
studied by several authors [15–26], here we predict a novel
nonlinear effect in the form of multiplasmon absorption.
We also show how this effect leads to saturable absorption
in graphene nanoribbons at low input powers in the far-
infrared and terahertz spectrum. Moreover, we predict that
the extreme localization of plasmon fields in graphene
nanodisks leads to such a strong two-plasmon absorption
that it becomes nearly impossible to excite a second
quantized plasmon in the system. This plasmon blockade
effect would cause the nanodisk to behave essentially like a
quantum two-level system, which is observable in its
resonance fluorescence spectrum.
Graphene is a two-dimensional hexagonal lattice of

carbon atoms [4]. The low-energy band structure of
graphene is described by Dirac cones with the electron
dispersion Enk ¼ nℏvFjkj, where vF ¼ 106 m=s and
n ¼ �1 stands for the conduction (valence) band [27].
In its intrinsic form graphene is a zero-gap semiconductor;
however, it can also be easily doped with free carriers and
as such it supports plasmon modes [5–7]. At low frequen-
cies, one can get a rather accurate description of these
modes by using a simple Drude conductivity

σðωÞ ¼ e2EF

πℏ2

i
ωþ iγ

; ð1Þ

where EF is the Fermi energy of graphene and γ is a
phenomenological damping rate that takes into account
various decay channels like impurity or phonon scattering
[7]. The resulting plasmon dispersion is given by

q ¼ 2πε0ε̄rℏ2

e2EF
ω2; ð2Þ

and we assume the average dielectric permittivity ε̄r ≈ 2.5,
which roughly corresponds to the case of graphene on a
SiO2 substrate and air on top. This simple Drude model
breaks down at large frequencies when plasmons become
strongly damped by electron-hole excitations, which can be
described by the random phase approximation [5–7].
However, at low energies the Pauli principle blocks this
decay channel and the plasmon is a long-lived excitation
[5–14]. The resulting plasmon wavelength λp ¼ 2π=qp is
about 100 times smaller than the free space wavelength
λ ¼ 2πc=ω, leading to the extreme localization of electro-
magnetic fields [7].
An intuitive explanation of the strong nonlinearities

associated with plasmons emerges by considering the
typical doping levels in graphene. For an electron density
of n ¼ 1012 cm−2, the distance between two electrons is
re ¼ 1=

ffiffiffiffiffiffi
nπ

p ¼ 5.6 nm, and so to observe some kind of
nonlinear phenomenon we need to compete with an
intrinsic electric field of the order

Ee ¼
e

4πε̄rε0r2e
≈ 2 × 107 V=m: ð3Þ

This is significantly smaller than the characteristic field
amplitude associated with nonlinear effects in atoms [1],
given by the field between an electron and proton at a
distance of a Bohr radius aB ¼ 0.5 Å. The electric field in
that case is Eat ¼ 5 × 1011 V=m, about 4 orders of magni-
tude larger than the field Ee in graphene.
To see what happens to plasmons at such a field strength

Ee, let us imagine a general case of plasma oscillations at
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frequency ω and wave vector q, which is accompanied by
an electric field Eðr; tÞ ¼ 1

2
Epeiq·r−iωt þ c:c: in the plane of

graphene. When the plasmon field is small, it will induce a
surface charge density ρp ¼ ½qσðωÞ=ω�Ep that in turn
creates an electric field Ep ¼ −iρp=2ε̄rε0, thus driving
self-sustained charge density oscillations. However, at the
field strength Ep ¼ Ee, the induced charge density jρpj ¼
en=2 will be comparable to the initial charge density en,
and this simple picture of plasmons breaks down. We will
in fact see that at this field Ee there is a strong plasmon
damping via multiplasmon absorption.
To understand how this comes about, let us first look at

the linear (single-plasmon) absorption. Assuming that the
graphene plane is perpendicular to the z axis, the plasmon
field can be described by the scalar potential
φðr; z; tÞ ¼ 1

2
φpeiq·r−qjzje−iωt þ c:c:, where r ¼ ðx; yÞ.

The electric field is then given by E ¼ −∇φ, with the
amplitude jEpj ¼ qjφpj, for both in-plane and out-of-plane
components. The interaction of the plasmon field with the
electrons can be described by the Hamiltonian
Hp ¼ − 1

2
eφp

P
je

iq·r̂je−iωt þ c:c:, where r̂j is the position
operator acting on the jth electron. To calculate the linear
absorption we can write the dissipated power as
P ¼ P

nℏω½dwð1Þ
n0 =dt�, where

dwð1Þ
n0

dt
¼ 2π

ℏ
jhnjHpj0ij2δðEn − E0 − ℏωÞ ð4Þ

is Fermi’s “golden rule” for the probability that the system
will absorb one plasmon quantum of energy ℏω. Here jni is
the many-body excited state of momentum ℏq and energy
ℏω, with respect to the ground state j0i, and we assume that
the system is at zero temperature [28]. To quantify
absorption we can look at the dissipation rate

γp ¼ P
W

: ð5Þ

Here W ¼ ε̄rε0jEpj2A=q is the total plasmon energy in the
graphene flake of the surface area A [28], while the figure
of merit is the plasmon quality factor Q ¼ ω=γp.
From Eq. (4) we see that the absorption process consists

of a sum over all events where the plasmon can excite a
single e-h pair. Conservation of energy and momentum
require that ℏω ¼ En2kþq − En1k; however, the Pauli prin-
ciple allows this process only above the threshold condition
of ℏω > 2EF − ℏvFq [see the gray area in Fig. 1(a)]. We
can calculate the linear absorption by using the basis of
Dirac electron wave functions in graphene [28]. As an
example, at energy ℏω ¼ 1.7EF, the dissipation rate
γð1Þp =ω ¼ 1 is so high (Q ¼ 1) that the plasmon is not a
well-defined excitation. Below this threshold the Pauli
principle blocks the absorption process and the plasmon
is a long-lived quasiparticle. However, if we increase the
plasmon field, higher-order (nonlinear) absorption must be
accounted for as well.

We note that this simple calculation of the linear
absorption gives the same result as the random phase
approximation [28]. Encouraged by this fact, we proceed to
calculate the nonlinear, two-plasmon absorption by writing
P ¼ P

n2ℏω½dwð2Þ
n0 =dt� and using Fermi’s golden rule for

the probability that the system absorbs two plasmon
quanta:

dwð2Þ
n0

dt
¼ 2π

ℏ

����Xm

hnjHpjmihmjHpj0i
Em − E0 − ℏω

����2δðEn − E0 − 2ℏωÞ:

ð6Þ
Alternatively, one could perform a third order expansion of
the single particle density matrix including the screening
fields consistently in every order of the expansion [34].
Such a calculation yields additional terms that contribute to
the dissipation, arising from higher-order screening corre-
lations. However, at high fields, when the nonlinear
absorption is large, the screening process will be less
effective and the simple calculation (6) should give a good
estimate of the absorption. By evaluating expression (6) we
get the two-plasmon absorption rate

γð2Þp

ω
¼ Fð2ÞðωÞ

����Ep

Ee

����2; ð7Þ

where Fð2Þ is a dimensionless function of plasmon fre-
quency, which is given in the Supplemental Material [28]
and shown in Fig. 1(b). It is straightforward to show that the
Pauli principle allows two-plasmon absorption only above
the threshold ℏω > EF − ℏvFq [see the red area in
Fig. 1(a)]. Then, if we look at the energy ℏω ¼ EF, a
single plasmon cannot excite an e-h pair but it can decay
via two-plasmon absorption. Specifically, at this energy and
the plasmon field Ep ¼ Ee, the two-plasmon absorption
rate γð2Þp =ω ¼ 0.8, so that Ep ≲ Ee sets a maximum field
amplitude in which plasmons can oscillate. In fact, at this

FIG. 1 (color online). (a) Plasmon dispersion relation. Gray
area denotes the regime where a single plasmon can excite an e-h
pair. Red area denotes the regime where this process is forbidden
but plasmons can decay via two-plasmon absorption. Similarly,
the yellow area denotes the regime of three-plasmon absorption.
(b) Two-plasmon damping rate γð2Þp =ω ¼ Fð2ÞðωÞ for Ep ¼ Ee,
indicating that plasmons cannot oscillate when the plasmon field
is equal to the intrinsic electric field. Inset shows the band
structure of graphene and a two-plasmon absorption process.
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intrinsic field we expect that the perturbation theory should
fall apart entirely. Indeed at the same energy ℏω ¼ EF and
field strength Ep ¼ Ee we obtain the three-plasmon absorp-
tion rate γð3Þp =ω ¼ 0.3 [28], which is about 40% of the
two-plasmon absorption rate, signalling the breakdown of
the perturbation theory. Moreover, at the same field
strength but lower energy ℏω ¼ 0.6EF [in the yellow area
in Fig. 1(a), where two-plasmon absorption is forbidden
by the Pauli principle], we obtain the three-plasmon
absorption rate γð3Þp =ω ¼ 3.2, again showing that plasmons
cannot oscillate at the intrinsic field Ee.
These effects could be observed in experiments as the

broadening of the plasmon linewidth with increasing
plasmon amplitude. One way to excite plasmons by far
field radiation is to use the sharp metal tip [12–14]. While
the metal tip also leads to field enhancement, this is not the
best setup to observe nonlinear effects, since the plasmon
amplitude decreases as the plasmon propagates away from
the tip in the form of a circular wave. Probably the
dominant nonlinear effect will be a lower tip-plasmon
coupling strength at high pump fields due to larger plasmon
linewidths just below the tip.
An alternative way to excite plasmons by far-field

radiation is to use graphene nanostructures with dipolar
resonances [9–11], described by the polarizability [35,36]

αðωÞ ¼ D3
G

K
ε̄r
− 4πε0iωD

σðωÞ
: ð8Þ

Particularly, in the case of a nanoribbon, K ¼ 16 and
G ¼ L=D, whereD is the width and L ≫ D is the length of
the ribbon [36]. To describe the plasmon resonance we can
use the simple Drude model of the surface conductivity
σðωÞ given by Eq. (1). However, now we must include
the total damping rate γt ¼ γ þ γðNÞ

p , which contains
both the linear term (γ) like impurity or phonon scattering,
and the nonlinear term (γðNÞ

p ) like two- or three-plasmon
absorption [28]. Specifically, to produce a resonance at
frequency ω0, we require a ribbon of width D ¼
ðK=4π2Þλp ≈ λp=2, where λp ¼ 2π=qp is the plasmon
wavelength in extended graphene given by Eq. (2). We
are primarily interested in the regime ℏω0 ¼ EF where a
single plasmon cannot excite an e-h pair, but two-plasmon
absorption is allowed. For a typical doping n ¼ 1012 cm−2
(EF ¼ 0.12 eV), the corresponding free-space wavelength
is λ0 ¼ 2πc=ω0 ¼ 10.6 μm, the plasmon wavelength
λp ¼ 62 nm, and the ribbon width D ¼ 25 nm.
The absorption cross section is given by σaðωÞ ¼

ð4πω=cÞImαðωÞ ¼ ð3=8πÞλ20γrγt=½ðω0 − ωÞ2 þ γ2t =4�,
where we have introduced the radiative decay rate of the
ribbon γr ¼ ð16π3=3Þðε̄rG=KÞðD3=λ30Þω0 [36,37]. To esti-
mate impurity or phonon scattering we can use measure-
ments of the direct current mobility γ ¼ evF=μℏ

ffiffiffiffiffiffi
πn

p
[7].

For typical graphene mobilities of μ ¼ 104 cm2=V s [4], we
have γ ¼ 8.6 THz, while γr ¼ 6.1 GHz, even for a ribbon

of length L ¼ 100D. Since γr ≪ γ, graphene nanostruc-
tures primarily act as absorbers, while the absorbed power
can easily be detected via the reduction of light transmitted
across the ribbon [9–11] [see Fig. 2(a)].
The dissipated power is P ¼ Iσa ¼ γtW, whereW is the

total energy, and I ¼ 1
2
ε0cjEj2 is the incident light intensity.

We can then estimate the plasmon field inside of the ribbon
by using the result for the extended graphene W ¼
ε̄rε0jEpj2A=qp, where A ¼ LD is the ribbon area. We
obtain jEpj2 ¼ jEj2ω2

0=4½ðω0 − ωÞ2 þ γ2t =4�, where the
total damping rate γt ¼ γ þ γð2Þp itself depends on the
plasmon field through the nonlinear damping term
γð2Þp ∝ jEpj2 given by Eq. (7). Then, by increasing the
intensity, there is an increase in the total damping rate and a
decrease of the absorption cross section [see Fig. 2(b)].
In particular, at intensity Is ¼ 24 kW=cm2, we obtain
γð2Þp ¼ γ on resonance, which reduces the absorption cross
section by a factor of 2. This corresponds to an input power
of only 7 mW for a laser focused to a diffraction-limited
spot size ðλ=2Þ2, which would induce negligible heating of
the graphene flake [28].
While extended graphene can also be used as a saturable

absorber, due to Pauli blocking, the required intensities
(300 MW=cm2) are 4 orders of magnitude higher [18].
Moreover, by lowering the doping we can further reduce
the saturation intensity of the ribbon, while the resonance
frequency would fall into the terahertz band, which would
also require wider ribbons to satisfy the condition
ℏω0 ¼ EF. On the other hand, for a fixed ribbon width,
by changing the doping one can tune the system response
from the single-plasmon, two-plasmon or three-plasmon
absorption regime. However, even though plasmon reso-
nances in graphene nanoribons have been measured in the
recent experiment [11], due to higher doping and lower
quality factors, the saturation intensity required to see
multiplasmon absorption is Is ≈ 100 MW=cm2. This inten-
sity would actually damage the graphene under the

FIG. 2 (color online). (a) Transmission spectroscopy of a
graphene nanoribbon. (b) Absorption cross section normalized
to the surface area of the ribbon. The solid line stands for the low
pump I ≪ Is, and the dashed line for the high pump intensity
Is ¼ 24 kW=cm2. The saturation of absorption is caused by two-
plasmon absorption inside of the ribbon. The ribbon width is
D ¼ 25 nm, the doping n ¼ 1012 cm−2, and the resonance
frequency ω0 ¼ 2π × 28 THz.
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continuous wave pump [28], which is the regime used in
the experiment [11].
Especially interesting is the case of a nanodisk where we

can localize the entire field to an extremely small volume
≈λ3p. The polarizability of a disk can also be described by
expression (8), if we now take D as the disk diameter,
K ¼ 12.5, and G ¼ 0.65 [35]. To produce a resonance at
energy ℏω0 ¼ EF and doping n ¼ 1012 cm−2 requires a
disk diameterD ¼ 20 nm. This yields a radiative decay rate
of γr ¼ 24 MHz, while the other parameters are the same
as in the case of a ribbon (above).
We can now estimate the electric field amplitude

associated with a single quantized plasmon by writing
W ¼ ℏω0 and using the result for the extended graphene
W ¼ ε̄rε0jEpj2A=qp, where A ¼ πD2=4 is the disk area.
This gives a remarkable result for the field amplitude

EQ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27π4

K2

ℏω0

ε0ε̄rλ
3
p

s
≈ 2 × 107 V=m: ð9Þ

In other words, the field of a single quantized plasmon is of
the same order of magnitude as the intrinsic field Ee. Then,
for two plasmons the damping rate due to two-plasmon
absorption would be so high (γð2Þp =ω0 ¼ 1.4) that the
resonance peak would completely disappear, leading to a
plasmon blockade effect [28].
To quantify this effect we adopt a density matrix

approach, dρ=dt ¼ ði=ℏÞ½ρ; H� þ L½ρ�. Here, the system
Hamiltonian is given by H ¼ ℏω0N − ðℏΩ=2Þðaeiωtþ
aþe−iωtÞ, where N ¼ aþa is the plasmon number operator
and Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2πÞðλ20I=ℏω0Þγr

p
is the Rabi frequency

describing the interaction with the incident field of intensity
I. The Liouvillian L ¼ Lð1Þ þ Lð2Þ consists of two terms
that characterize the linear and nonlinear dissipation,
respectively; LðNÞ½ρ� ¼ ðγðNÞ=2Þð2aNρaþN − aþNaNρ −
ρaþNaNÞ [38], where γð1Þ ¼ γ and γð2Þ ¼ γð2Þp , so that
γð1Þ=γð2Þ ¼ 0.03 ≪ 1. Under conditions of weak external
driving, the dynamics of the (infinite-dimensional) density
matrix can effectively be truncated to a few-excitation
manifold [38]. Specifically, at Ω ≪ γð2Þ the steady-state
population of the excited state j2i (containing two plas-
mons) is extremely weakly populated, ρ22 ¼ 2ρ11=½1þ
ð2γð2Þ=ΩÞ2�, and the disk effectively behaves as a two-
level system.
The absorption cross section σa ¼ ðℏω0Ω=IÞImρ10 ¼

ð3=8πÞλ20γrγ=½ðω0 − ωÞ2 þ γ2=4þ Ω2=2� saturates at
intensity Is ¼ 50 kW=cm2 (Ω ¼ γ=

ffiffiffi
2

p
). Like in the ribbon

case, the radiative damping rate is negligible ðγr ≪ γÞ and
the disk primarily acts as an absorber. However, the weakly
scattered light will now show interesting spectral properties
since a two-level system behaves as a strong frequency
mixer [38]. To substantiate this, let us look at the
power spectrum of the scattered light, SðωsÞ ¼
ð1=πÞRe R∞

0 haþð0ÞaðtÞieiωstdt. By using the quantum
regression theorem [38] we obtain the steady-state

two-time correlation function on resonance, haþð0ÞaðtÞi ¼
1
4
ðe−γt=2 þ 1

2
e−3γt=4e−iΩt þ 1

2
e−3γt=4eiΩtÞe−iωt, where we

have assumed the strong-pump regime Ω ≫ γ=4 but also
Ω ≪ γð2Þ so that the disk still behaves as a two-level
system. The scattered spectrum consists of the Mollow
triplet: one peak at the laser frequency ω0 and two at the
Rabi sidebands ω0 � Ω [39]. In Fig. 3(d) we plot the case
ofΩ ¼ 4γ, while Ω=γð2Þ ¼ 0.1 so that the disk still behaves
as a two-level system up to an excellent approximation. A
peculiar feature of this result is that the system produces
frequency mixing (characteristic of dispersive nonlinear-
ities) starting only from the two-plasmon absorptive
nonlinearity.
The two-level nature of the system is especially

reflected in the second-order correlation function gð2ÞðtÞ ¼
haþð0ÞaþðtÞaðtÞað0Þi=haþð0Það0Þi2, which describes the
probability of detecting a second scattered photon at time t
given a detection event at t0 ¼ 0. In the steady-state, low
pump regime Ω ≪ γ, it is straightforward to show that
gð2Þð0Þ ¼ ð1þ γð2Þ=γÞ−2 ¼ 10−3. Thus, the disk exhibits an
almost perfect antibunching effect characteristic of an ideal
two-level system [to compare, gð2Þð0Þ ¼ 1 in the absence of
nonlinearities]. The temporal duration of this antibunching
dip around zero time delay t ¼ 0 is given by ∼1=γ [in
particular, within a two-level approximation gð2ÞðtÞ ¼ 1þ
e−γt − 2e−γt=2 [38]], after which the system returns to a
stationary value of gð2ÞðtÞ ¼ 1 as illustrated in Fig. 3(e).
The sub-Poissonian nature of the scattered light,
gð2Þð0Þ < gð2ÞðtÞ, is a distinctly nonclassical feature that

FIG. 3 (color online). (a) Resonance fluorescence of a graphene
nanodisk. (b) Quantized plasmon energy levels in a disk. Two-
plasmon absorption induces a huge linewidth of the doubly
excited state j2i, which makes it extremely difficult to populate
this state and effectively turns the disk into a two-level system.
(c) Absorption cross section normalized to the disk surface. The
solid line stands for the low pump field (Ω ≪ γ), and the dashed
line for the strong pump field (Ω ¼ γ=

ffiffiffi
2

p
). (d) Scattered spec-

trum on resonance (ω ¼ ω0) in the strong pump regime (Ω ¼ 4γ),
showing the Mollow triplet. (e) The second-order correlation
function gð2ÞðtÞ of the scattered field for weak pump intensities,
showing an antibunching effect gð2Þð0Þ ≪ 1 characteristic of a
two-level system.
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reflects the inability of a two-level system to emit two
excitations simultaneously [40].
In conclusion, we have discussed multiplasmon absorp-

tion in graphene, and we have shown how this effect leads
to the saturation of absorption in graphene nanoribbons,
which could be used to build tunable low-power saturable
absorbers in the infrared and terahertz band [18]. We have
also shown that two-plasmon absorption in graphene
nanodisks leads to the plasmon blockade effect, which
offers an exciting possibility to observe and understand
strongly interacting photons at the many-body quantum
level [41]. Multiplasmon absorption could also have
interesting effects on the hot-carrier dynamics [42] and
graphene photodetection or light harvesting devices [43].
Finally, we expect that exciting new physics could be
found beyond the perturbative regime discussed in our
Letter, like high-harmonic generation observed at strong
light intensities [44,45].
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