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Abstract. Corners of reinforced concrete frames under opening bending moment should be  
always considered in complex stress conditions. A proper reinforcement of these corners 
demands some special methods instead of traditional algorithms. In this paper two chosen 
method are described, namely Strut-and-Tie (S&T) and FEM using Abaqus software. The 
second method uses Concrete Damaged Plasticity model, implemented in Abaqus code. The 
corners taken into consideration differ from each other in a reinforcement pattern. Moreover, 
two different cases of section heights are analyzed: same and different heights of elements 
joining in a corner. Calculations in S&T method allow to establish proper reinforcement and 
corner efficiency factor. Then the corners are modeled in Abaqus using CDP and results of 
crack patterns, efficiency factor, yielding, non-linear behavior and history of load are gained. 
An extra scientific problem described in this paper is a proper choice of CDP parameters.

1 INTRODUCTION 
Corners under opening bending moment are very common case in structural design. They 

appear in single and multi storey frames, underground water tanks, retain walls and 
foundations. In the Figure 1 a corner under opening bending moment with sample crack 
pattern is presented.

Figure 1: Corner under opening bending moment (crack pattern after [1])
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Depending on the type of structure this corner can be considered in plane stress or plane 
strain state. The first case refers to single or multi storey frames and the second state is 
characteristic for tanks and retaining walls. Both these cases are useful for structural designers 
and are considered in this paper.

The choice of these corners for analysis is due to the fact that they are under complex 
stress conditions and a proper choice of their reinforcement requires some special methods. 
One of these methods is S&T, which is well described in Eurocode 2 [2] and FIB bulletins. 
However, S&T method for corners under opening bending moment is developed only for 
corner with the same section heights of beam and column. There is no guidance for corners 
with different section heights. Moreover, S&T allows only to calculate a required 
reinforcement and to check if maximal compression stress is not higher than admissible. The 
second method used by the authors is FEM, performed in Abaqus [3]. This method allows to 
recreate full history of load and yielding, including crack pattern and propagation. The 
reinforcement calculated in S&T is an input for FEM model and results gained in Abaqus 
allow to confirm which reinforcement pattern is worth recommendation. 

2 INPUT DATA FOR FRAME CORNERS 
The corners taken for analysis have some common properties, which are listed below. All 

corners are made of concrete C40/50 and reinforced with steel B500SP. Here are the material 
constants: 
- concrete: fck =40 MPa, fcd =34.30 MPa, Ecm=35 GPa, ν=0.167, 
- steel: fyk = 500 MPa, fyd = 434.8 MPa, Es=200 GPa, ν=0.3. 

Each corner is loaded with an opening bending moment M=30 kNm modeled as a pair of 
forces of magnitude: 
- 250 kN for the section height 200mm and the distance between the forces is 120mm, 
- 71.43 kN for the section height 500mm and the distance between the forces is 420mm. 

The geometry of corners for both cases is presented in the Figure 2. For the time being 
analysis is restricted to corners with the same section heights. In future authors plan to extend 
analysis for the case of different section heights. The reinforcement patterns taken into 
consideration are introduced in the Figure 3. 

Figure 2: Dimensions of corners 
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Figure 3: Reinforcement patterns for corners 

The stress-strain curve for concrete in uniaxial compression is approximated by piecewise 
linearization of σ−ε curve given in EC2 [2]. The coordinates of assumed points are listed in 
the Table 1. For description of concrete in uniaxial tension a linear σ−ε relation is assumed in 
postcritical state for given fracture energy Gf. 

Table 1: Compresive behavior of concrete 

Yield stress 
[MPa] 

Inelastic strain [o/oo] 

13.70 0.00 
29.30 0.95 
34.30 1.75 
33.70 2.25 

The Abaqus user should also input some other important CDP model parameters. The 
authors of this paper analyze how the choice of these parameters affects the results of 
calculations. All these parameters are listed in the Table 2.  

Table 2: CDP parameters range 

Fracture energy Gf [Nm-1]: 146.5, 500, 1000 
Dilation angle [degrees]: 0, 5, 15, 30 
Relaxation time [s]: 0.0001 
Eccentricity: 0.1 
fb0/fc0: 1.16 
K: 0.667 
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For steel rebars elastic-idealplastic relation in uniaxial σ−ε state is assumed (Figure 4). 

Figure 4: Reinforcing steel behavior 

3 CONCRETE DAMAGED PLASTICITY MODEL 
One of the concrete models available in Abaqus software is the so-called Concrete 

Damaged Plasticity. The theoretical framework of the model has been defined by Lubliner, 
Onate, Oller and Oliver [4]. A fundamental of this model is the assumption that there are two 
mechanisms of concrete damage: tensile cracking and compressive crushing. The amount of 
plastic deformation is controlled by the equivalent plastic strain in tension and compression. 
There are two damage parameters namely, dt and dc, where the subscript t denotes tension and 
c denotes compression of the concrete. These parameters are functions of plastic strain and 
take a value from 0 (in virgin state) to 1 (a total loss of capacity). Due to these parameters the 
reduction of the material stiffness is defined according to the formula [5]:  

  1   (1) 

where D is a material stiffness operator, Do is the stiffness operator in elastic range and d 
denotes one of these two parameters, dt or dc, depending on whether the material is in a 
compression or tension. 

Abaqus allows piecewise linearization of σ−ε curve both in compression and tension 
according to values specified by user. Values used by authors are described in section 2. The 
program allows also to specify fracture energy Gf.

An important procedure that improves the convergence of the nonlinear problem is a 
regularization. One of the ways to carry it out is the use of visco-plastic model which takes 
into account the viscous properties of concrete. This possibility exists in Concrete Damaged 
Plasticity model in Abaqus and assumes Duvaut-Lions' viscoplastic model [6]. This 
regularization is expressed using formula: 

  
1
 

  
(2) 

where  denotes the viscoplastic strain of concrete and  is the plastic strain of the
concrete without taking into account the viscosity, µ is the relaxation time (in Abaqus called 
the viscosity parameter). In addition, in an analogous manner the degradation parameter of 
stiffness is regularized according to formula: 
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 
1
   

(3) 

where d is one of two degradation parameters dc or dt and  is the degradation parameter 
taking into account both viscoplasticity and viscous damage. The final relationship between 
stress and strain taking into account both viscoplasticity and viscous damage has form: 

  1  :    (4) 

where : denotes a scalar product of tensors. 
The flow potential is defined by the hyperbolic function being asymptotic to the Drucker-

Prager cone [5]. The yield function implemented in CDP model is specified according to 
Lubliner et al. [4] with later modifications by Lee and Fenves [7]. The plastic flow is 
nonassociated and therefore an Abaqus user should define dilation angle separately. For a full 
definition of CDP model in Abaqus one should input the following parameters: 

- compressive behavior of concrete including compression damage condition, 
- tension behavior of concrete (optionally fracture energy) including tension damage 

condition, 
- dilation angle ψ in the p-q plane, 
- flow potential eccentricity ε, 
- the ratio fb0/fc0 of biaxial compressive yield stress to uniaxial compressive yield stress, 
- the ratio K of the second stress invariant on the tensile meridian to that on the compressive 

meridian for the yield function, 
- the viscosity parameter (if viscous regularization is used). 

4 CALIBRATION OF CDP MODEL PARAMETERS 
The calibration of CDP model parameters is performed in Abaqus software as a uniaxial and 

biaxial compression of a concrete specimen. Results of the calculations are compared with the 
well-known laboratory tests of Kupfer [8]. The specimen has the same properties and 
dimensions as Kupfer's ones (20x20x5 cm). The FEM analysis is performed in three-
dimensional strain state. Finite elements are modeled as 3D cubic elements (Figure 5). 

Figure 5: 3D view of a concrete specimen 

One of the boundary condition of this model is a linear displacement of a top surface of the 
specimen (for uniaxial compression) or linear displacement of both top and lateral surface (for 
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biaxial compression). The biaxial compression tests are divided into two separate cases: when 
compression for both directions is equal (1:1) and when compression for one direction is two 
times higher (1:0.5). Results of calculations are presented in the form of plots of linear strains 
and volumetric strain versus stress. A tested parameter is dilation angle, which varies from 0 
through 5, 15 till 30 degrees. 

In the Figures 6 and 7 linear and volumetric strains versus leading stress σ11 for uniaxial 
compression are shown. The Figures 8 and 9 present the same relationship for biaxial 
(σ11:σ22=1:1) compression and Figures 10 and 11 for σ11:σ22=1:0.5. Stress values are given in 
non-dimensional form scaled relative to uniaxial compressive strength fc. Each graph contains 
also curves gained in tests by Kupfer [8]. For uniaxial compression the compressive behavior 
of concrete is defined according to Kupfer's results. The point is to find for which dilation 
angle the σ−ε curve for biaxial compression is the most similar to laboratory tests. 

Figure 6: Linear strains versus σ11 for uniaxial compression 
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Figure 7: Volumetric strain versus σ11 for uniaxial compression 

Figure 8: Linear strains versus σ11 for 1:1 biaxial compression 
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Figure 9: Volumetric strain versus ε11 for 1:1 biaxial compression 

Figure 10: Linear strains versus σ11 for 1:0.5 biaxial compression 
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Figure 11: Volumetric strain versus σ11 for 1:0.5 biaxial compression 

The results of this calibration show that for biaxial compression (1:1) the most compatible 
with Kupfer's tests is the curve for dilation angle 15 degrees. For the other cases the dilation 
of 5 degrees seems to be rational. Using dilation angle of 30 degrees, Abaqus user should be 
aware that positive volumetric strains in concrete can appear. 

5 STRUT-AND-TIE AND ABAQUS ANALYSIS 
All the chosen reinforcement details are at first analyzed with Strut-and-Tie method. 

Thanks to these calculations a required reinforcement and a corner efficiency factor are 
established. The corner efficiency factor is a ratio of permissible stress in struts to 
compressive stress calculated for each strut for the external moment equal to 30 kNm. All the 
results are listed in the Table 3. 

Table 3: Results gained with Strut-and-Tie method 

No Reinforcement detail Efficiency factor Provided reinforcement 
1. 

0.83 
Main reinforcement: 4 bars each 

φ20mm 

2. 
0.76 

Main reinforcement: 4 bars each 
φ20mm 

Diagonal bar: 2 bars each φ12mm 
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3.
0.79 

Main reinforcement: 4 bars each 
φ20mm 

Diagonal bar: 2 bars each φ12mm 

4. 
1.13 

Main reinforcement: 4 bars each 
φ16mm 

Diagonal stirrup: 2 bars each 
φ20mm 

5. 
1.44 

Main reinforcement: 4 bars each 
φ16mm 

Diagonal stirrup: central - 2 bars 
each φ20mm, rest: φ12mm 

6. 
1.49 

Main reinforcement: 4 bars each 
φ16mm 

Diagonal stirrup: 6 bars each 
φ12mm 

7. 
1.56 

Main reinforcement: 4 bars each 
φ16mm 

Diagonal stirrup: central - 2 bars 
each φ20mm, rest: φ12mm 

Diagonal bar: 2 bars each φ12mm 

The provided reinforcement is used for defining the same corner details in Abaqus 
software. The corners are calculated both in plane stress and plane strain states. The applied 
load is defined using load parameter λ which takes value 1 for external moment equal to 30 
kNm (the load level used in Strut-and-Tie method). In computations value of load parameter λ
has varied from 0 (no load) to 2. 

One of the calculated values is the relationship between a displacement of a chosen node 
and the load ratio λ. The chosen node and its displacement is shown in the Figure 12. The 
expected relationship between these two quantities is non-linear with a clear horizontal end 
fragment (plastic plateau). 

Figure 12: Location of a node and its displacement 

In the Figures 13 to 15 results of FEM calculations for reinforcement detail No 1 in plane 
stress state are presented. The results show a variation of the nodal displacement versus the 
load ratio λ. Different values of fracture energy and dilation angle values are taken into 
consideration and also different sizes of finite elements. With a dashed horizontal line the 
efficiency factor calculated with Strut-and-Tie method is marked. 
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Figure 13: Displacement [mm] vs load ratio for Gf=146.5 Nm-1

Figure 14: Displacement [mm] vs load ratio for Gf=500 Nm-1

Figure 15: Displacement [mm] vs load ratio for Gf=1000 Nm-1

We can clearly see that the value of fracture energy for plane stress state should be carefully 
considered. This value calculated according to FIB model code [9] (146.5 Nm-1) concerns 
concrete without reinforcement. For FEM modeling of RC structures it is seems to be 
reasonable to choose a higher value of Gf. 

In the Figure 16 nodal displacements for plane strain state and dilation angle 15 degrees 
are presented. This time all these curves have a clear plastic plateau and they present similar 
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efficiency factors to those gained in Strut-and-Tie method. In this case dilation angle 15 
degrees and fracture energy according to FIB recommendation seem to be reasonable. 

Figure 16: Displacement [mm] vs load ratio for plane strain state 

6 CONCLUSIONS 

A proper choice of CDP model parameters for numerical simulations is still difficult and 
demands many tests such as calibration and case studies. The authors of this paper suggest 
that the values of dilation angle and fracture energy should be established in compliance with 
results gained in Strut-and-Tie method and laboratory tests. Moreover, it is also very 
important whether simulations are executed in plane stress or plane strain state. As the results 
of calculation show, it is easier to gain a proper displacement-load relation for concrete if 
plane strain state is assumed. 
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