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ABSTRACT 

Establishing the presence or absence of nanoscale compositional heterogeneity with nanoscale resolution is 

becoming instrumental for the development of many fields of science. Force versus distance measurements and 

parameters directly or indirectly derived from these profiles can be potentially employed for this purpose with 

sophisticated instruments such as the atomic force microscope (AFM). On the other hand, standards are 

necessary to reproducibly and conclusively support hypothesis from experimental data and these standards are 

still emerging. Here, we define a set of standards for providing data originating from atomic force 

measurements to be employed to compare between sample properties, parameters, or, more generally, 

compositional heterogeneity. We show that reporting the mean and standard deviation only might lead to 

inconsistent conclusions. The fundamental principle behind our investigation deals with the very definition of 

reproducibility and repeatability in terms of accuracy and precision, and we establish general criteria to ensure 

that these hold without the need of restricting assumptions. 
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1. INTRODUCTION 

A major motivation behind mapping material properties with nanoscale resolution relates to understanding the 

relationships between dimensions and properties, since these might allow fine-tuning of these properties. In fact, 

a unifying goal in nanotechnology is to exploit the properties that structures exhibit when reaching nanoscale 

dimensions,1−3 and such properties and phenomena are many times interpreted in terms of nanoscale 

heterogeneity.4−6 Nanoscale heterogeneity might manifest as a range of exotic mechanical,5,7 optical,8 

chemical,9 or other phenomena,1 and properties might be exploited in terms of functionality10 ranging from 

mechanics7 to biology.6,9 AFM has the capacity to map nanoscale properties with high resolution and is 

therefore very commonly employed to map nanoscale heterogeneity.4,11−14 In one of its fundamental modes of 

operation, AFM is employed to measure the distance dependent forces that the tip of the AFM, i.e., a 

nanostructure, experiences when it is brought into close proximity with a surface. From this tip−surface force 

profile or Fts, several material dependent features can be recorded. Arguably, in experiments dealing with other 

than mechanical contact, the most commonly employed-model independent-feature derived from the force 

profile is the minima in force, or force of adhesion (FAD). Another useful feature that has the advantage of also 

being model independent is the work of adhesion or area under the curve (WAD). These6,14,15 and other features, 

i.e., energy dissipation,4,16,17 stiffness,11,18 etc., are commonly employed to establish the presence or absence of 

nanoscale heterogeneity in a given surface.19 Here, we explore the experimental conditions and requirements to 

establish the presence or absence of nanoscale compositional heterogeneity from experimental force 

measurements in AFM by considering experimental errors in the context of accuracy and precision as a function 

of the samples’ size N. We employ a homogeneous material, i.e., a sapphire surface, to exemplify and verify our 

hypothesis. We focus on a fundamental parameter of force profiles, namely, FAD, but we exemplify how our 

methodology can be generalized to any other parameter extracted from force measurements by employing the 

same concepts to WAD. Our data shows that it is possible to improve precision, i.e., decrease the interval or 

margin of error, while maintaining accuracy, i.e., repeatedly including in the given interval or within a margin 

of error the true mean of the parameter being measured, by sufficiently increasing N. We show however that 

this is not achievable by directly assuming that the underlying distribution is normally distributed. In particular, 



applying concepts from standard theory of inference with the assumptions of normal distributions (or more 

generally Student’s t-distribution) leads to very large errors and finally to erroneous or inconsistent conclusions. 

For example, even when providing mean valueswith intervals or margins of error (standard errors computed 

assuming normal or Student’s t-distributions) obtained from 300 data points from a given location of a given 

homogeneous material, the intervals lie outside the range of intervals produced by subsequently and 

continuously acquiring 300 data points from the same material and without readjusting the experimental setup. 

In practice, such results would imply that a sample’s surface at a given location is different from itself. This 

conclusion makes comparisons with other locations, phases, or samples’ surfaces questionable at best and, at 

worst, irrelevant and calls for a more robust test of comparison between data sets. Our experiments show that 

averaging over at least 200−300 points might be required in order to obtain a normally distributed distribution 

as required by the central limit theorem.20 In order to obtain sample sizes in the order of 10−30 data points, this 

would imply acquiring at least 2000−9000 data points per experiment. Since force measurements require at least 

fractions of a second,11,13,14,21,22 the associated time-cost would be considerable for standard experimentation. 

More importantly, we find evidence that shows inconsistencies, such as that detailed above, even when the data 

passes standard normality tests. In this work, we define and employ a set of metrics to deal with accuracy and 

precision in the context of force measurements and provide a protocol for measurements that allows us to define, 

with a chosen confidence, that a given measurement with N data points comes with an error, or a given 

precision in the measurement that makes measurements self-consistent. More thoroughly, we define a set of 

standards to compare between sample properties, parameters, or, more generally, compositional heterogeneity, 

with nanoscale force measurements or parameters derived from these. The fundamental principle behind our 

investigation deals with the very definition of reproducibility and repeatability in terms of accuracy and 

precision, and we establish general criteria to ensure that these hold without the need of restricting assumptions. 

We further employ a model system consisting of a copolymer to exemplify that less than 100 data points are 

enough to establish the presence of nanoscale heterogeneity with the concepts and metrics that we employ here 

and report a resolution or precision of 10 pN for FAD. The methodology is also employed to exploit WAD as a 

parameter to establish heterogeneity in order to show that the theory can be generalized to other parameters. In 



the case of WAD, 200 data points are necessary to arrive to the same conclusions, i.e., to establish nanoscale 

heterogeneity. 

 

2. EXPERIMENTAL METHODS 

The tip−sample force Fts or force profile has been reconstructed from experimental amplitude and phase 

distance APD curves recorded with an AFM operated in the amplitude modulation (AM) mode. A standard 

Cypher AFM from Asylum Research was employed to perform the experiments and cantilevers from Olympus 

(AC160TS) where employed throughout. The force can be reconstructed from the observables amplitude A and 

phase lag Φ by writing the tip−sample distance d as d = zc + z, where zc is the cantilever−surface distance and z 

is the cantilever deflection. The inversion from observables to force exploits the Sader−Jarvis−Katan 

formalism23,24 by writing the minimum distance of approach per cycle dm as dm ≈ zc − A. 
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where k is the cantilever stiffness, Q is the Q factor, Ω(dm) is the normalized frequency shift, and A0 is the free 

(unperturbed) amplitude. The algorithm in eqs 1 and 2 has been implemented in Matlab with standard functions, 

and the resulting raw force Fts has been smoothened with the standard rloess method 

(moving average filter of 30) from Matlab prior to calculating FAD and WAD (numerically integrated). The speed 

of acquisition was limited by the AFM, i.e., one amplitude and phase curve 1 s, while 104 amplitude and phase 

curves could be processed to produce a 104 force distance profile in approximately 10 min. 



Sapphire has been employed as a model system because it presents a homogeneous surface where FAD and WAD 

should be homogeneous even in the nanoscale. This model system has been employed to establish accuracy and 

precision in the measurements and the convergence to a value as the sample’s size increases. Standard 

cantilevers from Olympus (AC160TS) with k ≈ 40 N/m, Q ≈ 500, and f0 = 300 kHz have been employed 

throughout. Two parameters that can lead to systematic errors have been carefully considered. First, during a 

given experiment, the tip radius R might vary due to wear-typically increasing R.25,26 Since both FAD and WAD 

increase with R,27 wear would lead to divergence and lack of reproducibility with increasing N. In order to 

avoid such errors in our experiments, the tip’s effective radius was monitored in situ with the critical amplitude 

Ac method,25,28,29 i.e., by monitoring the minimum value of free amplitude A0 for which attractive to repulsive 

transitions occur. In all experiments here, the Ac value remained constant to fractions of nm which lies within 

the error of the Ac method to characterize the tip radius,28 i.e., 1−2 nm. Tip wear was physically prevented in the 

experiments by fine-tuning peak forces when acquiring data. In practice, peak forces where controlled and 

limited to 2−3 nN (data not shown) by maintaining the minimum amplitude of oscillation sufficiently high in 

the amplitude distance curves (APDs) as done elsewhere.30 Second, variations in the position onto which the 

laser beam is reflected from the cantilever’s surface might lead to slight variations in the volt to meter 

conversion with obvious implications for the values of force calculated from eqs 16 and 17. In order to avoid 

this second source of systematic error, the laser was aligned and adjusted for at least 30 min prior to acquiring 

data. This was done to avoid maladjustments during the experiments due to thermal expansion of the 

microcantilever or other. Then, the laser beam was never readjusted during the experiments. 

The FAD between a sphere, i.e., the tip, and a flat surface is typically accepted to be proportional to the sphere’s 

radius R27,31 
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Figure 1. (a) Two experimental force profiles acquired on a sapphire surface. Blue line: n = 100. Purple line: n = 

4000. (b) Illustration of the method to compute FAD and WAD (area under the curve). 

 

where γ is the surface tension.27 In our work, FAD is calculated directly from experimental force profiles as 

illustrated in Figure 1 (continuous lines) and it is identified as minima in force (Figure 1b). Thus, as opposed to 

the expression in eq 3, the parameter FAD as defined in this work is model independent. Considering eq 3 

however is still constructive in order to get physical intuition for the meaning of minima in force. WAD is also 

directly computed from the experimental force profile as the area under the force curve 

dxFW
d

tsAD 



0

            (4) 

where the integral goes from x = d0, i.e., Fts = 0 at d0 on the left side of the forces in Figure 1, to infinity. Again, 

for practical reasons and for easy computation, we have defined WAD as the area under the line 0.05FAD (Figure 

1b). Profiles similar to those in Figure 1a were collected on a sapphire surface at a constant rate of 0.5 Hz, i.e., 

one force profile for every 2 s, and at a given location on the surface by following the procedures described 

above. Further details on the methodology for force reconstruction in AM AFM are provided elsewhere.24,32 



Sets of data of 5000 points or more were acquired continuously and for hours using such AM AFM force 

reconstruction methodology. 

As an example, two force profiles have been plotted in Figure 1a. One of them is the 100th data point, or n = 

100 (blue line), and the other one belongs to the same set of data (5000 points) for n = 4000 (purple line); i.e., 

data points are separated in time by at least 2 h. The fact that FAD ≈ −1 nN for n = 100 and n = 4000 (more than 

2 h of collecting data) provides some intuitive evidence that the tip radius R remained constant throughout the 

measurements, since FAD should rapidly increase with R according to eq 3. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Computation of Experimental Errors via the Standard Error. 

A full set of experimental raw data (light blue circles) collected continuously for 2−3 h ( 5000 data points) is 

shown in Figure 2a. The data have been smoothened with the standard rloess (local regression and first degree 

polynomial model assigning low weight to outliers) function of Matlab33 with a smoothing coefficient of 0.03 

(continuous blue line). The mean of the 5000 data points is shown by the dashed black line. At this point, it is 

worth defining the main concepts employed in this work, namely, accuracy and precision. For this purpose, we 

define and employ the metrics accuracy ratio (AR) and interval of error (IE); IE refers to a given radius of an 

interval throughout. 



 



Figure 2. (a) Set of experimental raw data with 5000 data points. The light blue circles are raw data, the black 

dashed line is the mean of this data set, and the blue line is the smoothened result using Matlab. (b) IE(CI) 

computed with four different data sets (5000 points each). (c) Normalized IE(CI) of four data sets (at N = 100). 

  

First, accuracy is defined with the concept of AR. AR is employed to compute the confidence that the estimated 

mean in a measurement, accounting for the error, i.e., an interval of error (IE), as computed with a sample’s size 

N, will include the true mean of the parameter being measured within a given experimental setup. More 

thoroughly, if we set up an AFM and we do not recalibrate or readjust cantilever-photodiode parameters, i.e., 

spring constant k, Q factor, etc., during measurements, the constraint AR < 0.05 implies that any IE produced 

with N data points only will include the true mean of the parameter being measured at least 95% of the times 

that the measurement is performed. This concept is illustrated with the help of Figure 3 where three intervals IE 

are shown. 

 

Figure 3. Illustration exemplifying the method to numerically compute the accuracy of the intervals in a 

measurement. 

 

The first two on the left do not include the true mean (dashed lines), as indicated by crosses, while the other one 

on the right does (tick). The AR metric in the case of the illustration in Figure 3 produces AR = 2/3 ≈ 0.66, 

indicating lack of accuracy or a confidence of 33%. 



Furthermore, we purposefully neglect the fact that the true mean cannot be measured unless the calibration of 

the instrument is accurate. This is because, while we acknowledge that systematic errors will be present due to 

uncertainty in the sensitivity of the laser-photodiode system, k, Q, etc., our focus here is on the detection or 

identification of the relative contrast necessary to establish heterogeneity in the context of repeatability within 

an experiment. Thus, when we refer to the true mean, we refer to the mean that would be measured if the 

measurement was conducted many times, i.e., theoretically infinitely many times, but here we will perform it a 

minimum of 1000−5000 times (0.5−3 h of continuous measurements), with a given calibration of the system. 

This greatly simplifies the theory and experimentation while still allowing numerical comparison within 

experiments, i.e., establishing whether the contrast between two phases on a surface is statistically significant, 

this being one of the most common ways in which AFM data is employed. In our experiments, we further 

computed AR in a different way that was at a computationally much higher cost. In particular, we employed 

combinatorics,34 with the help of the standard nchoosek function in Matlab, to compute a ratio, i.e., the number 

of intervals that exclude other intervals divided by the number of possible combinations. The advantage of this 

method over the method that we employ here is that it does not require assuming a true mean, or computing it. 

The major disadvantage is computational, but we confirmed (data not shown) that the two methods produced 

similar results. With this understanding, we assume that 1000−5000 data points are enough to conclude that the 

true mean coincides with the estimation of the mean with precision above that required in the experiments. Thus, 

the use of the term true mean should not lead to ambiguity. The IE will then provide information about the 

precision of the measurement; i.e., in the context of this work, this is the maximum resolution with which two 

surfaces, properties or phases on a surface, materials, etc., can be distinguished in an experiment. That is, IE is 

the margin (or interval) of error. 

To a first approximation, let us assume that a Student’s tdistribution can be employed to define IE via 

confidence intervals CI (proportional to the confidence level 1 − α, and as a function of the samples’ size N). 

We term these intervals IE(CI), and these stand for IE as determined from a confidence interval CI. From this, 

we can write that FAD is the mean of the N data points FAD  with a given uncertainty computed as 



N
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where the term in brackets is the sample’s mean FAD , σ is the estimate of the standard deviation, N is the 

sample’s size, and tα/2 comes from a Student’s t-distribution for a given α (here 0.02). The error or precision is 

then defined by  

N
tNCIIE
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 2/),( 

           (6) 

and coincides with the product between the 0.98 quantile of the Student’s t-distribution and the standard error 

(N − 1 degrees of freedom). Data acquired on a sapphire’s surface has been employed to compute IE(CI) with 

the use of eq 6 and for four different data sets (5000 data points each), as shown in Figure 2b. The vertical axis 

corresponds to the IE(CI) at α = 0.02, and the horizontal axis is the sample’s size N. Reproducibility is also 

tested here in a weak form, since a single AFM (Cypher AFM from Asylum Research) has been employed in a 

single lab (LENS at Masdar Institute, UAE). Otherwise, reproducibility has been tested by acquiring data in two 

ways. First, by not readjusting the system, i.e., the cantilever-photodiode system was not readjusted. The results 

are shown with the use of continuous black lines (Figure 2b). The data was obtained with a given cantilever and 

by user A, continuously and for 2−3 h. Second, the data in dashed blue lines were obtained by stopping the 

collection of data by user A for several minutes and subsequently acquiring data continuously for another 2−3 h 

(also by user A). As observed in the figure, differences in the magnitude of IE(CI) with increasing N for these 

two data sets are minimal, i.e., smaller than 1−5%. Third, a different setup was employed by changing the 

cantilever and making suitable readjustments to the cantilever-photodiode system as it is typical in AFM 

experiments. In particular, the data in continuous blue lines were obtained by user B by employing a different 

cantilever from that employed by user A. The data in dashed black lines were obtained by user B with a third 

cantilever. A general outcome is that the IE(CI) consistently and monotonically decreases with increasing N 

independently of the user and cantilever throughout experiments. Practically, Figure 2 and expressions 5 and 6 

imply that it is possible to increase precision by increasing the samples’ size N, as expected from the standard 



theory. Furthermore, from these four data sets, it could be deduced that the largest variations in the margin of 

error, i.e., IE, occurring from experiment to experiment were due to changing cantilevers and users, i.e., with 

possible variations in tip radius and systematic errors related to the calibration of the spring constant k, Q factor, 

etc., and readjusting the photodiode. Variations in the standard deviation σ as a function of N however were 

independent of experiment, setup, user, and cantilever adjustment, as shown in Figure 2c by normalizing IE(CI) 

at N = 100 as 

100
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The results shown in Figure 2c strongly support the assumption that 5000 data points suffice to reach high 

precision in terms of the population parameters, i.e., mean, standard deviation, etc., and that these values are 

representative of the system under study and underlying population.  

 

3.2. Testing the Validity of the Standard Error as a Parameter for Comparing Data Sets. 

In order to establish the validity of the above standard method to compare between materials, the IE(CI) metric, 

as computed via eq 6, has been put to test by employing a sapphire’s surface (and four data sets of 5000 data 

points each) as a model sample which is here assumed to be homogeneous in terms of FAD. For this purpose, the 

data from Figure 2 (user B) has been grouped into sets of N = 30 data points (Figure 4a) and means (black dots) 

and IE(CI)’s (continuous blue lines) have been computed via eqs 5 and 6. 



 



Figure 4. (a) IE(CI)’s calculated from user B’s data with N = 30. The black dots are means for N = 30, the black 

dashed line is the mean for N = 5000, and the blue lines are IE(IC)’s. (b) IE(CI)’s calculated from user B’s data 

with N = 300. The black dots are means for N = 300, the black dashed line is the mean for N = 5000, and the 

blue lines are IE(IC)’s. (c) The behavior of AR(CI)’s of four data sets with respect to sample size. 

 

The mean of the 5000 data points is shown with the help of black dashed lines, as previously done in Figure 2a. 

It can be readily concluded by inspection that most of the IE(CI)’s do not include the mean calculated with the 

5000 data points. This situation does not improve by increasing the number of data points to N = 300 (Figure 

4b). The immediate practical implication deduced from Figure 4 is that, by recording sets of N = 30, or even N 

= 300 data points, and by computing intervals of error IE(CI) employing eq 6, it would be erroneously 

concluded that the sapphire surface presents nanoscale heterogeneity in terms of FAD. This conclusion is 

erroneous, since the sapphire sample is to be employed here as a model system to establish nanoscale 

homogeneity. More fundamentally, since the data for each data set in Figure 2 was collated on a given physical 

location of the surface only, the implication is that the adhesion, i.e., mean and error in adhesion, is time 

dependent. A direct consequence is that the force of adhesion also depends on the number of points that the user 

takes (since this is time-dependent also). Furthermore, a comparison between two data sets on a given location 

on a given sample, i.e., here a point on a sapphire’s surface, might lead to establishing heterogeneity on that 

point. It is an objective of this work however to establish consistency between measurements on, at least, a 

given location of a sample, so comparisons between different locations of a sample, or between different 

samples, can then be carried out. Thus, this inconsistency needs to be addressed and a different method 

employed. At this point, it is noted that the normality of the data sets, when averaging over N = 200−300 points 

and by taking at least M = 10−30 data points from these groups, was established with the use of both the 

standard jbtest and lillietest normality tests from Matlab. Practically, this implies that means obtained from N = 

200−300 data points would have to be employed to construct a normal distribution from which inferences 

similar to those in eqs 5 and 6 could be made.20 Nevertheless, the data sets did not pass the test when averaging 



over smaller values of N. Thus, in order to get a data set normally distributed with 10−30 data points, 

approximately 2000−9000 data points would have to be acquired in order to accept or reject the hypothesis of 

heterogeneity. This condition imposes a great limitation timewise, since it takes at least fractions of a second to 

acquire each data point, here 2 s per data point implying 1800 data points per hour. More importantly, this could 

have affected the inconsistent results reached via eq 5 and exemplified with the use of Figure 4. On the other 

hand, we confirmed that, even when the data sets passed the jbtest and lillietest normality tests, this 

inconsistency prevailed, i.e., it followed from employing eqs 5 and 6 that the sapphire’s surface was different 

from itself depending on the sample’s set in terms of FAD (data not shown). At this point, we did not seek or 

attempt to draw conclusions about causal connections that could have led to this outcome, and while we 

understand that this issue might require a more sophisticated analysis, we focused the study in the direction of 

establishing general criteria to ensure that reproducibility and repeatability, in terms of accuracy and precision, 

would hold without the need of restricting assumptions. 

 

3.3. Inconsistency of Errors in a Given Data Set and the Accuracy Ratio (AR) Metric Test. 

We now define the concept of AR, or inclusion interval, as qualitatively illustrated in Figure 3, and quantify it 

via a metric AR as follows. From the IE(CI) metric computed from eqs 5 and 6, we define an accuracy ratio 

AR(CI, N) as 

Total

CIIEExcluded
NCIAR
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          (8)
 

where N is the number of points (or sample’s size) employed to compute IE(CI), excluded (IE(CI)) makes 

reference to the number of IE(CI)’s in the experiment that exclude the 5000 data points mean or true mean, and 

total makes reference to the total number of CIs (here 5000/N). The AR(CI, N) metric has been employed to 

address how well IE(CI)’s do in including the mean of 5000 data points as a function of N (Figure 4c). The 

legends and data are the same as those in Figure 2b. The IE(CI)’s do best when including less than 30 data 



points, i.e., N < 30. In particular, for the data in Figure 4a, AR(CI, 30) = 0.70 (70% of the intervals exclude the 

mean), and in Figure 4b, AR(CI, 300) = 0.75 (75% of the intervals exclude the mean). In summary, it can be 

stated that, in general, the AR(CI, N) metric is too large throughout when employing intervals of error 

computed with the use of eqs 5 and 6 and therefore not acceptable. Now, we seek to find a method with a metric 

that provides (1) an error in the form of a radius or interval that becomes smaller, i.e., higher precision, as the 

sample’s size N increases while (2) also providing accuracy, i.e., the intervals should include the true mean. The 

method (standard error) described in the previous section fails in the second requirement, as exemplified via 

Figure 4. Thus, we seek a methodology that measures uncertainty more robustly than eqs 3 and 4 and further 

seek to reduce assumptions regarding underlying distributions and other assumptions regarding independency 

between the sample’s populations. For this purpose, next, we turn to the mean and standard deviation estimates 

from the sample’s populations and construct a theory related to Chebyshev’s inequality.35 

 

 

Figure 5. (a) σ calculated from four data sets. (b) σ of four data sets increases slightly as N increases. 



 

Figure 6. (a) AR(λ)’s behavior with respect to N calculated from user A’s data. (b) AR(λ)’s behavior with 

respect to N calculated from user B’s data. 

 

3.4. Definition of Errors Consistent with the Accuracy Ratio (AR) Metric Test. 

The same data from Figure 4c has been employed to plot the behavior of the estimates of the standard deviation 

σ (N − 1 degrees of freedom) as a function of N (Figure 5a). σ increases by 20% from N = 2 to N ≈ 10, 10% 

from N ≈ 10 to N ≈ 100 (Figure 5b), and similarly from N ≈ 100 to N ≈ 500. In general, the magnitude of σ does 

not even double from N = 2 to N = 500; 2σ(N = 2) < σ(N = 500). Taking the behavior of σ as a function of N 

into account (Figure 5), we proceed to define values of FAD with errors directly defined from the estimate of σ 

as 

 ADAD FF
            (9) 

where λ (λ > 0) is a factor that can be employed to select a given width for the error and can be related to the 

parameter k in Chebyshev’s inequality. Thus, provided N < 500 and considering the results from Figure 5c, 

halving λ necessarily leads to higher precision. The precision of the measurement is then given in terms of IE as 

parametrized by λ as 



 )(IE                         (10)
 

The practical use of eqs 9 and 10 now reduces to deducing an appropriate value of λ that is consistent with the 

measurements. For this purpose, we define an accuracy ratio AR(λ) or inclusion interval in terms of the estimate 

σ directly from the intervals given by IE(λ) as 

Total

IEExcluded
AR

))((
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           (11) 

The above expression quantifies the accuracy of the measurement and can be employed to test the validity of eq 

9; i.e., now IE(λ) is a function of N in the sense that for a given λ there is a minimum N that will comply with 

the AR criteria in eq 11. In particular, we would like AR(λ) < 0.05 with a meaning similar to that of a 

confidence interval of 95%. That is, in practice, AR(λ) < 0.05 implies that 95% of the intervals defined by 

prescribed values of the parameters λ and N via eq 10 will include the true mean. Or in simpler terms, 95% of 

the times an experimentalist gives an error parametrized by an interval computed via eq 9, i.e., N data points, a 

prescribed λ and σ as estimated from the N sample’s data points, the interval will include the true mean as 

illustrated by Figure 3. The dependence of AR(λ) on N and σ is shown in Figure 6. The vertical axis is AR(λ), 

and the horizontal axis stands for N. The values of λ are 0.5 (dashed black lines), 1 (dashed blue lines), 2 

(continuous black lines), and 3 (continuous blue lines). AR(λ) monotonically decreases with increasing N 

independently of λ (not all data shown but we observed this pattern up to N = 1000). Nevertheless, it is readily 

observed that larger values of λ are required for the condition AR(λ) < 0.05 to apply with a reasonably small 

number of data points, i.e., N  10−100. This implies that higher precision with an accuracy of AR(λ) < 0.05 

requires more data points. These are the properties that we sought out in our methodology. The reproducibility 

of this behavior is exemplified by plotting the first set of data from user A in Figure 6a and the second set of 

data from user B in Figure 6b. 

  



 

 

Figure 7. (a) AR(2) with N = 30 calculated from user B’s data. (b) AR(2) with N = 300 calculated from user B’s  

data. (c) The behavior of IE(λ)’s calculated with N = 100 under different precision criteria. 



An example of how IE(λ) and AR(λ) can provide good estimates for the accuracy and precision of the 

measurement in AM AFM is given with the help of Figure 7. The data belongs to the second set of 5000 points 

acquired by user B as in the examples above. We start by establishing accuracy. The actual values of AR in 

Figure 7a and b are AR(2) = 0.12 (N = 30 in Figure 7a), AR(2) = 0.04 (N = 100 in Figure 7b), and AR(2) = 0.00 

(and N = 300 not shown), where λ = 2 throughout and N varies from 30 to 100 and 300, respectively. The 

accuracy of the measurement is determined by AR(λ) and λ = 2 is already prescribed here, implying that N, i.e., 

the minimum number of data points required to reach a given accuracy in terms of AR(λ), is the only free 

parameter. Thus, if an accuracy of 95% or more is required by the experiment, a minimum value of N needs to 

be found such that AR(2) < 0.05. The pair N = 30 and λ = 2 should then be excluded, since AR(2) > 0.05 (N = 

30 in Figure 7a). The pair N = 100 and λ = 2 however is sufficient for this experiment, since AR(2) < 0.05 (N = 

100 in Figure 7b). The pair N = 300 and λ = 2 is not appropriate here, since for N = 300 more than 99% of the 

intervals produced by the experimentalist would lead to including the true mean, and, in this case, only 95% of 

the intervals are required to include it. That is, N = 300 provides more accuracy than required. Let us now 

examine the interval of error (precision) in the experiment. Since λ = 2, the estimated error interval is IE(2) = 2σ 

(N = 100). In particular, in this experiment and for N = 100, the standard deviation is 48 pN, implying that the 

total uncertainty in the measurement is 96 pN. Thus, practically, heterogeneity could be established in this 

case if the means in FAD of two materials or phases were at least 96 pN apart (employing N = 100 data points). 

If more precision was required, then a smaller value of λ would be necessary, but this would also necessarily 

lead to larger sample sizes N in order to maintain a level of accuracy as shown in Figure 6. For the sake of 

completeness, the behavior of the interval of error IE(λ) or precision with increasing λ is shown in Figure 7c. In 

this case, N = 100 throughout. The accuracy of the measurement, as quantified by AR(λ), increases with 

decreasing λ as expected; AR(0.5, 100) = 0.67 (67% of intervals exclude the true mean), AR(1, 100) = 0.31 

(31% of intervals exclude the true mean), and AR(3, 100) = 0.00 (0.00% of intervals exclude the true mean), 

while precision decreases with increasing λ, as can be directly deduced by inspection by noting how the 

intervals become larger with increasing λ. The main result of the methods presented here can now be written at 

once: the accuracy of the measurement increases with increasing λ and N, while the precision of the 



measurement increases with decreasing λ. The added complication of rejecting or accepting the hypothesis that 

two materials or phases present nanoscale heterogeneity in a nonarbitrary fashion, for example, by increasing N 

and decreasing λ arbitrarily, is left as a real experimental example discussed below. 

 

3.5. Comparison between Two Phases: Block Copolymer and Heterogeneity of Phases. 

The methodologies derived above are employed next to determine the minimum number of points N to establish 

heterogeneity with a given maximum interval or margin of error. That is, this exercise exemplifies how 

heterogeneity can be accepted or rejected in a given scenario with a minimum number of points N. For this 

purpose, we use a block copolymer polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) thin film that has 

been recently shown to exhibit mechanical nanoscale heterogeneity in terms of the Young modulus,11 i.e., with 

the use of mechanical contact forces. Amplitude and phase distance curves (APDs) were recorded in the two 

ordered nanoscale structures (PS and PMMA) in order to reconstruct the force as in the above experiments. The 

two phases (PS and PMMA) were identified (cross for phase 1 and triangle for phase 2) by inspection of the 

image scanned in the repulsive regime prior to acquiring the amplitude and phase distance data, since high 

contrast has been reported in mechanical properties only.11 The characteristic cylinders of the PMMA can be 

seen in Figure 8 and have diameters in the order of 10−20 nm as reported elsewhere.11 

  



 

Figure 8. AFM scanning operated in the repulsive regime. The cross indicates phase 1, and the triangle 

represents phase 2. Scale bar of 100 nm and contrast of 7 degrees in phase from dark brown to white. The red 

cross indicates the location (darker pixels) from which phase 1 data was acquired, and the green triangle 

indicates the location (white pixels) from which phase 2 data was acquired. 

 

The aim now is to establish the minimum number of points N necessary to accept the hypothesis that the two 

phases are different in terms of FAD, i.e., that there is nanoscale heterogeneity in terms of FAD, and provide the 

margins or intervals of error (radii) with a given confidence level, i.e., 95%. To this end, we define the 

minimum difference Dm in FAD, accounting for errors, and computed using the metrics eqs 9−11 as follows. Let 

us first define the difference between estimated means in the two phases as 

 )2()1( ADAD FF
         (12) 



where (1) and (2) stand for the two phases under comparison and the parameters are identified with the 

estimates of the means μ1 and μ2, respectively, i.e., Δμ = μ2 − μ1. If the intervals of error (radii) are computed 

from eq 10, then the minimum difference between means, accounting for errors, can be defined as Dm and 

written as 

*2 mD
           (13) 

where σ* is the mean of the two estimates (phase 1 and phase 2 respectively) of the standard deviations. We 

recall that we know from experimental evidence (Figure 6) that, while σ monotonically increases with N, the 

rate of change is so small in practice, i.e., σ(N=10) < 2σ(N=500), that σ can be considered a constant in the 

context of eqs 10 and 13. A constraint to determine nanoscale heterogeneity based on the computation of Dm 

can now be written at once as 

 Dm>0              (14) 

or 

0
D

*
m 

              (15) 

The advantage of eq 15 is that the minimum difference between means is given in terms of standard deviations. 

From eqs 12 and 13 the minimum value of λ to establish nanoscale heterogeneity can also be estimated, 

provided the difference Δμ and the standard deviations are known, by rewriting eq 13 as 








*2              (16) 

from which the critical value of λc can be written as 

*2
 

c

             (17) 



It is worth recalling that λ controls precision (Figure 7c) via eq 10 and this value cannot be selected arbitrarily 

for a given N, since accuracy (say 95% or  AR(λ) < 0.05)  also depends on it from eq 11 (Figure 7). In practical 

terms, the constraint AR(λ)<0.05 will ensure that estimates in FAD for a given material will be consistent  in 

terms of the repeatability (and reproducibility) of experiments while λ will control the minimum difference 

between means that can be detected, i.e., precision. 

 

minimum N λ AR mean difference  Rep.1  Rep.2  Rep.3  Rep.4  Rep.5 

325 0.3 <0.05 
Dm [pN] 159 113    

Dm/σ 2.5 2.5    

250 0.5  <0.05 
Dm [pN] 158 113 

Dm/σ 2.4 1.9 

80 1 <0.05 
Dm [pN] 141 117 80 38 85 

Dm/σ 1.6 2.3 1.3 0.7 1.6 

12 2 <0.05 
Dm [pN] -17 0 5 170 78 

Dm/σ -0.5 0 0.1 3.6 1.5 

4 3 <0.05 
Dm [pN] -37 -138 -90 -78 -71 

Dm/σ -1.2 -3.6 -2.1 -1.8 -1.8 

Table 1. Numerical Values for the Minimum Number of Data Points N to Establish Nanoscale Heterogeneity 

from FAD (on PSb- PMMA)a 

aPositive Dm /σ values are required to establish nanoscale heterogeneity, and the minimum number N follows 

for a maximum value of λ, i.e., N ≈ 80 and λ ≈ 1. Expression 17 predicts a maximum λc ≈ 1.5. 

 

The values of Dm (eq 14) and Dm /σ* (eq 15) obtained for the PS-b-PMMA copolymer (where PS and PMMA 

are the two phases under comparison) are given in Table 1 (Dm is given in pN) as a function of λ and N while 

ensuring AR(λ) < 0.05. Approximately 1000 data points were collected for each phase. Note that a minimum of 

N = 250 data points are required for an accuracy of AR < 0.05 when λ = 0.5. It follows from the table that the 

minimum number of points to ensure that Dm > 0 is N ≈ 80 (80 points per phase) with λ = 1, since larger values 

of λ (or intervals of error) already produce negative values for Dm (see Table 1 for λ = 2). Replicates (Rep) are 

given in Table 1 for λ = 0.3, 0.5, 1, 2, and 3. This value of λ could have been estimated from eq 17 by 



calculating the mean from the 1000 data points per phase and the respective standard deviations. In particular, 

the values were Δμ = 181 pN and σ* = 62 pN, producing λc = 1.5 (from 1000 data points per phase) which is in 

agreement with Table 1. These results also imply that, with N < 100, differences in the order of 10−102 pN can 

be detected, i.e., margins of error of 1−2σ, where σ ≈ 30−60 pN. 

For completeness, we next employ the WAD in the same PS−PMMA phases and from the same data. The results 

are shown in Table 2. The values for Dm become negative for λ > 1, implying that the minimum number of 

points N per phase in order to accept that the phases present heterogeneity in terms of WAD is N ≈ 210 (about 7 

min of data acquisition per phase for a scan rate of 0.5 Hz). Then, WAD is a worse parameter to establish 

nanoscale heterogeneity in terms of the minimum number of points N than FAD for the PS−PMMA pair, since N 

≈ 80 when employing FAD (less than 3 min of data acquisition per phase for a scan rate of 0.5 Hz). The value λc 

could have also been estimated from eq 15; Δμ = 6.4 eV and σ* = 2.5 eV, producing λc = 1.2 also in agreement 

with Table 2. 

 

minimum N λ AR mean difference  Rep.1  Rep.2  Rep.3  Rep.4  Rep.5 

210 1 <0.05 
Dm [eV] 6 2 2 

Dm/σ 1.8 0.9 1.6 

145 2 <0.05 
Dm [eV] 7 -2 2 -3 

Dm/σ 3 -0.9 1.3 -1.7 

45 4 <0.05 
Dm [eV] 10 -7 0 -2 -7 

Dm/σ 10.5 -2.8 0.4 -1.4 -4.7 

26 6 <0.05 
Dm [eV] 5 5 -5 -2 -4 

Dm/σ 4.1 4.3 -4.4 -1.8 -3.8 
 

Table 2. Numerical Values for the Minimum Number of Data Points N to Establish Nanoscale Heterogeneity 

from WAD (on PSb- PMMA)a 

aPositive Dm /σ values are required to establish nanoscale heterogeneity, and the minimum number N follows 

for a maximum value of λ, i.e., N ≈ 210 and λ ≈ 1. Expression 17 predicts a maximum λc ≈ 1.2. 

 



3.6. Remarks on Establishing Heterogeneity and Interpretation of Metrics. 

Here we employ the example in section 3.5 (Figure 8 and Tables 1 and 2) to interpret whether the results from 

establishing heterogeneity in two locations on a surface, i.e., phases, or two different surfaces, can be 

interpreted as physically relevant and further provide physical intuition about the metrics. In particular, we 

focus on the minimum number N to establish heterogeneity and the critical value of lambda λc from eq 17. First, 

the steps to probe heterogeneity involve (1) finding the estimate of the difference in means Δμ = μ2 − μ1 and 

standard deviations σ* for a parameter, i.e., adhesion, work of adhesion, etc., for the two different locations on a 

surface, or two different surfaces, etc. These parameters can be computed from the N experimental points as 

standard arithmetic means and deviations, respectively. (2) Finding the maximum value of λ necessary to obtain 

intervals of error computed via eq 10, i.e., IE(λ) = λσ, that satisfy satisfy Dm > 0 in eq 13. Provided Dm > 0 is 

satisfied, heterogeneity is established within the given error IE(λ) = λσ. We note that the value λ further needs 

to satisfy AR(λ) < 0.05 (0.05 for confidence of 95%) in eq 11. 

The criterion AR(λ) < 0.05 will allow establishing the minimum number of points necessary to employ a given 

value of λ with which to compute the error IE(λ) = λσ. Typically, the smaller the λ, the more points N are 

required to satisfy AR(λ) < 0.05 (see Figure 6). It could be argued that a sufficiently large number of points N 

can always be employed to satisfy AR(λ) < 0.05, since AR monotonically decreases for any given λ (see Figure 

6). Therefore, heterogeneity can always be established by sufficiently increasing the number of points N in the 

measurement. Ambiguity in terms of whether the established heterogeneity is physically meaningful however 

can be removed by considering the maximum value of λ found in step 2. In particular, we showed in the 

previous section that this maximum value of λ can be approximated via λc ≈Δμ/(2σ*) (eq 17) where estimates 

for all parameters are computed from the sampled points. Physically, large values of λc, i.e., λc  1, imply a 

large heterogeneity in the parameter being exploited, i.e., force of adhesion, etc., whereas smaller values of λc, 

i.e., λc < 1, imply a limited relevance of the heterogeneity found in that parameter. An example of a large value 

of λc (large heterogeneity) is illustrated in Figure 9a, and an example of a small value of λc (reduced 

heterogeneity) is found in Figure 9b. 



Figure 9. Example of comparisons between two phases for (a) a case where λc  1 and (b) a case where λc < 1. 

 

Then, one could state that one or another parameter, i.e., FAD, WAD, etc., is best by invoking either a minimum 

number of points N or a larger critical lambda λc value required to establish heterogeneity (see Figure 9). In the 

case presented in section 3.5, i.e., the copolymer, and Figure 8 and Tables 1 and 2, FAD is better than WAD in 

both counts (λc ≈ 1.5 (N = 80) and λc ≈ 1.2 (N = 210) for FAD and WAD, respectively). Finally, a loose 

interpretation might be appropriate here in terms of the minimum number N corresponding to the λc parameter. 

First, it seems plausible that a large number N will be required for a given λc whenever there are time-dependent 

variations in the underlying distributions. This is because otherwise the data points would always lie in the 

vicinity of a given static mean. In the cases that we have explored, however, this does not occur. See, for 

example, the seemingly discrete jumps in the value of FAD in Figure 2a. The concept of λc should, in any case, 

and because of the definition of AR in eq 11, apply for any underlying distribution. Second, a small value of λc 

does not necessarily involve a large minimum number of points N or viceversa. That is, from eq 17, λc depends 

on how far apart the means are relative to the standard variations. Then, provided Δμ  σ*, λc will always be 

large, i.e., λc  1. This is a very desirable result, since if the parameter λc is to be employed to determine how 

different two surfaces, pixels, or phases are, i.e., large heterogeneity, the difference in the estimates of the 

means Δμ should be very large compared to σ* and λc should increase with this difference as in the illustration 

in Figure 9. 



4. CONCLUSIONS 

In summary, we have discussed the conditions for which data extracted from force measurements can be 

employed to determine whether a surface presents nanoscale compositional heterogeneity. The key parameters 

are the number of data points and the accuracy and precision that can be achieved by employing N data points 

only. First, we have shown that reporting the sample’s mean, standard errors-computed by assuming normally 

distributed populations and/or other assumptions such as independent and identically distributed distributions, 

etc.-and standard deviations only might lead to inconsistent conclusions. Then, a set of metrics have been 

introduced in terms of accuracy and precision in the measurements that have been shown to ensure 

reproducibility and repeatability in experiments. These metrics have been employed to conclusively establish 

the presence or absence of compositional heterogeneity via a given parameter derived from force measurements 

with a given number of data points N, and with a given margin of error while ensuring that the results are 

repeatable and reproducible. In practical terms, we have shown how a parameter or material property of choice 

can be compared from phase to phase, surface to surface, or pixel to pixel while unambiguously and robustly 

establishing the  absence or presence of heterogeneity in terms of that parameter or material property. We have 

also shown that the exploitation of alternative parameters is interesting from an experimental point of view, 

since a material might be highly heterogeneous in terms of a given property but homogeneous in terms of 

another. Furthermore, the proper selection of the parameter might lead to the determination of heterogeneity 

with fewer data points. These arguments reinforce the relevance of multiparametric models and analysis in the 

field of nanoscale force spectroscopy. Finally, it could be arguably stated that the main complication in this 

work related to dealing with the uncertainties and variations within a given experiment, phase of an otherwise 

homogeneous material. We have not given an interpretation for the nature of such phenomena and have not 

attempted to discuss causal connections in this work. Instead, we have based the study on forcing a given 

material or phase to quantitatively behave as homogeneous for the sake of comparison with other materials. We 

do not ignore, however, that a careful analysis of such phenomena might lead to a deeper understanding of the 

material’s surface and the underlying distributions.36 Finally, this work should aid to produce robust 



comparisons between data sets originating from nanoscale force measurements and will assist to produce 

repeatable and reproducible outcomes in the field. 
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