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Optimization of the Active Control of Turboprop Cabin Noise
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In this paper, a modified cost function is proposed in order to achieve the maximum noise attenuation using a set of
secondary sources for a harmonically excited sound field. The modified cost function drives the error signal to the

optimally attenuated sound field instead of minimizing the squared pressure. Moreover, changing the value to which
the error signals must be driven allows change of the control strategy from global to local. The modified cost function
requires the knowledge of the attenuated sound field, which is a condition that is well suited to narrowband noises, as is

the case of turboprops. A numerical example of the application of the cost function is carried out using a finite element
model/boundary element model of a real turboprop, with the goal of minimizing the interior sound field in the cabin to

sources and six error se

achieve local control,
Nomenclature
a, = primary source strength
Co = speed of sound
D,, = damping factor of the nth mode
E, = acoustic potential energy
E = minimum potential energy achievable
E,,n = minimum potential energy achievable in presence of
errors
E,, = acoustic potential energy of the primary field
E,q = acoustic potential energy of the controlled field
H = Hermitian
J, = cost function
L = number of error sensors
M = number of secondary sources
P = acoustic pressure
23} = acoustic pressure after minimizing the cost function
Py = primary acoustic pressure
Pp = error in the estimation of the primary acoustic pressure
Ds = secondary acoustic pressure
2% = acoustic pressure inside the volume of the enclosure
Pa0 = acoustic pressure after minimizing the weighted poten-
tial energy
Pa = acoustic pressure inside the local volume
Po = acoustic pressure after minimizing the potential energy
qs = secondary source strength
qs7 = secondary source strength to minimize the cost function
qsa = secondary source strength to minimize the local poten-
tial energy
qs0 = secondary source strength to minimize the potential

energy
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about 17 m3. A maximum averaged attenuation of 7 dB

at blade-passage frequencies is achi

eved using six secondary

secondary source strength to minimize the weighted
potential energy
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OISE levels in the passenger cabins of turbopropeller-driven

aircraft are typically higher than the noise levels in comparable
turbofan-powered aircrafts. This fact leads turboprop regional
aircraft manufacturers to seek cabin noise reduction by passive and
active means. Since the interior noise spectrum is dominated by tones
occurring at multiples of the blade-passage frequency (BPF), the
reduction of interior noise at these discrete frequencies can provide a
significant improvement. Hence, the application of active techniques
is very suitable in cabin noise control of turboprops and a good
amount of research has been carried out in this field (see [1] for a
review of the different active control strategies). Usually, a global
reduction of the cabin noise is pursued and the best estimator of the
efficiency of the active control system is the reduction of the acoustic
potential energy. The efficiency of the active control system depends
largely on the secondary actuators and error sensors configuration,
and the optimization of the transducer configuration requires the
knowledge of the cabin sound field.

The optimization of the number and location of secondary sources
can be carried out by different strategies (see, for example, [2-4]),
although it is usually performed by the minimization of a cost
function J,, defined by the summation of the squared pressure at a
finite number of points, which could be the locations of the error
sensors. When global control is pursued, the best results are usually
obtained with acoustic error sensors, although other error sensors
have been proposed [3].

However, there is no direct relation between the reduction of the
squared pressure at a finite number of points (error sensors) and the
reduction of potential energy E, [6]. Hence, the configuration of
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these sensors is crucial to guarantee that a reduction in the cost func-
tion comprises a reduction in the acoustic potential energy. Opti-
mization procedures have been also applied to define the best
configuration of error microphones. In some cases, the optimization
routine is applied to define the optimal setup of the secondary sources
and error microphones simultaneously, starting from a set of
candidate positions for both kinds of transducers [6]. Other authors
carry out the optimization independently: first, the optimum configu-
ration of secondary sources is searched by minimizing the potential
energy. Once it is defined, a procedure to optimize the error locations
is applied in order to assure that a reduction in the cost function drives
the reduction in the potential energy close to the optimum value
defined by the secondary sources setup [7].

Regarding the optimization procedure, some extra rules have been
pointed out by different authors, generally stating that the error
.sensors must be placed in the minimum of the optimally attenuated
sound field [8,9]. However, Shafeget al. [10] verified that the achieve-
ment of null pressure in the case of real sound sources is not easy,
and the performance of the active control system is consequently
degraded. Finally, Martin and Gronier [11] established that it is
possible to ensure that a reduction in J,, leads to areduction in £, by
including a matrix that modifies the pressure at the error micro-
phones. However, this matrix depends on the primary acoustic pres-
sure at a very large number of points if £, must be attenuated in the
whole enclosed volume.

However, all of these optimizations have been carried out in simple
environments, such as rectangular enclosures [6-9,11] or free-field
conditions [10]. The implementation of a complete set of transducers
for actual turboprop cabin noise requires a large amount of experi-
mental measurements [12—18] seeking for the best achievable con-
figuration. Moreover, the number of error microphones needs to be
greater than the number of secondary sources [19] in order to smooth
the residual sound field and avoid local increases [20].

In the next section, a new cost function is proposed that ensures
the maximum reduction of the acoustic potential energy that can be
achieved by a set of secondary sources, using the same number of
error sensors and secondary sources. The proposed control scheme
requires the knowledge of the sound field. Therefore, it suits very well
the case of stationary sound fields that typically takes place in tur-
boprops cabin noise. Moreover, the cost function can be easily
modified to prioritize the attenuation at some limited volumes of the
cabin if desired. Once the cost function is derived, it is applied to the
optimization of global active noise control of a turboprop cabin.
Since the characteristics of the sound field are needed to carry out the
optimization, a numerical model of turboprop cabin noise is briefly
outlined.

II. Active Noise Control Theory
A. Minimization of the Squared Pressure
Typically, the active noise control system is aimed to minimize a
set of error signals, which are proportional to the acoustic pressure,
when microphones are used as error sensors. If L error microphones
.are used, the vector of complex acoustic pressure at each sensor can
be written as [21]

p=w.la, + Bq,] )]

where pT = [p(x)), p(x,), ... p(x.)]; v, is an L X N matrix for
which the element (1, ) is the value of the shape of the normal mode n
at the location of the [ error microphone; a,, is the vector of the N
primary complex mode amplitudes; ¢, is the vector of the M
secondary sources strengths; and B is an N X M matrix that relates
mode amplitudes with secondary point sources according to
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where y,, (y,,) is the value of the shape of the normal mode 7 at the
position of the secondary source m, @ is the angular frequency, w,,
and D,,, are the eigenfrequency and the damping factor of the nth

mode, V is the volume of the cavity, p, is the air density, and ¢ is the
speed of sound. The cost function that the controller tries to minimize
is composed by the addition of squared pressure at these error
microphones:

lq! B"y'y Bq, + ¢/ By y.a,

J, =
! 4poc(2)L
+aywilv.Bq, + ajlyly.a,) 3
where H means Hermitian. Following the development of Nelson

et al. [22], the set of secondary source strengths that minimize this
cost function is

q, = —[B"yy BBy ly a, @

B. Minimization of Potential Energy

For the steady state, the potential energy of an enclosed sound
field excited by the primary sources a,, and a set of secondary point
sources ¢, can be written in matrix form as [21]

1%
51q7B"Bq, + qB"a, + a,Bq, + afla,] (5)

E =
4[)06'0

p

Assuming the general condition that N > M, the optimal set of
secondary source strengths that minimize E,, is given by

4,0 = —[B"B]"'B"a, (6)

It is clear that the set of secondary source strengths that minimizes
the cost function is not the same as the one that minimizes the
potential energy.

C. Minimization of Potential Energy Through a Limited Number Of
Error Sensors

The residual pressure at the error sensors after its minimization
according to Eq. (4), p;, is uniquely defined as

p;= Wx[ap + qu]] (7)

On the other hand, the vector of sound pressures at the error sensors
when the potential energy of the enclosure is minimized, following
Eq. (6), is uniquely

Po = Wx[ap + quO] (8)

Since the relation between the pressure at any point and the
strength of the secondary source is uniquely defined, it is clear that if
the other residual value of p different than p, is reached, the atten-
uated sound field is not the optimally attenuated one. Thus, in order to
ensure that the optimal attenuation is reached, the cost function must
force the residual vector p; to be p,, and this statement is equivalent
to minimize the following corrected cost function:

\%
Jp= 2
4pocyL

L
D 1) = poxp)? ©)
=1

This means that the control system should be arranged to not
minimize the summation of the squared pressures of the error sensors
but to drive these pressures to the values given by the optimally
attenuated sound field. If Eq. (9) is written in matrix form,

V L
=gl ; [(p, + p,) — pol’ = [¢".B"y! "y Bg,] (10)

where p, and p, are the pressure vectors at the error sensors due to
primary and secondary sources, respectively; and q,, = q, — q,.Itis
easily seen that the minimum value of the cost function is zero and it is


jordi.romeu
Tachado

jordi.romeu
Texto insertado
Monson


ROMEU ET AL. 3

found when ¢, = g¢; — q,0 = 0, which leads to the solution of
q, = q,o. Thus, the optimal global attenuation remains guaranteed
for any value of L (being L > M) and for any location of the error
sensors, since the values of B and y, do not have to fulfill any specific
condition. Note that the previous researchers [8—10,23], who identi-
fied the null pressure points of the optimally attenuated sound field as
the best location for the error sensors, found the particular case of
Eq. (10) in which p, was equal to zero. Thus, the cost function repre-
sented by Eq. (10) is a generalized approach of this particular proce-
dure and gives the chance of placing the error sensors in points of
relatively high sound pressure of the optimally attenuated sound
field, thus avoiding the limiting effect of the broadband noise floor on
the efficiency of the system [23].

D. Adaptive Volume Control

The performance of active noise control systems in large rooms
tends to be reduced or is even unfeasible above a certain frequency. In
that situation, local control becomes the alternative to ensure attenua-
tion inside a finite volume of a room, without increasing the acoustic
potential energy of the rest of the room. This strategy requires the
secondary source to be placed close to the error sensors [21]; other-
wise, an increase of sound pressure can occur out of the local zone of
control [24]. This requirement is a severe limitation on the appli-
cability of local control, and a lot of experimental work has to be
carried out to find positions of error sensors that ensure attenuation in
areas: for example, comprising the passenger heads [12,13]. The
modification in the cost function defined by Eq. (10) can transform
one active control system designed for global control into one
focused on local control. This would have the advantage of having the
secondary sources and error sensors far from the zone of control or
even let an active system switch from a global to a local control
strategy.

Let a control volume Q be defined inside a room volume V with
boundary S. The primary sound field is continuously defined inside
V; that is, there is a continuity in both pressure P} = P$ and particle
velocity u) = u$, where ¢ is the boundary of Q. The secondary
sources and error sensors are placed on the boundary S of the volume
V (Fig. 1). The goal of the active control system is to reduce the
potential energy inside the volume Q, approximated in this case by
the cost function

=__ " pH 11
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where the vector pg is defined by the acoustic pressure calculated at a
very large number L ., of calculation points inside the control volume
in order to obtain a correct estimation of the acoustic potential energy.
The potential energy of the control zone cannot be written as a
function of the modal amplitudes as in Eq. (5), since only one part of
the spatial modal function participates in the potential energy of the
(unbounded) control volume. The sound pressure inside the control
zone can be written as

Fig. 1 Local volume of attenuation Q inside an enclosure V with
secondary sources (black dots) and error sensors placed in the enclosure
boundary.

p= Wﬂv[ap + qu] (12)

And, the set of secondary source strengths that minimizes the cost
function is

9o, = ~[B"w{wo Bl B'yiwa.a, (13)

This set of strengths is obviously different from g, in Eq. (6). This
result can also lead to an increase of the sound pressure outside the
zone of control. To avoid this unwanted situation, the target of the
active control is modified to minimize a weighted function of the cost
function including measurement points inside and outside the zone of
control, as

V [ pipo pypy
J, = 1 —aPVPv 14
P apect [a L +(-a R_ (14)

where py is the vector of acoustic pressure calculated at a large
number R, of calculation points outside 2, and «a is the weighting
value that gives more or less importance to the contribution of the two
volumes and should avoid increases of potential energy in both
volumes if it is properly selected. The value of a should be calculated
in order to obtain the maximum attenuation of the potential energy
inside the volume Q without increasing the potential energy outside
that volume. For that value of a, the set of secondary strengths that
ensures the maximum attenuation (given a set of secondary source
strengths) inside the control volume is ¢, and the minimized resid-
ual field is defined for that set of secondary strengths. For a practical
control system, the cost function must be defined by a limited number
of measurement points (error sensors) and, following the same argu-
ment that lead to Eq. (10), the optimal set of secondary strengths is
only obtained if the cost function is adapted to drive the pressures at
the error sensors to the values corresponding to the optimally
attenuated sound field given by the set g, Therefore, the cost func-
tion should be

v & 5

Iy 4p0ch; |P() = Pao ()| (15)
where p.o(x;) is the residual pressure of the optimally attenuated
sound field given by the set g,. Note that neither the secondary
sources nor the error sensors must be placed inside the control
volume Q.

The cost function expressed by Eqgs. (10) or (15) is really the same
and depends only on the residual pressure desired at each error sensor.
In fact, a controller based in such a function can change from global
control mode to local control mode, changing the target values from
Po(x;) to poo(x;). These values must be previously known; therefore,
the practicality of the method is limited to the situations in which the
response of the enclosure is known. These quantities can be deter-
mined by using numerical methods such as the finite element method
or the boundary element method, especially in the low-frequency
range. All these limitations are well suited for the control of stable
sound fields, i.e., narrowband disturbances such as turboprop cabin
noise. Note that, if the disturbance is perfectly periodic and the plant
response does not change, the optimal control can be achieved with a
fixed controller, and the adaptive controller would be unnecessary.
However, in real applications, an adaptive system must be used
because real signals change slowly [25] and the response of the elec-
troacoustic components can vary due to physical changes [26,27].

III. Numerical Model

The optimization procedure is applied to a numerical model of a
turboprop military transport aircraft conceived for a tactical airlift
capable of operating on short and semiprepared runways. Typical
missions include the transport of troops and cargo, medical evacua-
tion, humanitarian missions, and maritime patrol. Its main features
are listed in Table 1. The nominal propeller rotational speed is 120 Hz
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Bl Tablel Turboprop main features

Parameter Value
Maximum takeoff weight 23,200 kg
Maximum payload 9250 kg
Powerplant 2xPW127G
Maximum eent; power 2645 SHP
Propeller speed 1200 rpm
Propeller blades 6
Propeller diameter 3932 mm
Maximum cruise speed 480 km/h
Length 24.5m
Span 25.8 m
Height 8.66 m

that, combined with high power and reduced clearance between the
.propeller and the fuselage, causes cabin A-weighted levels to be
driven by BPEx1and BPEx2, at least for high-power flight conditions
where interior noise is maximum. The room in which a reduction of
noise is desired (Fig. 2) is approximately centered at the propeller
plane; its approximate size is 3 m long, 2.7 m wide (maximum), and
1.9 m high (maximum), and it is devoted to control tasks carried out
by one crew member.

A finite element model (FEM) of the whole fuselage structure and a
representation of the interior and exterior acoustic domains using
boundary elements [boundary element method (BEM)] is available
for that model. Detailed information of the model and its experi-
mental validation can be found in [28], although it will be outlined in
this section. The aircraft structural FEM contained a fine mesh for a
fuselage section comprising 10 frames that included the propeller
plane. The element size of this mesh was dimensioned for repro-
ducing structural dynamic behavior up to 400 Hz (approximately
25 mm). A coarser mesh based on an existing dynamic model [29]
was used for the rest of the aircraft for the purpose of improving
boundary conditions at the extremes of the section of interest.
The complete FEM contained approximately 200,000 elements and
800,000 deg of freedom. A snapshot of the complete FEM of the
aircraft is given in Fig. 2. The number of normal modes obtained with
the complete aircraft structural FEM reached approximately 2000
modes up to 250 Hz (36 acoustic modes up to 150 Hz). The boundary
element representation used for the coupled FEM/BEM was created
based on the internal cabin geometry of the aircraft used for testing.
System consoles and equipment racks were included in the model.
Subdomains were created based on the geometrical position of the
floor and roof panels.

The coupled vibroacoustic simulations were all performed using
LMS Virtual Lab “Acoustic Harmonic Toolbox” pre- and postpro-
cessing capabilities. Modal analysis of FEMs was performed using
MSC NASTRAN. The frequency range of interest for the coupled
simulation was set up to 150 Hz, whereas the structural normal modes
of the aircraft were calculated up to 250 Hz. The numerical model

Fig. 2 Control region (below) and representation of the different

Table2 FEM/BEM input data

Parameter Value
Temperature 20°C
Atmosphere pressure 843,036 Pa
Air density 1 kg/m?

Sound speed in air 3433 m/s

(some input data can be seen in Table 2) was validated through a
ground test using controllable synthetic sources (e.g., electrodynamic
shakers and loudspeakers). For this study, however, the eventual
acoustic loads induced by the synchronized propellers (phase shift of
180 deg) are introduced in the aircraft FEM/BEM by means of a
deterministic point source [30] of arbitrary amplitude; therefore, the
absolute values shown in the following sections are also arbitrary

Figure 3 shows the acoustic field (of arbitrary amplitude) outside
the cabin in the blade plane at the BPF; and Fig. 4 shows the sound
field inside the cabin (of arbitrary amplitude), at BPF, and at a height
of 1.2 m above the cabin floor, corresponding to the height of the
seated crew member. It is seen that the interior sound field is not
smooth, suggesting a low modal sound field. The reverberation time
of the cabin was experimentally measured giving a Schroeder’s
frequency value of 230 Hz [31]. This result confirms that the cabin
sound field fulfills the low modal condition and that global control is
achievable inside the cabin [32]. Finally, the comparison between
measured and calculated cabin noise levels gives an averaged error of
about 5% in the estimation of the acoustic pressure (linear scale) with
a standard deviation of about 11% (linear scale).

IV. Method

A. Optimization of the Secondary Sources

The potential energy of the cavity is estimated through Eq. (11)
(extended to the volume V of the cavity) by using 3009 measurement
points from the BEM. The optimal secondary strengths are calculated
through Eq. (13), and the attenuation R is defined by the reduction of
potential energy so that

E
R=10 1og(E—"”) (16)

ps

where E,,, is the acoustic potential energy of the primary field, and
E,, is the acoustic potential energy of the optimally attenuated
sound field.

The candidate locations for the secondary acoustic sources are
selected according to the surface free of equipment in the ceiling and
wall panels, in addition to considering a minimum distance between
two correlative positions of 0.8 m. Optimal attenuations are
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meshes used in LMS Virtual Lab and LMS Sysnoise for coupled FEM/ [l Fig. 3 Exterior noise field (BPF) at the blade plane (in decibels, with

BEM simulations.

arbitrary amplitude).
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70

Z[m]

45

Y [m]

Fig. 4 Primary acoustic field (BPF) at 1.2 m above the cabin floor (in
decibels, with arbitrary amplitude).

calculated for all combinations of loudspeaker positions such that the
total number of secondary sources is varied from 1 to a maximum of
21 locations. However, calculations are truncated at M secondary
sources when the increase of attenuation is lesser than 0.5 dB com-
pared to the best configuration of M — 1 secondary sources.

B. Robustness

Once the secondary sources are located in their optimal positions,
the next step is to place the error sensors. According to Eq. (9), there is
no restriction in the location of error microphones, and its number can
be equal to the number of secondary sources. However, this statement
holds if the control system is designed for a uniquely defined working
point, which can be called the reference condition [10] but, in real
application, this reference condition is not completely defined
without considering the uncertainty of the plant, that can reduce the
efficiency of the control system [32]. Itis possible that the location of
the error sensors plays some role in the robustness of the control
system. To investigate the effect of the unstructured errors [33],
calculations are conducted in which the model is formed by adding a
vector of Gaussian random numbers to the reference primary field.
Thus, a vector error p, is added to p, in order to obtain a deviation of
the reference situation of the primary acoustic field. Specifically, the
elements ¢;; of the vector error p,, are randomly calculated from a
normal distribution defined by N(0.05¢;;,0.11¢;;), where c;; is the
(complex) element of p,. These values approximate the measured
error between the numerical model and the experimental values. Note
that, under these circumstances, the cost function is written as

v oL
p ZWZ[(PP +p, + Py — pol? an
ol =

i=1

As a result, the set of secondary strengths that minimizes the cost
function is no longer g,y and the performance of the optimally
designed control system is reduced.

Table 3 Primary p (arbitrary amplitude) and optimally attenuated
acoustic field pressures p,, and their phases (¢ and ¢,), at the error
sensors and optimal secondary sources strengths and their phases ¢*

Error  p,dB  ¢,rad  py,dB ¢y, rad  Source g, m*/s ¢, rad

1 54.1 0.47 62.3 -1.25 1 0.0068 0.44
2 59.6  -040 60.0 -1.32 2 0.0045 0.53
3 47.7 1.26 49.0 -0.36 3 0.0013 -0.49
4 62.9 1.41 58.6 1.25 4 0.0046 0.42
5 57.8 =073 535 1.03 5 0.0027 0.66
6 553 -0.18 555 0.45 6 0.0018 1.30

“Phase reference given by the port propeller.

Attenuation [dB]

1 2 3 4 5 6 7 8

o

Number of secondary sources

Fig. 5 Reduction of the acoustic potential energy vs number of
secondary sources.

The robustness of the system can be numerically defined as the
difference between the maximum possible attenuation given a set of
secondary sources and the eventual attenuation obtained if the
primary field is not the one considered as the reference condition.
This difference can be expressed as the relation between the acoustic
potential energy of the residual acoustic field when the error is
induced in the reference primary field E ., and the acoustic potential
energy of the optimally reduced sound field E . In this text, this
relation is expressed in decibel scale and defined as the attenuation
loss AE , so that AE,; = 10 log(E .o/ E o). Thus, positive values
of AE),, mean a reduction of the attenuation (a degradation of the
efficiency); and the greater the attenuation loss, the lesser the
robustness.

Therefore, once the secondary sources are optimized, the location
of the error sensors is defined by the set of error sensors that give the
most robust control system design from a 100 different combinations
of error sensors. Each defined set of error sensors accomplishes two
different conditions: the distance between the microphones is at least
0.8 m, and they are placed in the ceiling or wall plates (in order to not
invade the room space). The robustness of each set of error sensors is
determined by calculating its averaged attenuation loss for 100
different primary fields defined by Eq. (17).

V. Results

The maximum attenuation achievable as a function of the number
of secondary sources can be seen in Fig. 5. Calculations are truncated
at eight secondary sources because the increase of attenuation using
such a number of secondary sources with respect to the maximum
attenuation using seven secondary sources is only 0.2 dB. The maxi-
mum achievable attenuation for eight secondary sources is 7.5 dB;
meanwhile, for seven and six secondary sources, the maximum
attenuations are 7.3 and 7.0 dB, respectively. Considering the aver-
aged error committed in calculating the primary field, it seems that an
increase of attenuation of about 0.5 dB is not worth the effort, and a
reasonable number of six secondary sources is chosen as a reference
condition. Specifically, the location of the six secondary sources is
shown in Fig. 6 and the optimally attenuated sound field at 1.2 m
height is shown in Fig. 7. The controlled acoustic field is smoother
than the primary field, and the potential energy reduction is achieved
by the reduction of the zones of maximum noise level of the primary
field. This suggests a reduction of the dominant contributing modes
by the action of the secondary sources. Table 3 summarizes the initial
pressures and the optimally attenuated pressures at the error sensors
(used to define the cost function), as well as the secondary sources
strengths, which ensures the minimization of the primary acoustic
field. It must be noted that some increases of the pressure at the error
microphones after the optimal control must be accepted in order to
achieve the best global control.

Since the six error sensors can be located elsewhere from the point
of view of performance, the optimization of its configuration (number
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Z[m]

095 4
Y [m]

Fig. 6 Location of the secondary sources (black dots) and error sensors
(void rhombus).

70
85
a4
B0
35
E
N 37 55
25
2]
- 8
0 o5 75 X[m] 45

Fig. 7 Optimally attenuated acoustic field at the plane defined by
z = 1.2 m (in decibels).

and location) is carried out as a function of the robustness of the
control system. As a starting point, the best configuration of the six
secondary sources is used, and their strength is now adjusted to
minimize the cost function defined by Eq. (17) for the 100 different
sets of six error sensors. The effect on the robustness of the deviation
in the reference primary acoustic field gives an averaged attenuation
loss of 0.1 dB. The best configuration gives an averaged (over the 100
different randomly modified primary fields) attenuation loss of
0.002 dB, and the worst one gives an attenuation loss of 0.8 dB.
Considering the small values of attenuation loss induced by the error
between real and calculated primary fields, it seems that the location
of the error sensors has little effect on the robustness of the system.
If desired, local control can be applied to around the crew member
head (Fig. 8) without increasing the sound pressure in the rest of the

Table4 Primary p and optimally attenuated sound field pressures
Po at the error sensors and optimal secondary source strengths for a
locally optimized active control with four secondary sources:

Error  p,dB  ¢,rad  py,dB ¢, rad  Source g, m’/s ¢, rad

1 54.1 0.47 60.3 1.03 1 0.0068 0.44
2 59.6 —0.40 473 —1.44 2 0.0045 0.53
3 47.7 1.26 65.6 1.25 3 0.0065 -1.39
4 62.9 1.41 554 —0.88 4 0.0046 0.42

“Phase reference given by the port propeller.

Z[m]

95

85
8  X[m]

0 s 75
Y [m]

Fig.8 Selected region for local control. The model of the human body is
not included in the calculations.

Atenuation [dB]

L L 1 1

1
0 0.1 02 03 04 05 06 07 08 09 1

-4 L 1 1 L

afl]

Fig. 9 Reduction of potential energy in the region around the crew
member head (local) and in the rest of the room (global) vs the weighting
factor a.

volume. Since the control volume becomes smaller when switching
from global control to local control, a higher attenuation is expected
inside the volume of local control compared to the attenuation
achieved when global control is pursued. The first step is to calculate
the value of the weighting factor a of Eq. (14), which reduces the
potential energy in the area surrounding the worker without increas-
ing the acoustic potential energy in the rest of the room. Using, in that
case, the configuration of the best four secondary sources, the cost
function defined by Eq. (14) is minimized for different values of a.
The acoustic potential energy at the volume €2 (surrounding the crew
member) and at the rest of the room V are estimated through the
pressure calculated at 240 and 2769 points, respectively, which is a
squared volume of a side of 0.6 m. Results are plotted in Fig. 9, and it
is seen that, if the local control is defined without considering the
acoustic potential energy at the rest of the room (@ = 1), high local
attenuation is achieved, but at a cost of increasing the potential energy
of the rest of the room up to 4 dB. If the local control is prioritized,
a value of @ = 0.95 gives an attenuation around 10 dB in the local
region without increasing the potential energy at the rest of the room.
For a given a, there is a set of optimal secondary strengths that
minimizes the cost function of Eq. (14), and thus gives new residual
pressures at the error sensors, which are the values to be used in the
cost function of the active control system defined by Eq. (17). Table 4
shows the new values (for @ = 0.95) of the residual pressures at the
error sensors and the optimal secondary strengths that ensure a maxi-
mization of the local attenuation around the worker’s head without
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Fig. 10 Optimally attenuated local sound field at the plane defined by
z=12m.

increasing the potential energy in the rest of the cabin, without
changing the location of the secondary sources and error sensors.
Note that only four (whatever they are) of the six error sensors are
needed. Figure 10 also shows the residual sound fields after local
attenuation. The controlled acoustic field is uniform in the region
close to the head, and it can be seen that the residual field outside the
local region of attenuation suffers some modification, but noise levels
are similar to those of the primary field (Fig. 4). Thus, the active
control system rearranges the contributing modes in order to avoid
the presence of zones of high noise level inside the local region of
control (as it does when global control is attempted) but also avoiding
the increase outside this local region.

V1. Conclusions

A modified cost function for the global active control of enclosed
sound fields is proposed, which ensures achievement of the optimal
attenuation that can be obtained by a set of secondary sources. The
usual cost function based on the summation of squared pressures
given by error microphones is modified by subtracting at each pres-
sure the value of the pressure corresponding to the optimally atten-
uated sound field, which depends only on the number and location
of the secondary sources and not on the error sensors. With this
modification of the cost function, the strengths of the secondary
sources of the control system are tuned to drive the pressure of the
error sensors to their optimal values and not to zero. This strategy
leads to four more additional conclusions. The first one is that it is no
longer necessary to use a number of error microphones that is greater
than the number of secondary sources to ensure not only a smooth
attenuation but the optimal attenuation. Second, the optimization of
the control system for an enclosed sound field is limited to the
optimization of the sources. Once the optimally attenuated sound
field is known, there is no need to optimize the location of the error
microphones. It is a matter of selecting a number of locations equal to
the number of secondary sources and set the right cost function for the
places selected. Third, the error transducers can be located in any
place of the enclosure (i.e., far from passengers). And, lastly, this cost
function can be easily rearranged in order to make the active system
control a local region instead of the whole cavity.

The limitation of the cost function is that the sound field must
be known, and this reduces its applicability to stationary primary
sources in order to reduce the quantity of information to narrowband
noises, as is the case of turboprop cabin noise. An example of the
application of the proposed cost function is given using a FEM/BEM
of a real turboprop. In that example, the locations of secondary
sources and error sensors are found, as well as the values of residual
pressure that must be achieved in each error sensor after cancellation
in order to guarantee the optimal attenuation.
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