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Abstract

We state a unified geometrical version of the variational principles for second-order clas-
sical field theories. The standard Lagrangian and Hamiltonian variational principles and the
corresponding field equations are recovered from this unified framework.
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1 Introduction

As stated in [9], the field equations of a classical field theory arising from a partial differential
Hamiltonian system (in the sense of [9]) are locally variational, that is, they can be derived using
a variational principle. In this work we use the geometric Lagrangian-Hamiltonian formulation
for second-order classical field theories given in [4] to state the variational principles for this kind
of theories from a geometric point of view, thus giving a different point of view and completing
previous works on higher-order classical field theories [1}, [§].

(All the manifolds are real, second countable and C*°. The maps and the structures are assumed
to be C*°. Usual multi-index notation introduced in [6] is used).

2 Higher-order jet bundles

(See [6] for details). Let M be an orientable m-dimensional smooth manifold, and let n € 2™ (M)
be a volume form for M. Let E — M be a bundle with dim F = m+n. If k € N, the kth-order
jet bundle of the projection 7, J*7, is the manifold of the k-jets of local sections ¢ € I'(r); that
is, equivalence classes of local sections of 7 by the relation of equality on every partial derivative
up to order k. A point in J¥7 is denoted by j*¢, where z € M and ¢ € I'() is a representative
of the equivalence class. We have the following natural projections: if r < k,

k. gk — J'n k. Jkr — E i gk — M
e — o e — o) o — @

k k _k k k

Observe that 7 o ¥ = 7k 7k = 7k 7F =1d jx;, and 7% = 7o 7k

If local coordinates in E adapted to the bundle structure are (z°,u®), 1 <i < m, 1 < a < n,
then local coordinates in J¥m are denoted (z%,u), with 0 < |I| < k.

If ¢ € T'(7r), we denote the kth prolongation of ¢ to J*r by j*¢ € T'(7*).
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Definition 1 A section 1) € T'(@*) is holonomic if j*(7* o)) = 4; that is, ¢ is the kth prolon-
gation of a section ¢ = 7F o1p € T'(rr).

In the following we restrict ourselves to the case k = 2. According to [7], consider the
subbundle of fiber-affine maps J'7! — R which are constant on the fibers of the affine subbundle
(F)*(A*T*M) @ (x')* (V) of J'7! over J'w. This subbundle is canonically diffeomorphic to the
7 1 -transverse submanifold J27T of AJ*(J'7) defined locally by the constraints pq = pl , which
fibers over J'm and M with projections WTJlﬂZ J2nt — Jlr and ﬁTJlﬂ: J?rt — M, respectively.
The submanifold js: J27! < AZ(J7) is the extended 2-symmetric multimomentum bundle.

All the canonical geometric structures in AJ*(J'7) restrict to J2z!. Denote 5 = X0 €
Qm(J%7T) and Qf = j¥Qy € 2mF(J27T) the pull-back of the Liouville forms in AJ*(J), which
we call the symmetrized Liouville forms.

Finally, let us consider the quotient bundle J2z* = J27T/AT(J'7), which is called the
restricted 2-symmetric multimomentum bundle. This bundle is endowed with a natural quotient
map, p: J2rT — J?7x%, and the natural projections ﬂ31W2 J*rt — J'7 and ﬁiﬂﬂ: J*rt — M.
Observe that dim J?7% = dim J%7 — 1.

3 Lagrangian-Hamiltonian unified formalism

(See [4] for details). Let m: E — M be the configuration bundle of a second-order field theory,
where M is an orientable m-dimensional manifold with volume form n € 2" (M), and dim £ =
m +n. Let £ € 2™(J?r) be a second-order Lagrangian density for this field theory. The
2-symmetric jet-multimomentum bundles are

W= Jnxp, 2ot o W, =T x i, 2wt

These bundles are endowed with the canonical projections p}: W, — J3m, po: W — J 2nt,
Py Wy — J%mt, and P Wy — M. In addition, the natural quotient map p: J2rt — J2qpt
induces a natural submersion gy : W — W,.

Using the canonical structures in W and W,, we define a Hamiltonian section h e T'(pw),
which is specified by giving a local Hamiltonian function H € C*®°(W,). Then we define the
forms ©, = (py 0 h)*© € Q™(W,) and Q, = —dO, € 2™ (W,). Finally, ¥ € T(p},) is
holonomic in W, if p} o1 € T'(73) is holonomic in J37.

The Lagrangian-Hamiltonian problem for sections associated with the system (W, ;) con-
sists in finding holonomic sections 1 € I'(p},) satisfying

v i(X)Q, =0, for every X € X(W,). (1)
Proposition 1 A section i € T'(p},) solution to the equation ([I) takes values in a n(m-+m(m+

1)/2)-codimensional submanifold jro: We < W, which is identified with the graph of a bundle
map FL: J37 — J?xt over J'x defined locally by

L, oL &K1 d oL . )’
fﬁpa_W_;n(z’j)ﬁ<aui+lj> P FE P = g

The map FL is the restricted Legendre map associated with £, and it can be extended to a
map FL: J31 — J?x', which is called the extended Legendre map.
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4 Variational Principle for the unified formalism

If I'(p', ) is the set of sections of p},, we consider the following functional (where the convergence
of the integral is assumed)
LH:T'(p},) — R

T /M e,

Definition 2 (Generalized Variational Principle) The Lagrangian-Hamiltonian variational
problem for the field theory (W, Q,) is the search for the critical holonomic sections of the
functional LH with respect to the variations of ¥ given by ¢y = o o ¢, where {0} is a local
one-parameter group of any compact-supported p',-vertical vector field Z in W,., that is,

/ VO, = 0.
t=0J M

Theorem 1 A holonomic section ¢ € I'(p'y,) is a solution to the Lagrangian- Hamiltonian vari-
ational problem if, and only if, it is a solution to equation ().

4
dt

(Proof) This proof follows the patterns in [2] (see also [3]). Let Z € XV (¥a)(W,) be a compact-
supported vector field, and V' C M an open set such that 9V is a (m — 1)-dimensional manifold

and p};(supp(Z)) C V. Then,
0, =4 ‘0,= 4 10, = [ v (1 SO O
t—O/Md}t@T_dt t—o/\/d}t@T_dt t—o/VwUt@T_/vq/} <%1—I>% t )

= [wu@e, = [ wizae, +aize,) = [ v iz +dize,)
174 174 174
== [wize + [ awize) - [ vize+ [ vize,
:_/ w*Z(Z)Qra
s

d
dt

as a consequence of Stoke’s theorem and the assumptions made on the supports of the vertical
vector fields. Thus, by the fundamental theorem of the variational calculus, we conclude

d

a / U0, =0 e Ut i(Z)Q, =0,

dt|,_o Jm

for every compact-supported Z € XV (P )(Wr). However, since the compact-supported vector
fields generate locally the C*° (W, )-module of vector fields in W,, it follows that the last equality

holds for every p',-vertical vector field Z in W,. Now, for every w € Im1), we have a canonical
splitting of the tangent space of W, at w in a p',-vertical subspace and a p',-horizontal subspace,

TuWr = Vi (phy) @ Top(Imep) .
Thus, if Y € X(W,), then
Yo = (Yo = Tu( 0 par) (Y)) + Tu( 0 phr) (Ya) = Yy + Y,
with ;) € Vi, (p},) and Yl € Ty(Imy). Therefore

G iV = (Y + (YY), = i (YD,
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since 1*i(Y"V)Q, = 0, by the conclusion in the above paragraph. Now, as Y € T (Ima)
for every w € Imi, then the vector field Y¥ is tangent to Ime, and hence there exists a
vector field X € X(M) such that X is t-related with Y¥; that is, 1, X = Yw‘lm " Then
P i(YV)Q, = i(X)Y*Q,. However, as dimImy = dim M = m and €, is a (m + 1)-form, we
obtain that ¢* §(Y¥)Q, = 0. Hence, we conclude that * i(Y)Q, = 0 for every Y € X(W,).

Taking into account the reasoning of the first paragraph, the converse is obvious since the
condition ¢¥* §(Y)Q, = 0, for every Y € X(W,), holds, in particular, for every Z € XV (W,).
|

5 Lagrangian variational problem

Consider the submanifold jz: W,y < W,.. Since W, is the graph of the restricted Legendre
map, the map pf = pl ojr: Wr — J3m is a diffeomorphism. Then we can define the Poincaré-
Cartan m-form as O, = (jz o (p¥)™1)*0, € 2™(J37r). This form coincides with the usual
Poincaré-Cartan m-form derived in [5] [7].

Given the Lagrangian field theory (J3,€,), consider the following functional
L:T(x) — R
o — [ GPorec
M

Definition 3 (Generalized Hamilton Variational Principle) The Lagrangian variational
problem (or Hamilton variational problem ) for the second-order Lagrangian field theory (J3m, Q)
18 the search for the critical sections of the functional L with respect to the variations of ¢ given
by ¢ = orop, where {o} is a local one-parameter group of any compact-supported Z € %V(”)(E);

that is,
/ (P61)"Or = 0.
t=0J M

Theorem 2 Let 1) € I'(p};) be a holonomic section which is critical for the functional LH.
Then, ¢ = w3 o p} o1p € T'(r) is critical for the functional L.

d

dt

Conversely, if ¢ € I'(m) is a critical section for the functional L, then the section ¥ = jr o
(p£) "t o3¢ € T'(ph,) is holonomic and it is critical for the functional LH.

(Proof) The proof follows the same patterns as in Theorem [Il The same reasoning also proves
the converse.

6 Hamiltonian variational problem

Let P = Im(j-:Z) Iy J2xt and P =1Im(FL) <y 27t the image of the extended and restricted
Legendre maps, respectively; @p: P — M the natural projection, and FL,: J37 — P the map
defined by FL = j0 FL,.

A Lagrangian density £ € £2™(J?7) is almost-regular if (i) P is a closed submanifold of .J27¥,
(ii) FL is a submersion onto its image, and (iii) for every j2¢ € J?x, the fibers FL Y (FL(j3¢))
are connected submanifolds of J7.
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The Hamiltonian section h € T(uy) induces a Hamiltonian section h € I'(u) defined by
p2oh = hopy. Then, we define the Hamilton-Cartan m-form in P as O = (ho)*0©] € 2™ (P).
Observe that FL O = O.

In what follows, we consider that the Lagrangian density £ € 2™ (J%7) is, at least, almost-
regular. Given the Hamiltonian field theory (P,Qp), let I'(7p) be the set of sections of 7p.
Consider the following functional

H:T(7p) — R
vy /1/12973
M

Definition 4 (Generalized Hamilton-Jacobi Variational Principle) 7The Hamiltonian vari-
ational problem (or Hamilton-Jacobi variational problem) for the second-order Hamiltonian
field theory (P,Sy,) is the search for the critical sections of the functional H with respect to the
variations of vy giwven by (¢Yn)r = o o Yy, where {0} is a local one-parameter group of any
compact-supported Z € XV (P),

d

dt

/ (n);On = 0.
t=0J M

Theorem 3 Let 1 € I'(p)y,) be a critical section of the functional LH. Then, the section
Y =FLyoployp € I'(Tp) is a critical section of the functional H.

Conversely, if 1, € I'(7p) is a critical section of the functional H, then the section ¥ = jr o
(pE)"Loryouyy, € T(phy) is a critical section of the functional LH, where v € T'p(FL,) is a local
section of FL,.

(Proof) The proof follows the same patterns as in Theorem [Il The same reasoning also proves
the converse, bearing in mind that v € I'p(FL,) is a local section.

7 The higher-order case

As stated in [4], this formulation fails when we try to generalize it to a classical field theory
of order greater or equal than 3. The main obstruction to do so is the relation among the
multimomentum coordinates used to define the submanifold J%7f, py = pX for every 1 <
1,7 < m and every 1 < a < n. Although this “symmetry” relation on the multimomentum
coordinates can indeed be generalized to higher-order field theories, it only holds for the highest-
order multimomenta. That is, this relation on the multimomenta is not invariant under change
of coordinates for lower orders, and hence we do not obtain a submanifold of AJ*(J¥~1r).
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