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Abstract

We state a unified geometrical version of the variational principles for second-order clas-
sical field theories. The standard Lagrangian and Hamiltonian variational principles and the
corresponding field equations are recovered from this unified framework.
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1 Introduction

As stated in [9], the field equations of a classical field theory arising from a partial differential
Hamiltonian system (in the sense of [9]) are locally variational, that is, they can be derived using
a variational principle. In this work we use the geometric Lagrangian-Hamiltonian formulation
for second-order classical field theories given in [4] to state the variational principles for this kind
of theories from a geometric point of view, thus giving a different point of view and completing
previous works on higher-order classical field theories [1, 8].

(All the manifolds are real, second countable and C∞. The maps and the structures are assumed
to be C∞. Usual multi-index notation introduced in [6] is used).

2 Higher-order jet bundles

(See [6] for details). LetM be an orientablem-dimensional smooth manifold, and let η ∈ Ωm(M)
be a volume form forM . Let E

π
−→M be a bundle with dimE = m+n. If k ∈ N, the kth-order

jet bundle of the projection π, Jkπ, is the manifold of the k-jets of local sections φ ∈ Γ(π); that
is, equivalence classes of local sections of π by the relation of equality on every partial derivative
up to order k. A point in Jkπ is denoted by jkxφ, where x ∈M and φ ∈ Γ(π) is a representative
of the equivalence class. We have the following natural projections: if r 6 k,

πkr : J
kπ −→ Jrπ
jkxφ 7−→ jrxφ

πk : Jkπ −→ E
jkxφ 7−→ φ(x)

π̄k : Jkπ −→ M
jkxφ 7−→ x

Observe that πsr ◦ π
k
s = πkr , π

k
0 = πk, πkk = IdJkπ, and π̄

k = π ◦ πk.

If local coordinates in E adapted to the bundle structure are (xi, uα), 1 6 i 6 m, 1 6 α 6 n,
then local coordinates in Jkπ are denoted (xi, uαI ), with 0 6 |I| 6 k.

If ψ ∈ Γ(π), we denote the kth prolongation of φ to Jkπ by jkφ ∈ Γ(π̄k).
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Definition 1 A section ψ ∈ Γ(π̄k) is holonomic if jk(πk ◦ ψ) = ψ; that is, ψ is the kth prolon-
gation of a section φ = πk ◦ ψ ∈ Γ(π).

In the following we restrict ourselves to the case k = 2. According to [7], consider the
subbundle of fiber-affine maps J1π̄1 → R which are constant on the fibers of the affine subbundle
(π̄1)∗(Λ2T∗M)⊗(π1)∗(V π) of J1π̄1 over J1π. This subbundle is canonically diffeomorphic to the
πJ1π-transverse submanifold J2π† of Λm2 (J1π) defined locally by the constraints pijα = pjiα , which

fibers over J1π and M with projections π†
J1π

: J2π† → J1π and π̄†
J1π

: J2π† → M , respectively.

The submanifold js : J
2π† →֒ Λm2 (J1π) is the extended 2-symmetric multimomentum bundle.

All the canonical geometric structures in Λm2 (J1π) restrict to J2π†. Denote Θs
1 = j∗sΘ1 ∈

Ωm(J2π†) and Ωs1 = j∗sΩ1 ∈ Ωm+1(J2π†) the pull-back of the Liouville forms in Λm2 (J1π), which
we call the symmetrized Liouville forms.

Finally, let us consider the quotient bundle J2π‡ = J2π†/Λm1 (J1π), which is called the
restricted 2-symmetric multimomentum bundle. This bundle is endowed with a natural quotient
map, µ : J2π† → J2π‡, and the natural projections π‡

J1π
: J2π‡ → J1π and π̄‡

J1π
: J2π‡ → M .

Observe that dim J2π‡ = dim J2π† − 1.

3 Lagrangian-Hamiltonian unified formalism

(See [4] for details). Let π : E → M be the configuration bundle of a second-order field theory,
where M is an orientable m-dimensional manifold with volume form η ∈ Ωm(M), and dimE =
m + n. Let L ∈ Ωm(J2π) be a second-order Lagrangian density for this field theory. The
2-symmetric jet-multimomentum bundles are

W = J3π ×J1π J
2π† ; Wr = J3π ×J1π J

2π‡ .

These bundles are endowed with the canonical projections ρr1 : Wr → J3π, ρ2 : W → J2π†,
ρr2 : Wr → J2π‡, and ρrM : Wr → M . In addition, the natural quotient map µ : J2π† → J2π‡

induces a natural submersion µW : W → Wr.

Using the canonical structures in W and Wr, we define a Hamiltonian section ĥ ∈ Γ(µW),
which is specified by giving a local Hamiltonian function Ĥ ∈ C∞(Wr). Then we define the
forms Θr = (ρ2 ◦ ĥ)∗Θ ∈ Ωm(Wr) and Ωr = −dΘr ∈ Ωm+1(Wr). Finally, ψ ∈ Γ(ρrM ) is
holonomic in Wr if ρ

r
1 ◦ ψ ∈ Γ(π̄3) is holonomic in J3π.

The Lagrangian-Hamiltonian problem for sections associated with the system (Wr,Ωr) con-
sists in finding holonomic sections ψ ∈ Γ(ρrM ) satisfying

ψ∗ i(X)Ωr = 0 , for every X ∈ X(Wr) . (1)

Proposition 1 A section ψ ∈ Γ(ρrM ) solution to the equation (1) takes values in a n(m+m(m+
1)/2)-codimensional submanifold jL : WL →֒ Wr which is identified with the graph of a bundle
map FL : J3π → J2π‡ over J1π defined locally by

FL∗piα =
∂L̂

∂uαi
−

m∑

j=1

1

n(ij)

d

dxj

(
∂L̂

∂uα1i+1j

)
; FL∗pIα =

∂L̂

∂uαI
.

The map FL is the restricted Legendre map associated with L, and it can be extended to a
map F̃L : J3π → J2π†, which is called the extended Legendre map.
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4 Variational Principle for the unified formalism

If Γ(ρrM ) is the set of sections of ρrM , we consider the following functional (where the convergence
of the integral is assumed)

LH : Γ(ρrM ) −→ R

ψ 7−→

∫

M

ψ∗Θr

Definition 2 (Generalized Variational Principle) The Lagrangian-Hamiltonian variational
problem for the field theory (Wr,Ωr) is the search for the critical holonomic sections of the
functional LH with respect to the variations of ψ given by ψt = σt ◦ ψ, where {σt} is a local
one-parameter group of any compact-supported ρrM -vertical vector field Z in Wr, that is,

d

dt

∣∣∣∣
t=0

∫

M

ψ∗
tΘr = 0 .

Theorem 1 A holonomic section ψ ∈ Γ(ρrM ) is a solution to the Lagrangian-Hamiltonian vari-
ational problem if, and only if, it is a solution to equation (1).

(Proof ) This proof follows the patterns in [2] (see also [3]). Let Z ∈ X
V (ρr

M
)(Wr) be a compact-

supported vector field, and V ⊂M an open set such that ∂V is a (m− 1)-dimensional manifold
and ρrM (supp(Z)) ⊂ V . Then,

d

dt

∣∣∣∣
t=0

∫

M

ψ∗

tΘr =
d

dt

∣∣∣∣
t=0

∫

V

ψ∗

tΘr =
d

dt

∣∣∣∣
t=0

∫

V

ψ∗σ∗

tΘr =

∫

V

ψ∗

(
lim
t→0

σ∗

tΘr −Θr

t

)

=

∫

V

ψ∗

L(Z)Θr =

∫

V

ψ∗(i(Z)dΘr + d i(Z)Θr) =

∫

V

ψ∗(− i(Z)Ωr + d i(Z)Θr)

= −

∫

V

ψ∗ i(Z)Ωr +

∫

V

d(ψ∗ i(Z)Θr) = −

∫

V

ψ∗ i(Z)Ωr +

∫

∂V

ψ∗ i(Z)Θr

= −

∫

V

ψ∗ i(Z)Ωr ,

as a consequence of Stoke’s theorem and the assumptions made on the supports of the vertical
vector fields. Thus, by the fundamental theorem of the variational calculus, we conclude

d

dt

∣∣∣∣
t=0

∫

M

ψ∗
tΘr = 0 ⇐⇒ ψ∗ i(Z)Ωr = 0 ,

for every compact-supported Z ∈ X
V (ρr

M
)(Wr). However, since the compact-supported vector

fields generate locally the C∞(Wr)-module of vector fields in Wr, it follows that the last equality
holds for every ρrM -vertical vector field Z in Wr. Now, for every w ∈ Imψ, we have a canonical
splitting of the tangent space ofWr at w in a ρrM -vertical subspace and a ρrM -horizontal subspace,

TwWr = Vw(ρ
r
M )⊕ Tw(Imψ) .

Thus, if Y ∈ X(Wr), then

Yw = (Yw − Tw(ψ ◦ ρrM )(Yw)) + Tw(ψ ◦ ρrM )(Yw) ≡ Y V
w + Y ψw ,

with Y V
w ∈ Vw(ρ

r
M ) and Y ψ

w ∈ Tw(Imψ). Therefore

ψ∗ i(Y )Ωr = ψ∗ i(Y V )Ωr + ψ∗ i(Y ψ)Ωr = ψ∗ i(Y ψ)Ωr ,



P.D. Prieto-Mart́ınez, N. Román-Roy: Variational principles for second-order CFT 5

since ψ∗ i(Y V )Ωr = 0, by the conclusion in the above paragraph. Now, as Y ψ
w ∈ Tw(Imψ)

for every w ∈ Imψ, then the vector field Y ψ is tangent to Imψ, and hence there exists a
vector field X ∈ X(M) such that X is ψ-related with Y ψ; that is, ψ∗X = Y ψ

∣∣
Imψ

. Then

ψ∗ i(Y ψ)Ωr = i(X)ψ∗Ωr. However, as dim Imψ = dimM = m and Ωr is a (m + 1)-form, we
obtain that ψ∗ i(Y ψ)Ωr = 0. Hence, we conclude that ψ∗ i(Y )Ωr = 0 for every Y ∈ X(Wr).

Taking into account the reasoning of the first paragraph, the converse is obvious since the
condition ψ∗ i(Y )Ωr = 0, for every Y ∈ X(Wr), holds, in particular, for every Z ∈ X

V (ρr
R
)(Wr).

5 Lagrangian variational problem

Consider the submanifold jL : WL →֒ Wr. Since WL is the graph of the restricted Legendre
map, the map ρL1 = ρr1 ◦ jL : WL → J3π is a diffeomorphism. Then we can define the Poincaré-

Cartan m-form as ΘL = (jL ◦ (ρL1 )
−1)∗Θr ∈ Ωm(J3π). This form coincides with the usual

Poincaré-Cartan m-form derived in [5, 7].

Given the Lagrangian field theory (J3π,ΩL), consider the following functional

L : Γ(π) −→ R

φ 7−→

∫

M

(j3φ)∗ΘL

Definition 3 (Generalized Hamilton Variational Principle) The Lagrangian variational
problem (or Hamilton variational problem) for the second-order Lagrangian field theory (J3π,ΩL)
is the search for the critical sections of the functional L with respect to the variations of φ given
by φt = σt◦φ, where {σt} is a local one-parameter group of any compact-supported Z ∈ X

V (π)(E);
that is,

d

dt

∣∣∣∣
t=0

∫

M

(j3φt)
∗ΘL = 0 .

Theorem 2 Let ψ ∈ Γ(ρrM ) be a holonomic section which is critical for the functional LH.
Then, φ = π3 ◦ ρr1 ◦ ψ ∈ Γ(π) is critical for the functional L.

Conversely, if φ ∈ Γ(π) is a critical section for the functional L, then the section ψ = jL ◦
(ρL1 )

−1 ◦ j3φ ∈ Γ(ρrM ) is holonomic and it is critical for the functional LH.

(Proof ) The proof follows the same patterns as in Theorem 1. The same reasoning also proves
the converse.

6 Hamiltonian variational problem

Let P̃ = Im(F̃L)
̃
→֒ J2π† and P = Im(FL)


→֒ J2π‡ the image of the extended and restricted

Legendre maps, respectively; π̄P : P →M the natural projection, and FLo : J
3π → P the map

defined by FL =  ◦ FLo.

A Lagrangian density L ∈ Ωm(J2π) is almost-regular if (i) P is a closed submanifold of J2π‡,
(ii) FL is a submersion onto its image, and (iii) for every j3xφ ∈ J3π, the fibers FL−1(FL(j3xφ))
are connected submanifolds of J3π.
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The Hamiltonian section ĥ ∈ Γ(µW) induces a Hamiltonian section h ∈ Γ(µ) defined by
ρ2 ◦ ĥ = h◦ρr2. Then, we define the Hamilton-Cartan m-form in P as Θh = (h◦ )∗Θs

1 ∈ Ωm(P).
Observe that FL∗

oΘh = ΘL.

In what follows, we consider that the Lagrangian density L ∈ Ωm(J2π) is, at least, almost-
regular. Given the Hamiltonian field theory (P,Ωh), let Γ(π̄P) be the set of sections of π̄P .
Consider the following functional

H : Γ(π̄P) −→ R

ψh 7−→

∫

M

ψ∗
hΘP

Definition 4 (Generalized Hamilton-Jacobi Variational Principle) The Hamiltonian vari-
ational problem (or Hamilton-Jacobi variational problem) for the second-order Hamiltonian
field theory (P,Ωh) is the search for the critical sections of the functional H with respect to the
variations of ψh given by (ψh)t = σt ◦ ψh, where {σt} is a local one-parameter group of any
compact-supported Z ∈ X

V (π̄P )(P),

d

dt

∣∣∣∣
t=0

∫

M

(ψh)
∗
tΘh = 0 .

Theorem 3 Let ψ ∈ Γ(ρrM ) be a critical section of the functional LH. Then, the section
ψh = FLo ◦ ρ

r
1 ◦ ψ ∈ Γ(π̄P) is a critical section of the functional H.

Conversely, if ψh ∈ Γ(π̄P) is a critical section of the functional H, then the section ψ = jL ◦
(ρL1 )

−1 ◦ γ ◦ψh ∈ Γ(ρrM ) is a critical section of the functional LH, where γ ∈ ΓP(FLo) is a local
section of FLo.

(Proof ) The proof follows the same patterns as in Theorem 1. The same reasoning also proves
the converse, bearing in mind that γ ∈ ΓP(FLo) is a local section.

7 The higher-order case

As stated in [4], this formulation fails when we try to generalize it to a classical field theory
of order greater or equal than 3. The main obstruction to do so is the relation among the
multimomentum coordinates used to define the submanifold J2π†, pijα = pjiα for every 1 6

i, j 6 m and every 1 6 α 6 n. Although this “symmetry” relation on the multimomentum
coordinates can indeed be generalized to higher-order field theories, it only holds for the highest-
order multimomenta. That is, this relation on the multimomenta is not invariant under change
of coordinates for lower orders, and hence we do not obtain a submanifold of Λm2 (Jk−1π).

Acknowledgments

We acknowledge the financial support of theMICINN, projects MTM2011-22585 and MTM2011-
15725-E. P.D. Prieto-Mart́ınez thanks the UPC for a Ph.D grant.



P.D. Prieto-Mart́ınez, N. Román-Roy: Variational principles for second-order CFT 7

References

[1] C.M. Campos, M. de León, D. Mart́ın de Diego, and J. Vankerschaver, “Unambigous for-
malism for higher-order Lagrangian field theories”, J. Phys. A: Math Theor. 42(47) (2009)
475207.
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