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‡Communications Research Laboratory, Ilmenau University of Technology, Ilmenau, Germany

Abstract—This paper investigates the application of filter bank
multicarrier modulation based on the OQAM (FBMC/OQAM) to
multiple-input-multiple-output (MIMO) systems. Existing solu-
tions guarantee satisfactory performance when the streams mul-
tiplexed on each subcarrier (S) and the number of transmit (NT )
and receive (NR) antennas are related as S = min (NT , NR).
When S < min (NT , NR), the techniques presented in previous
works either exhibit an error floor or perform much worse than
orthogonal frequency division multiplexing (OFDM). To make
progress towards the combination of FBMC/OQAM with MIMO
we propose a two-step approach and a coordinated beamforming
algorithm to design the transmit and the receive processing. Nu-
merical results show that the two-step method provides similar bit
error rate (BER) as OFDM when S + 1 = NT = NR. Resorting
to the coordinated beamforming solution, which is based on an
iterative method, the application of FBMC/OQAM is extended
to the general case S < min (NT , NR). Hence, the techniques
presented in this paper demonstrate that FBMC/OQAM can
achieve practically the same BER as OFDM with an increased
spectral efficiency and a significantly decreased out-of-band
radiation, which is an important advantage for non-contiguous
spectrum allocations.

I. INTRODUCTION

The orthogonal frequency division multiplexing (OFDM)

has been the modulation of choice in 4G cellular network

standards. The main assets of OFDM are the ease of hard-

ware implementation and the robustness against multipath

fading. However, this comes with the price of degrading the

spectral efficiency due to the cyclic prefix (CP) transmission.

In addition, the large side lobes exhibited by the transmit

signal make OFDM unsuitable when strict synchronization

cannot be attained. The filter bank multicarrier modulation

based on OQAM (FBMC/OQAM) is considered as an eligible

candidate to substitute OFDM and become the air-interface

of 5G networks [1]. The beauty of FBMC/OQAM is that

subcarrier signals can be shaped with pulses that exhibit

good time-frequency localization properties, while maximum

bandwidth efficiency is achieved [2].

It is well-known that in presence of multipath fading

the orthogonality between subcarriers in FBMC/OQAM is

not preserved, which leads to inter-symbol interference (ISI)

and inter-carrier interference (ICI). This has become the

main obstacle to integrate FBMC/OQAM with multiple-input-

multiple-output (MIMO) communication systems [1]. The

orthogonality issue is overcome by introducing the CP together

with the adoption of the circular filtering [3], yet this entails

wasting energy and losing spectral efficiency.

Previous works in the literature have concluded that if no CP

is transmitted, then the MIMO techniques originally designed

for OFDM can be successfully applied to FBMC/OQAM only

in high coherence bandwidth channels [4]. The authors in [4]

show that robustness against multipath fading is provided to

a higher extent assuming that the channel frequency response

(CFR) is flat at the subcarrier level, while it varies on adjacent

subcarriers. However, satisfactory results are only guaranteed

if S = NR ≤ NT , where S is the number of streams spatially

multiplexed on each subcarrier and NT , NR are respectively

the number of transmit and receive antennas. Adopting the

system model of [4], the iterative algorithm presented in [5]

improves the results when S < min (NR, NT ). Unfortunately

the processing developed in [5] does not mitigate ICI, which

yields an error floor in some multiantenna configurations. The

technique proposed in [6] improves the resilience against the

channel frequency selectivity with respect to [4], [5], since

no assumptions are made about the flatness of the channel.

Nevertheless, the number of variables required to represent

the system model increases, which has an impact on the

complexity. In addition, in some MIMO settings the solution

addressed in [6] does not perform close to OFDM [7].

To overcome the limitations of existing techniques we

propose two solutions: a two-step approach and a coordinated

beamforming. In the two-step method, the precoders are first

optimized to maximize the signal to leakage plus noise ratio

(SLNR) given the equalizers. Then, equalizers are designed

according to the minimum mean square error (MMSE) cri-

terion fixing the precoders. The coordinated beamforming

adopts similar SLNR-based and MMSE-based methods to

respectively update the precoders and the equalizers iteratively.

This algorithm is proposed to achieve competitive results in

those MIMO settings where the two-step approach is not

successful. The SLNR-based precoding has been previously

proposed in FBMC/OQAM [8]. The main difference is that

the work presented here considers multi-stream transmission

and tackles the design of the equalizers. The contributions of

this paper are summarized in the following.

• Simulation-based results show that the two-step approach

remains competitive with OFDM and outperforms [4],

[5] when S + 1 = NR = NT . Further, in those

scenarios where the model adopted in [4] is valid and

S + 1 = NR = NT , the performance provided by [6]
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and the two-step approach practically coincide. This is

relevant because the notation of this paper is by far less

complex than that considered in [6].

• At the expense of increasing the complexity, the coor-

dinated beamforming generalizes the superiority of the

SLNR-based and MMSE-based beamforming when S <
min(NR, NT ). The experimental validation conducted

in this paper reveals that the coordinated beamforming

performs close to OFDM and clearly improves [4]–[6].

The rest of the paper is organized as follows. The next

section defines the system model. Detailed descriptions of

the two-step approach and the coordinated beamforming al-

gorithm are provided in Sections III and IV, respectively. The

numerical results are presented in Section V and finally the

conclusions are drawn in Section VI.

II. SYSTEM MODEL

This section provides the mathematical notation used to

describe point-to-point MIMO communication systems that

employ FBMC/OQAM. The transmitter and the receiver are

equipped with NT and NR antennas, respectively. Borrowing

the notation from [7], the interplay from the input of the

synthesis filter bank to the output of the analysis filter bank

on the qth subcarrier can be expressed for 0 ≤ q ≤ M − 1 as

ďq[k] = Ā
T

q ȞqB̄qdq[k] + Ā
T

q w̄q[k]

−

q+1
∑

m=q−1

Ā
T

q ĤmB̄mℑ (iqm[k]) .
(1)

In notation terms dq[k] =
[

d1q[k] . . . d
S
q [k]

]T
∈ R

S×1 rep-

resents the vector of PAM symbols that is multiplexed on

the qth subcarrier and the kth time instant. The symbols are

pre- and post-processed by the precoders {Bq} ∈ C
NT×S and

the equalizers {Aq} ∈ C
NR×S . The real-valued representa-

tion of the input/output relationship in (1) yields matrices

Āq =
[

ℜ
(

AT
q

)

ℑ
(

AT
q

)]T

and B̄q =
[

ℜ
(

BT
q

)

ℑ
(

BT
q

)]T
.

Let wq[k] ∈ C
NR×1 be the filtered noise that contami-

nates the reception of the qth subcarrier. Hence, w̄q[k] =
[

ℜ
(

wT
q [k]

)

ℑ
(

wT
q [k]

)]T
. The second line of (1) corresponds

to ISI and ICI. The equivalent channel and interference chan-

nel matrices are defined as

Ȟm =

[

ℜ (Hm) −ℑ (Hm)
ℑ (Hm) ℜ (Hm)

]

(2)

Ĥm =

[

ℑ (Hm) ℜ (Hm)
−ℜ (Hm) ℑ (Hm)

]

, (3)

where Hm ∈ C
NR×NT denotes the MIMO channel matrix

evaluated on the radial frequency 2π
M
m. If equalizers are

constrained to only have in-phase components, then Āq =
Aq ∈ R

NR×S and the augmented channel matrices become

Ȟm =
[

ℜ (Hm) −ℑ (Hm)
]

(4)

Ĥm =
[

ℑ (Hm) ℜ (Hm)
]

. (5)

The pure imaginary vector iqm[k] is defined in [7]. Therein

the statistical information is characterized when the prototype

pulse is designed according to [9] with an overlapping factor

equal to four. Then, E

{

iqm[k]iHqm[k]
}

= ESσ
2
qmIS , where

σ2
qq−1 = σ2

qq+1 = 0.1769 and σ2
qq = 0.646 for all q. It is

assumed that E
{

dq[k]d
T
m[n]

}

= ESδq,mδk,nIS .

III. TWO-STEP BEAMFORMING DESIGN

The joint design of MIMO precoding and decoding matrices

is investigated in this section. The approach that we propose

to enhance the performance is divided into two steps. First,

precoders are designed given the equalizers and then, the

equalizers are updated fixing the precoders. Hence, only the

MIMO decoding matrices have to be initialized.

A. Design of the transmit processing

To completely remove the interference the precoder can be

designed to satisfy ĤqB̄q = 0. The zero forcing (ZF) approach

only makes sense when equalizers are real-valued because

the null space of (2) and (3) is the same, which implies that

in the complex-valued counterpart the interference cannot be

canceled without eliminating the desired signal. The drawback

of projecting onto the null space of Ĥq is that the spatial

channel gains are dramatically reduced as if no projection was

needed. The ZF only gives satisfactory performance if S =
NR ≤ NT , as [4], [5], [7] show. The problem exhibited by the

previous design is solved to some extent by the coordinated

beamforming solution [5], by setting these new constraints

Ā
T

q ĤqB̄q = 0 and forcing equalizers to be real-valued. Note

that if an initial set of equalizers is assumed, the degrees of

freedom after imposing the zero-interference constraint are

increased from 2NT −NR to 2NT − S. The downside is that

ISI is removed but ICI is not. The reason lies in the fact that in

general we cannot assume that Āq−1 = Āq = Āq+1 and, thus,

Ā
T

mĤqB̄q 6= 0 for m = {q − 1, q + 1}. As a consequence, the

coordinated beamforming may not get rid of the ICI leading to

an error floor. To achieve an effective interference cancellation

without substantially worsening the spatial channel seen by the

desired symbols, i.e., the diagonal elements of Ā
T

q ȞqB̄q , we

propose to resort to the SLNR. The motivation behind this

choice is based on the results provided in [7], which confirm

that the best strategy is not to cancel out the interference

but it is enough to attenuate the unwanted signals 20 dB

below the desired signal. Therefore, the SLNR-based precoder

becomes an attractive solution, because unlike the coordinated

beamforming in [5], we can control not only the ISI but the

ICI as well. The metric to be optimized is formulated as

SLNRq =

∥

∥

∥
Ā

(0)T

q ȞqB̄q

∥

∥

∥

2

F

q+1
∑

m=q−1

σ2
mq

∥

∥

∥
Ā

(0)T

m ĤqB̄q

∥

∥

∥

2

F
+

N0

Es2

∥

∥

∥
Ā

(0)
q

∥

∥

∥

2

F

. (6)

Note that Ā
(0)
q is fixed and is given beforehand. To get (6)

we use the Frobenius norm ‖A‖2F = tr
(

AT A
)

, where tr(.) is



the trace operator. Concerning the contribution of the noise in

the denominator, the following distribution has been assumed

wq[k] ∼ CN (0, N0INR
). Let INR

be the NR-dimensional

identity matrix. If Ā
(0)
q ∈ R

2NR×S it follows that the noise

covariance matrix is Rwq
= E

{

w̄q[k]w̄
T
q [k]

}

= N0

2 I2NR
and

the channel matrices in (6) are given by (2) and (3). By contrast

if Ā
(0)
q ∈ R

NR×S , then Rwq
= E

{

w̄q[k]w̄
T
q [k]

}

= N0

2 INR
and

(4) and (5) should be plugged into (6). Bearing in mind this

constraint
∥

∥B̄q

∥

∥

2

F
= S, the SLNR can be reformulated as

SLNRq =
tr
(

B̄
T

q DqB̄q

)

tr
(

B̄
T

q RqB̄q

) (7)

Dq = Ȟ
T

q Ā
(0)
q Ā

(0)T

q Ȟq (8)

Rq =

q+1
∑

m=q−1

σ2
mqĤ

T

q Ā
(0)
m Ā

(0)T

m Ĥq +
1

S

N0

Es2

∥

∥

∥
Ā

(0)
q

∥

∥

∥

2

F
I2NT

.

(9)

Now the optimization problem on each subcarrier becomes

argmax
B̄q

SLNRq

s.t.
∥

∥B̄q

∥

∥

2

F
= S

B̄
T

q DqB̄q → diagonal.

(10)

Forcing B̄
T

q DqB̄q to have a diagonal structure allows us to

benefit from the theory developed in [10]. Then, the solution

of (10) is obtained by computing the generalized singular value

decomposition of the matrix pair {Dq,Rq}. Actually, the opti-

mal solution consists in setting B̄q = [t1q . . . tSq] ∈ R
2NT×S ,

where tiq corresponds to the singular vector associated to the

ith dominant singular value. To fulfill the power constraint

the precoders are properly scaled so that its columns have

unit norm. Then, the power is uniformly distributed among

subcarriers as follows: E

{

‖Bqdq[k]‖
2
F

}

= ES ‖Bq‖
2
F

=

ES

∥

∥B̄q

∥

∥

2

F
= SES . The design of power allocation algorithms

is left for future work.

B. Design of the receive processing

The objective of the second step is to refine the design of

Ā
(0)
q setting the precoders according to previous section. The

updated receive beamformers are obtained by minimizing the

mean square error (MSE), i.e.,

argmin
Āq

MSEq, (11)

with

MSEq = E

{

∥

∥ďq[k]− dq[k]
∥

∥

2
}

= ES tr
(

IS − 2Ā
T

q ȞqB̄q

)

+tr

(

Ā
T

q

(

q+1
∑

m=q−1

ESσ
2
qmĤmB̄mB̄

T

mĤ
T

m

)

Āq

)

+tr
(

Ā
T

q

(

ESȞqB̄qB̄
T

q Ȟ
T

q + Rwq

)

Āq

)

.

(12)

The solution of (11) is known and can be expressed as

Āq =

(

q+1
∑

m=q−1

σ2
qmĤmB̄mB̄

T

mĤ
T

m

+ȞqB̄qB̄
T

q Ȟ
T

q + 1
ES

Rwq

)

−1

ȞqB̄q.

(13)

It is worth mentioning that Āq can be complex-valued regard-

less whether Ā
(0)
q is real- or complex-valued. Depending on

the case either (2),(3) or (4),(5) is used when defining Āq.

C. Initial design

The SLNR-based precoding design described in Section

III-A hinges on the initialization of the MIMO decoding matri-

ces. Hence, the initial receive processing has to be judiciously

selected. The iterative algorithm described in [5] sets Ā
(0)
q =

[u1q . . . uSq], where uiq corresponds to the left singular vector

of ȞqV0
q associated with the ith dominant singular value, i.e.

λiq. The columns of V0
q ∈ R

2NT×2NT−NR span the null

space of Ĥq and are selected so that
(

V0
q

)T
V0

q = I2NT−NR
.

This design imposes the use of (4),(5) and 2NT − NR ≥ S.

The same strategy cannot be followed in the complex case

because (2) and (3) span the same space and, as a consequence

ȞqV0
q = 0 when NT > NR. Sticking to the case where

equalizers are real-valued, this section aims at justifying the

use of {u1q . . . uSq} to build the receive beamformers. The

idea is to jointly design the equalizers and the precoders.

Unfortunately, the problem is intricate and the joint opti-

mization is definitely complex. To relax the original problem

we propose to follow the two-step approach. That is, first

precoders are designed and then, in the second step equalizers

are optimized. The main difference with respect to III-A is that

now we cannot rely on any initial design when addressing the

design of the precoders. In order to simplify the problem we

assume that Ā
(0)
q−1 = Ā

(0)
q = Ā

(0)
q+1 when the qth subcarrier

is addressed. If the channel frequency selectivity is not sever,

the approximation does not excessively deviate from the exact

expression. Then, the SLNR can be written as

SLNRq =

∥

∥

∥
Ā

(0)T

q ȞqB̄
(0)
q

∥

∥

∥

2

F
∥

∥

∥
Ā

(0)T

q ĤqB̄
(0)
q

∥

∥

∥

2

F
+

N0

Es2

∥

∥

∥
Ā

(0)
q

∥

∥

∥

2

F

. (14)

To get (14) we have taken into account that σ2
mq−1 + σ2

mq +
σ2
mq+1 ≈ 1. With (14) the problem on each subcarrier can be

independently treated, but it is still difficult to find a closed-

form solution. To further alleviate the complexity we relax the

SLNR maximization and instead we focus on the lower bound:

LBq =
λNR

(

Ā
(0)
q Ā

(0)T

q

)

∥

∥

∥
Ā

(0)
q

∥

∥

∥

2

F

∥

∥

∥
ȞqB̄

(0)
q

∥

∥

∥

2

F
∥

∥

∥
ĤqB̄

(0)
q

∥

∥

∥

2

F
+

N0

Es2

. (15)

Let λi (A) be the ith largest singular value of the matrix A.

To compute the metric LBq it is important to remark that

λN (A) tr (B) ≤ tr (AB) ≤ λ1 (A) tr (B), for symmetric matrix

A ∈ R
N×N and positive-semidefinite matrix B ∈ R

N×N [11].



Using the first and the second inequality, respectively, in the

numerator and the denominator of (14), it can be verified

that SLNRq ≥ LBq . It is worth mentioning that LBq = 0
if S < NR. Therefore, from here onwards we focus on the

case S = NR to derive the initial design. Then, note that

the more spread out are the singular values of Ā
(0)
q Ā

(0)T

q ,

the looser is the bound. To tighten the bound the singular

values should be equal, which translates into this constraint

Ā
(0)T

q Ā
(0)
q = IS . Then, LBq does not depend on the equalizer

and the optimization problem becomes

argmax
B̄q

LBq

s.t.
∥

∥

∥
B̄
(0)
q

∥

∥

∥

2

F
= S, Ā

(0)T

q Ā
(0)
q = IS

B̄
(0)T

q Ȟ
T

q ȞqB̄
(0)
q → diagonal.

(16)

According to [10], the solution of (16) is such that: i)

B̄
(0)T

q

(

Ĥ
T

q Ĥq +
1
S

N0

Es2
I2NT

)

B̄
(0)
q must be a diagonal matrix

with equal entries and ii) B̄
(0)T

q Ȟ
T

q ȞqB̄
(0)
q has to exhibit a

diagonal structure. Hence, the precoder is obtained by com-

puting the S dominant generalized singular vectors of this pair
(

Ȟ
T

q Ȟq, Ĥ
T

q Ĥq +
1
S

N0

Es2
I2NT

)

. Based on the requirements i)

and ii), the precoder that solves (16) is given by

B̄
(0)
q =

[

V0
qb1q . . .V0

qbSq

]

, (17)

if the generalized singular vectors are orthogonal. The column

vectors {b1q . . . bSq} correspond to the S first right singular

vectors of ȞqV0
q . The fulfillment of i) and ii) can be readily

verified recalling that the matrix V0
q satisfies ĤqV0

q = 0 and
(

V0
q

)T
V0

q = I2NT−NR
. It must be mentioned that in general

we cannot assume that the columns of the precoder that solve

(16) are orthogonal, which may compromise the validity of

(17). The numerical results provided in Section V reveal that

(17) is reasonably close to the exact value. Accepting (17) as

the true expression, the input/output relation becomes

ďq[k] = Ā
(0)T

q

(

S
∑

i=1

λiquiq

)

dq[k] + Ā
(0)T

q w̄q[k]. (18)

Note that ISI and ICI terms are canceled out because ĤqV0
q =

0. In addition, the noise is not enhanced because we impose

Ā
(0)T

q Ā
(0)
q = IS . In the light of previous observations MIMO

decoding matrices are designed to maximize the energy of the

desired signal. Hence, the problem is posed as follows:

argmax
Ā

(0)
q

∥

∥

∥

∥

∥

S
∑

i=1

λiquT
iqĀ

(0)
q

∥

∥

∥

∥

∥

2

F

s.t. Ā
(0)T

q Ā
(0)
q = IS .

(19)

Since uT
iqujq = δi,j , the best strategy to maximize the

objective function is to set Ā
(0)
q = [u1q . . . uSq]. With this

design, it can be verified that LBq = SLNRq . To sum up, this

section shows that the equalizer that maximizes LBq when

S = NR is reasonably close to the first S left singular vectors

of ȞqV0
q . For S < NR we have observed promising results by

following the same approach but replacing λNR

(

Ā
(0)
q Ā

(0)T

q

)

with λS

(

Ā
(0)
q Ā

(0)T

q

)

in (15). Then, we can claim that the gap

due to the SLNR relaxation is zero as well, if (17) and (19)

are used to design the matrix pair
{

Ā
(0)
q , B̄

(0)
q

}

.

IV. COORDINATED BEAMFORMING DESIGN

In this section, we propose a new coordinated beamforming

design. This scheme is able to achieve a superior performance

over the two-step design. The application of the coordinated

beamforming concept in MIMO FBMC/OQAM systems was

first addressed in [5]. Although the coordinated beamforming

technique in [5] alleviates the dimensionality constraint that

NR must not exceed NT , it still suffers from a performance

degradation due to residual ICI. To achieve a more effective

mitigation of both the ISI and ICI, we propose to incorporate

the SLNR-based transmit processing introduced similarly as

in Section III-A into the coordinated beamforming design.

Similarly as [5], the precoding matrices and the decoding

matrices are computed jointly and iteratively. It is worth

mentioning that the proposed coordinated beamforming design

restricts the MIMO decoding matrices to be real-valued, thus

the system model is defined by (4) and (5). At the end of this

section it is justified why the complex-valued counterpart has

been discarded. Note that when we stick to the real case and

(2NT − NR) ≥ S the initialization of the decoding matrices

employed in the two-step beamforming design is adopted.

Otherwise, the decoding matrices are initialized randomly. We

summarize the proposed coordinated beamforming algorithm

as follows:

• Step 1: Initialize the real-valued decoding matrices

Ā
(0)
q ∈ R

NR×S for all the subcarriers, set the iteration

index p to zero, and set a threshold ǫ for the stopping

criterion.

• Step 2: Set p → p+1 and compute the precoding matrices

B(p)
q for all the subcarriers based on the SLNR-based

beamforming design described in Section III-A. The

columns of B̄
(p)
q correspond to the generalized singular

vectors associated with the S largest generalized singular

values of the pair
{

D(p)
q ,R(p)

q

}

, where

D(p)
q = Ȟ

T

q Ā
(p−1)
q Ā

(p−1)T

q Ȟq, (20)

R(p)
q =

q+1
∑

m=q−1

σ2
mqĤ

T

q Ā
(p−1)
m Ā

(p−1)T

m Ĥq+

1

S

N0

Es2

∥

∥

∥
Ā

(p−1)
q

∥

∥

∥

2

F
I2NT

. (21)

The precoding matrices are normalized such as the trans-

mit power constraint is fulfilled.

• Step 3: Update the decoding matrices Ā
(p)
q for all the

subcarriers. The decoding matrices that minimize the



MSE adopt this form

Ā
(p)
q =

(

q+1
∑

m=q−1

σ2
qmĤmB̄

(p)
m B̄

(p)T

m Ĥ
T

m+

ȞqB̄
(p)
q B̄

(p)T

q Ȟ
T

q +
Rwq

ES

)

−1

ȞqB̄
(p)
q .

(22)

• Step 4: Track the variation of the residual interference

to determine the termination of the algorithm. The fol-

lowing term that provides a measure of the inter-stream

interference, the ISI, and the ICI at the pth iteration can

be defined

ξ(p) =
1

M

M−1
∑

q=0

∥

∥

∥
off
(

Ā
(p)T

q ȞqB̄
(p)
q

)
∥

∥

∥

2

F
+

1

M

M−1
∑

q=0

q+1
∑

m=q−1

σ2
qm

∥

∥

∥
Ā

(p)T

q ĤmB̄
(p)
m

∥

∥

∥

2

F
, (23)

where off(·) denotes an operation of replacing all ele-

ments on the diagonal of the input matrix by zeros. Then,

we approximate the slope of the variation of the residual

interference via [7]

ξ(p)
′

=
|ξ(p) − ξ(p−1)|

ξ(p−1)
. (24)

If ξ(p)
′

< ǫ, terminate the iterative procedure. Otherwise

go back to Step 2 and further update the precoding

matrices and decoding matrices. Alternatively, a stopping

criterion based on the change of the precoding matrices

[5] can also be employed.

It is worth noting that a joint-subcarrier processing is

involved, i.e., the precoding matrices and decoding matrices

for all the subcarriers are updated jointly. By contrast, the co-

ordinated beamforming algorithm in [5] is on a per-subcarrier

basis. The lack of the joint-subcarrier processing leads to its

failure of effectively mitigating the ICI. In addition, we have

observed that rendering the decoding matrices as complex-

valued in this coordinated beamforming algorithm results in a

much worse performance compared to the real-valued design

described above. On the one hand, adopting complex-valued

decoding matrices keeps the full degrees of freedom. On the

other hand, it becomes even more challenging to suppress the

interference in both the real domain and the imaginary domain.

As the impact of the latter consequence overweighs that of

the former, the performance is degraded compared to the real-

valued design of the decoding matrices.

V. NUMERICAL RESULTS

To assess the performance of the proposed techniques the

bit error rate (BER) is evaluated in this section. Regarding

the system parameters, the bandwidth is B = 10 MHz, the

sampling frequency is fs = 11.2 MHz and the number of

subcarriers is M = 1024. The propagation conditions are

generated according to the ITU Vehicular A channel model

[12], so that (1) is valid. The symbols are drawn from the

4-PAM constellation, which means that the entries of the

Table I
EVALUATION OF η WITH A MIMO 4× 4× 3 CONFIGURATION.

ES

N0
(dB) 0 5 10 15 20

η 1.59% 0.77% 0.31% 0.11% 3.55× 10−2%

vectors {dq[k]} can be obtained by taking either the real or the

imaginary parts of 16-QAM symbols. The two-step approach

and the coordinated beamforming, which are respectively

identified with the acronyms TS and CBF, are confronted

with the techniques presented in [4]–[6]. To carry out a fair

comparison the power is uniformly distributed in [4], [6].

It is worth highlighting that the algorithm described in

Section III is initialized by setting the receive beamformers as

it is proposed in Section III-C. As for the receive processing,

we opt to use the expression (13) with all the degrees of

freedom. In other words, the equalizers are complex-valued.

Unlike the coordinated beamforming algorithm, there is no

penalty for using complex-valued MIMO decoding matrices

in the non-iterative two step approach.

OFDM is included in the comparison as well because it is

the dominant technology nowadays. In this case the transmit

and the receive beamformers are designed to diagonalize

the channel as proposed in [13], but without optimizing the

power distribution. It is worth recalling that in the OFDM

context the subcarrier signals convey 16-QAM symbols with

a symbol rate twice that of FBMC/OQAM systems. Due to

the CP transmission this percentage of energy (1 + LCP /M)
is wasted, where LCP accounts for the length of the CP.

The reduced out-of-band radiation of FBMC/OQAM has

been harnessed to increase the number of active carriers from

Ma = 720, which is the standard value used by OFDM, to

Ma = 756 [4]. Hence, the spectral efficiency values are in

bits/s/Hz: (FBMC/OQAM)=3.3075×S and (OFDM)=2.8×S,

for LCP =M/8.

To define the multiantenna configuration in the simulations

the following compact notation is used: NT ×NR×S. Before

evaluating the two-step approach, it is necessary to know if

(17) has moved away from the precoder that maximizes LBq .

Let LBopt
q denote the solution of (16) and LBq be the ratio

when (17) is plugged into (15). In order to gain insight into

the reliability of the approximation made in (17), the following

magnitude is defined

η =
1

M

M−1
∑

q=0

∣

∣LBopt
q − LBq

∣

∣

LBopt
q

. (25)

The values gathered in Table I are sufficiently small to

conclude that the difference is almost negligible.

As Figure 1 highlights the technique addressed in [5]

exhibits an error floor. The ZF described in [4] performs poorly

when S < NR confirming the results provided in [5], [7]. The

TS and the solution presented in [6] practically achieve the

same BER slightly outperforming OFDM at low and moderate
ES

N0
. Nevertheless, it is important to remark that the expressions

involved in the definition of the system model are much more
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Figure 1. BER vs.
ES

N0
in OFDM and FBMC/OQAM systems with a MIMO

4× 4× 3 configuration.

complex in [6] than those presented in Section II. Similar

results have been observed in the 3 × 3 × 2 configuration,

but due to space limitations the BER plot is not included.

To evaluate the performance of the coordinated beamform-

ing algorithm, we now consider a 4 × 4 × 2 MIMO setting.

We adopt the stopping criterion with respect to (24) and set

the threshold ǫ = 10−2. In Figure 2 it can be observed that

compared to the technique in [5], the proposed coordinated

beamforming algorithm achieves a significant improvement

performing close to OFDM thanks to the more effective

suppression of the ICI. Note that in Figure 2 the TS and

the solutions addressed in [4], [6] fail to achieve competitive

results. The good results exhibited by the algorithm described

in Section IV also hold true in the 6× 7× 5 setting, but due

to the lack of space the corresponding figure is not depicted.

VI. CONCLUSION

This paper tackles MIMO transmitter and receiver designs

for FBMC/OQAM systems. Precoders and equalizers are

driven by the SLNR and the MMSE metrics, respectively. In

the MIMO setting S+1 = NT = NR the first strategy, which

is based on a two-step approach, achieves almost the same

BER as OFDM and outperforms state-of-the-art schemes using

a simplified notation that assumes flat fading conditions at the

subcarrier level. To extend the good results for the general case

S < min (NT , NR) an iterative algorithm is devised, where

the transmit and the receive beamformers are governed by the

SLNR and the MMSE, respectively. Simulation-based results

reveal that the iterative algorithm shows superior performance

when compared to existing methods and remains competitive

with OFDM. The work elaborated in this paper confirms

that FBMC/OQAM can benefit from the spatial diversity to

improve the link reliability and the spectral efficiency.
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