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Abstract. The prediction of the thermoelastoplastic behaviors of composite materials and the 
corresponding constituents is essential and needs to be investigated from the theoretical and 
experimental aspects. One of the promising theories to predict the behaviors of a composite 
on the micro-scale using finite element analysis is the multi-continuum theory (MCT). It is 
also used for evaluating the constituent-averaged elastic stress and strain from the composite-
averaged counterparts. In this research, the MCT is extended to handle the thermoelastoplastic 
behaviors of composites. A micromechanical model, which combines Eshelby and Mori-
Tanaka models, is used to determine the effective composite properties using the constituents 
ones. These properties are used to propose incremental non-linear governing equations. Also, 
the thermoelastoplastic decomposition of the composite strain is carried out to determine the 
constituents stresses and strains. The current work is validated by comparing its results with 
some others in the literature and good agreement is obtained.  

1 INTRODUCTION 
The developments in performance and efficiency of aircrafts, nuclear power plants, and 

other sensitive industries rely on the improvements of materials that can operate under 
extreme mechanical and thermal loading conditions [1]. Accordingly, composite materials are 
frequently being used in severe thermo-mechanical loading environments. Thermal stresses 
mostly cause plastic yielding in many applications of different composite structures [2].  

Generally, analysis of composite structures is complicated because of the presence of a 
variety of properties and the complex interaction of the microstructural level constituents. To 
overcome that, the constituent properties are homogenized to facilitate a single continuum 
analyses, and micromechanics can be used to obtain the composite properties. The relations 
between the macroscale composite properties and the microscale constituents counterparts are 
essential. Many analytical techniques of homogenization are based on the equivalent eigen-
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strain method [3][4], which considers the problem of a single ellipsoidal inclusion embedded 
in an infinite elastic medium. Mori and Tanaka [5] used Eshelby solution to develop a method 
that takes into account the interactions among the inclusions. Various other investigators have 
persisted along these lines over the years. For example, Ju and Chen [6] proposed a 
micromechanical framework to investigate the effective properties of elastic composites with 
randomly dispersed ellipsoidal inclusions. One of the well-known homogenization techniques 
is the self-consistent method [7], which can be used for a random distribution of inclusions in 
an infinite medium that is assumed to have properties equal to the unknown properties sought. 
Therefore, an iterative procedure is used to obtain the overall moduli. Homogenization of 
composites with periodic microstructure has been accomplished by using various techniques 
including an extension of the Eshelby inclusion problem [3] ,[4], the Fourier series technique 
[8][9], and variational principles [10]. The periodic eigen-strain method was further 
developed to determine the overall relaxation moduli of linear viscoelastic composite 
materials [11] ,[12]. A particular case, the cell method for periodic composite considers a unit 
cell with a square inclusion [13]. The above mentioned analytical approaches predict 
approximate estimates of the exact solution of the micromechanics problem. These 
predictions should lie between the lower and upper bounds. Several variational principles 
were developed to evaluate bounds on the homogenized elastic properties of macroscopically 
isotropic heterogeneous materials [14]. Those bounds depend only on the volume fractions 
and the physical properties of the constituents. In general, these types of studies have shown 
that even for idealized microstructures it was difficult to quantify exact relations, except for 
few special cases, only bounding or approximate relations could be established. Nevertheless, 
many results have been obtained and some of the earlier works are among the most heavily 
cited in the field. 

Conventional modeling methods treat composite materials as homogeneous solids with 
uniform properties. The multi-continuum theory (MCT) incorporates the classical 
micromechanics-based strain decomposition technique, which was first developed by 
Hill [15], for evaluating the constituent-averaged stress and strain using the composite-
averaged counterpart in a numerical algorithm. The behaviors of the constituents can be 
determined by assuming the constituents to be separate continua but linked together in the 
composite [16]. Garnich et al. [17] modified Hills relations to be valid for applications that 
include thermal loads. 

In this article, further modification to the MCT is achieved so that the obtained relations of 
two constituents composite can predict the elastoplastic behavior of composite materials 
subjected to thermomechanical loads. The composite plasticity comes from the plastic 
behavior of the matrix material whereas the reinforcements behave elastically. In order to 
analyze the plastic behavior of a composite, incrementation of the constitutive equations is 
applied. In order to validate the proposed model, results are compared with some others in the 
literature and good agreement is obtained. 

2 MODELING PROCEDURE 

2.1 Effective properties of composites 
In order to determine the effective mechanical and thermal properties of the composite, the 

constituents properties should be used. Also, one essential factor that affects the prediction of 
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these properties and composite behavior is the Eshelby tensor that is given by: 

Sij = 

[
 
 
 
 
 S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66]

 
 
 
 
 

(1) 

For an isotropic spherical inclusion, where the aspect ratio equals one (λ = 1), the components 
of Eshelby tensor are given as functions of the Poisson ratio of the matrix material (νm) as: 

S11 = S22 = S33 = 7 - 5νm

15(1 - νm) (2) 

S12 = S13 =S21 = S23 = S31 = S32 = 5νm - 1
15(1 - νm)

(3) 

S44 = S55 = S66 = 4 - 5νm

15(1 - νm) 
(4) 

The composite mechanical and thermal properties are evaluated using the micromechanics 
equation [18] where the strain-stress relation, (dε - dσ), of the composite is expressed as: 

dε = (I + D1)Lo
-1dσ - {D2 - αo(I + D1)}dT (5) 

where, 

D1 = ϕfA-1B (6) 

D2 = ϕfA-1M1 (7) 

A1 = (Cf - Cm)-1R1 (8) 

B = - I (9) 

M1 = - (Cf  - Cm)-1(Cfα1 - Cfαo) (10) 

R1 = Lo + (Cf - Cm)S+(Cf - Cm)(I - S)ϕf (11) 
dT is the temperature difference; C and  α are the stiffness and thermal expansion coefficient 
and ϕf is the reinforcement volume fraction. The subscripts o and 1 refer to the matrix and
reinforcement materials, respectively.  
Substituting Eqns. (6-11) into Eqn. (1) yield the compliance matrix and the thermal expansion 
coefficient of the composite (Sc and αc) as: 

Sc = (I + ϕf ((Cf - Cm)-1(Cm+(Cf - Cm)S+(Cf - Cm)(I - S)ϕf))
-1

(- I)) Cm
-1 (12) 

αc = - {ϕf ((Cf - Cm)-1(Cm+ (Cf-Cm)S+(Cf-Cm)(I-S)ϕf))
-1

(-(Cf-Cm)-1(Cfαf-Cmαm))

- αm (I - ϕf ((Cf - Cm)-1(Cm + (Cf - Cm)S+(Cf - Cm)(I - S)ϕf))
-1
)} (13) 
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2.2 Thermoelastic multi-continuum decomposition 
MCT starts with a continuum definition of stress at a point. It is clear that stresses differ 

from a point to another across the different phases of the composite. The homogenized value 
used to characterize the stress tensor at a point in a single continuum is derived by the volume 
average of all stresses in the region as: 

σ = 1
V∫ σ(x)

D
dV (14) 

where, D is the region representing the continuum point, V is the volume associated with the 
point in the averaging process, and x is a position vector locating a point in the domain D. So, 
the composite average (or homogenized) stress state σc can be expressed as: 

σc = 1
Vc

∫ σ(x,y,z)
Dc

dV (15) 

The concept of a multicontinuum simply extends this concept to reflect coexisting materials 
within a continuum point. Consider a composite material with two clearly identifiable 
constituents. The reinforcement and matrix average stress states can be expressed as: 

σf = 1
Vf

∫ σ(x,y,z)dV
Df

 (16) 

σm = 1
Vm

∫ σ(x,y,z)
Dm

dV (17) 

where, Vc=Vf+Vm, and Dc=Df+Dm  
Combining equations (15-17) leads to: 

σc = ϕfσf 
+ ϕmσm (18) 

Similarly, the strain states of the composite, reinforcement and matrix have the same form as 
those of the above mentioned stress states. 
Changing from direct tensor to contracted matrix notation, the volume-averaged linearized 
elastic constitutive relations for the composite and the constituents are given by: 
{σc} = [Cc]({εc} - {εco}) = [Cc]({εc} - θ{αc}) (19) 
{σf} = [Cf]({εf} - {εfo}) = [Cf]({εf} - θ{αf}) (20) 
{σm} = [Cm]({εm} - {εmo}) = [Cm]({εm} - θ{αm}) (21) 
Substituting Eqns. (19-21) into Eqn. (18) yields 
[Cc]({εc} - θ{αc}) = ϕf([Cf]({εf} - θ{αf})) + ϕm([Cm]({εm} - θ{αm})) (22)
Using Eqns. (18, 22) and apply some mathematical manipulations results in the reinforcement 
strain as a function of the composite strain including various properties as: 
{εf} = (ϕf[I] + ϕm[A])-1({εc} - θ{a}) (23) 

where, 

[A] = [-
ϕf
ϕm

([Cc] - [Cm])-1([Cc] - [Cf])] (24) 

{a} = {([Cc] - [Cm])-1([Cc]{αc} - ϕf[Cf]{αf} - ϕm[Cm]{αm})} (25) 
Substituting Eqns. (19, 20) into Eqn. (23) yields the reinforcement stress 
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[Cf]-1{σf} + θ{αf} = (ϕf[I] + ϕm[A])-1([Cc]-1{σc} + θ{αc} - θ{a}) (26) 

{σf} = [Cf](ϕf[I] + ϕm[A])-1[Cc]-1{σc} + θ[Cf] ((ϕf[I] + ϕm[A])-1({αc} - {a}) - {αf}) (27) 
Using Eqns. (18, 19, 21, 23) results in the matrix strain and stress as follows: 

{εm} =(
1 - ϕf(ϕf[I] + ϕm[A])-1

ϕm
) {εc} + θ(

ϕf
ϕm

(ϕf[I] + ϕm[A])-1{a}) (28) 

{σm} =([Cm][Cc]-1 (
1 - ϕf(ϕf[I] + ϕm[A])-1

ϕm
)) {σc}

+θ([Cm]((
1-ϕf(ϕf[I]+ϕm[A])-1

ϕm
) {αc}+(

ϕf
ϕm

(ϕf[I]+ϕm[A])-1{a}) -{αm}))
(29) 

2.3 Thermoelastoplasticity 
For elastic-plastic analysis, the equivalent stress-equivalent plastic strain relation is used to 

obtain the equivalent (von Mises) stress of the matrix that may written as: 

σe =√1
2

((σ11 - σ22)2+(σ22 - σ33)2+(σ33 - σ11)2)+3(σ12
2  + σ23

2  + σ31
2 ) (30)

It is assumed that the matrix material behaves elastoplastically according to the following 
relation: 

σe = σo(1 + 
εp

εo
)
0.1

 , εo = σo

Eo
The strain hardening parameter of the matrix can be evaluated as: 

H' = 1
10 Eo (

σo

σe
)

9
(31) 

When the stress exceeds the yield limit and the matrix material behaves elastoplastically, the 
modulus of elasticity and Poisson ratio should be replaced by the equivalent ones (Eo

'  and νo
' )

as follows:  

Eo
'  = Eo

1+(Eo/H') (32) 

νo
'  = νo+(Eo/2H')

1+(Eo/H') (33) 

3 RESULTS AND DISCUSSION 
The considered materials of the matrix and reinforcements are aluminum (Al) and partially 

stabilized zirconia (PSZ), respectively. Table 1 presents the thermal and mechanical 
properties of these materials [19]. 
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Table 1: Mechanical and thermal properties of Al and PSZ [19] 

Material Young Modulus 
(GPa) 

Poisson 
Ratio 

Thermal expansion coefficient 
(10-6 1/k) 

Yield strength 
(MPa) 

Al 72.4 0.349 23.1 276 
PSZ 169 0.333 8.86 ‒ 

The properties of the composite are evaluated using the constituents counterparts. To 
validate the current model, the results of the modulus of elasticity are compared with those of 
Voigt (isostain) model [20] and Reuss (isostress) model [21]. The results are found to lie in 
between the upper and lower bounds, as seen in figure 1 and this is agreeable with the well-
known information that particulate composites exhibit behavior that lie between the isostrain 
and isostress bounds. Consequently, the results are in good agreement with the two models. 
As seen, the modulus of elasticity increases with increasing ϕf because the reinforcement are 
the main carrying load element.  

Figure 1: Variation of the modulus of elasticity with the reinforcement volume fraction 

The modulus of rigidity is compared to Voigt model [20] because it is applicable for 
evaluating the shear modulus. As seen in figure 2, the results are found to be close to those of 
Voight model. Also, the modulus of rigidity increases with increasing ϕf. Another property of 
the composite is the Poisson ratio that is compared to Reuss model [21] as shown in figure 3. 
It can be seen that the results are comparable to those of the reference model. Also, Poisson 
ratio decreases with increasing the ϕf. For the thermal properties, figure 4 shows the thermal 
expansion coefficient (TEC) of the composite material compared to the upper and lower 
bounds that are predicted by the rule of mixtures and its inverse. The current results lie 
between the two bounds and decrease with increasing the ϕf. Eventually, it can be concluded 
from figures 1-4 that the results of the mechanical properties, which represented by elastic and 
shear moduli and Poisson ratio, and the thermal properties, which represented by TEC, are all 
in good agreement with other models in the literature. 
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Figure 2: Variation of the modulus of rigidity with the reinforcement volume fraction 

Figure 3: Variation of Poisson ratio with the reinforcement volume fraction 

Figure 4: Variation of TEC with the reinforcement volume fraction. 
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Figure 5 shows the variation of the stresses of the composite, reinforcement and matrix 
normalized to the yield strength of the matrix with the composite strain. The reinforcement 
stress is the greatest while the matrix stress is the lowest. Therefore, the matrix has the least 
toughness. The results of the current model (solid lines) are compared with those of [18] 
(dashed lines) and it can be seen that good agreement is attained. 

Figure 5: Comparison of the predicted composite, matrix and reinforcement stresses with another model. 

Figure 6 shows the variation of the normalized composite stress with the composite strain 
considering ϕf as a parameter. It can be seen that increasing ϕf increases the composite 
toughness as the stress level is shifted up at the same strain leading to increase of the energy 
absorbed during deformation. The more curvature, the larger the area under the stress–strain 
curve, which is closely related to the energy absorbed during the deformation. Since the 
reinforcements are assumed to behave elastically and they are stiffer than the matrix, 
increasing ϕf increases the stiffness of the composite and the yield strength of the composite as 
shown in the figure. Moreover, the strain hardening of the plastic part increases with ϕf as the 
slop of the plastic part increases. Reinforcing phase imparts toughness to the composite. So, 
as increasing the ϕf, the toughness of the composite increases. Figure 7 illustrates this clearly 
when plotting the normalized reinforcement stress with the composite strain. Figure 8 depicts 
the increase of normalized matrix stress with increasing both of the composite strain and ϕf. 

4 CONCLUSIONS 
Extending and modifying the multi-continuum theory to be valid for elastoplastic 

behaviors of composites with different shapes of the reinforcements and subjected to 
thermomechanical loading conditions is achieved. The plasticity of the composite is 
originated from the matrix plasticity while the reinforcements behave elastically. The 
effective properties of the composite are extracted as functions of the constituents 
counterparts. Results of the different mechanical and thermal properties and the stress-strain 
relations of the composite, reinforcement and matrix are compared with those of other models 
in the literature and good agreement is obtained. 

414



Abdalla M. A. Ahmed and Yasser M. Shabana 

Figure 6: Composites normalized stress-strain curves at different reinforcement volume fraction. 

Figure 7: Reinforcement normalized stress with composites strain at different reinforcement volume fraction. 

Figure 8: Matix normalized stress with composites strain at different reinforcement volume fraction. 
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