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Abstract

The main objective of this thesis is to develop a constraint algorithm for sin-
gular k-cosymplectic field theories. We begin by reviewing the Hamiltonian
and Lagrangian formalisms for autonomous and nonautonomous mechanics
and field theory. Then we present the constraint algorithms for presym-
plectic and precosymplectic systems, which are geometric frameworks for
singular autonomous and nonautonomous mechanical systems. We also re-
view the constraint algorithm k-presymplectic systems, which are geometric
models for singular autonomous field theories. Finally, the last part of the
work is devoted to defining the concepts of k-precosymplectic manifold, prov-
ing the existence of Reeb vector fields in these manifolds, k-precosymplectic
Hamiltonian system and to develop a constraint algorithm in order to find a
submanifold where the existence of solutions of the field equations is assured.

Keywords: k-cosymplectic manifold, k-precosymplectic manifold, constraint
algorithm, field theory, Hamiltonian formalism, Lagrangian formalism.
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Introduction

The main theories in modern physics can be formulated in geometric terms
using geometric mechanics and geometric field theory. The natural frame-
work for autonomous mechanical systems is symplectic geometry, whereas
the nonautonomous counterpart can be nicely described using cosymplectic
geometry. These two formulations admit generalizations to first order clas-
sical field theory using k-symplectic geometry for the autonomous case and
k-cosymplectic geometry for the nonautonomous case. Moreover, this can be
generalized even more by using multisymplectic geometry. Some references
for these topics are [1] and [12].

Recently, singular systems are gaining importance because of their role
in modern physics and control theory, both in mechanics and in classical
field theory. In fact, some of the most important physical theories of the
20th century are singular: Maxwell’s Theory of Electromagnetism, Einstein’s
Relativity and Classical String Theory are the most relevant examples but
there are many more. One of the problems of singular systems is that in
general, there are no global solutions to the system of differential equations
which describe the system. This problem is usually solved by trying to find
a submanifold N of our phase space manifold M where we can assure the
existence of global solutions tangent to N . Usually this is done with what is
known as constraint algorithms. These procedures add some constraints to
the system at every step until we can ensure the existence of global solutions
in the final constraint submanifold.

One of the firsts to find a constraint algorithm to solve the problem for the
Hamiltonian formalism of singular mechanics was P. Dirac [13]. After this,
many people tried to geometrize this algorithm and this was finally done by
Gotay et al. [14] and [15]. These works dealt with the symplectic formulation
of autonomous mechanics. This was later generalized by D. Chinea, M. de
León et al. to nonautonomous systems [5], [7] and [8] in different ways
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using the Poincaré-Cartan 2-form available in the cosymplectic formulation
of nonautonomous mechanics.

Some years later, these algorithms were generalized to the context of
classical field theory by M. de León et al. to the multisymplectic formalism
[6], [9] and by X. Gràcia et al. to the k-symplectic formulation of singular
classical field theories [16].

The aim of this thesis is to complete the constraints algorithms stating
a constraint algorithm for singular k-cosymplectic field theories. In order
to do this, we define the concepts of k-precosymplectic manifold and k-
precosymplectic Hamiltonian system and we develop a constraint algorithm
generalizing the ones commented before to find an iterative process which
will allow us, adding some constraints in every step, to find a final constraint
submanifold where the existence of global solutions to the k-precosymplectic
Hamiltonian system is assured.

The first chapter of this thesis is devoted to reviewing the geometric for-
mulations of mechanics [1] and classical field theory [10], [11] and [12]. The
first section presents the autonomous Hamiltonian and Lagrangian mechan-
ics which use symplectic geometry to model the phase space of autonomous
mechanical systems. We also introduce in this first section the presymplectic
manifolds which model the phase space of singular autonomous mechanics.
On the other hand, in the second section we present the nonautonomous
counterparts of Hamiltonian and Lagrangian mechanics using cosymplectic
geometry to model the phase space of nonautonomous mechanical systems.
In the same way as in the previous section, precosymplectic manifolds model
the phase space of singular nonautonomous mechanical systems. In the third
and fourth sections we introduce the k-symplectic and k-cosymplectic for-
mulations of classical field theory. In both cases we begin introducing the
manifolds involved: k-symplectic and k-cosymplectic manifolds respectively,
which model the phase spaces for autonomous and timedependent field the-
ories. We also study the canonical models of these manifolds: (T 1

k )∗Q and
Rk × (T 1

k )∗Q. This presentation begins with the Hamiltonian formalism and
at the end we also present the Lagrangian counterpart. In the third section
of Chapter 1 we also introduce k-presymplectic manifolds, which model the
phase space of singular k-presymplectic field theories.

In the second chapter, we review the constraint algorithms for singular
mechanical systems. In the first section we study the singular autonomous
mechanical systems and give a brief review of the algorithm by Gotay et
al. [15]. In the second section we present with some detail the development



CONTENTS 3

of the constraint algorithm for nonautonomous singular mechanical systems
developed by D. Chinea et al. [5].

In the third chapter we present the constraint algorithms for k-presymplectic
and k-precosymplectic field theories. The algorithm for k-presymplectic field
theory was developed by X. Gràcia, R. Mart́ın and N. Román-Roy [16] as
a generalization of the first algorithm by Gotay et al. [15]. Finally, the
goal of this thesis is in Section 3.2., where we define the concept of a k-
precosymplectic manifold and introduce the Darboux coordinates in these
manifolds. We prove the existence of Reeb vector fields in k-precosymplectic
manifolds and find a type of manifolds where we have these vector fields
uniquely determined. With all this in mind, we develop a constraint algo-
rithm to find a final constraint submanifold in singular k-precosymplectic
systems.

All the manifolds and mappings appearing in this thesis are assumed to
be smooth. Also, sum over crossed repeated indices is understood.
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Chapter 1

Foundations

In this first chapter we present a review on Hamiltonian and Lagrangian me-
chanics. We begin with the symplectic approach for autonomous systems,
while the cosymplectic approach is used to model nonautonomous systems.
They generalize to the k-symplectic and k-cosymplectic approaches respec-
tively. Some references on these topics are [1], [2] and [12].

1.1 Autonomous Hamiltonian and Lagrangian

mechanics

In this first section we review the geometric formulation of autonomous
Hamiltonian and Lagrangian mechanics. In order to do this, we will make
wide use of symplectic geometry, and in particular of the canonical struc-
tures of the tangent bundle TQ and the cotangent bundle T ∗Q of a smooth
manifold Q.

1.1.1 Autonomous Hamiltonian mechanics

We begin the presentation of autonomous Hamiltonian mechanics by intro-
ducing our most important tool: symplectic manifolds. Throughout this
subsection, M will be a finite-dimensional manifold.

5
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Symplectic geometry

Definition 1.1.1. Let ω ∈ Ω2(M), we say that ω is a symplectic form if
it is closed (dω = 0) and nondegenerate, that is, for every p ∈M , iXpωp = 0
if and only if Xp = 0. If the form ω is degenerate, we say that it is a
presymplectic form. Let ω be a symplectic (resp. presymplectic) 2-form
on M . Then the couple (M,ω) is called a symplectic manifold (resp. a
presymplectic manifold).

Notice that every symplectic manifold must be even dimensional and
orientable (for instance ωm is a volume form). The first important fact about
symplectic manifolds is given by Darboux’s Theorem, which basically says
that every symplectic manifold is locally diffeomorphic to a cotangent bundle.

Theorem 1.1.2 (Darboux’s Theorem). Let (M,ω) be a symplectic mani-
fold of dimension 2m. Then, for every x ∈ M , there exists a local chart
(U , qi, pi)i=1,...,m such that x ∈ U and the local expression of the symplectic
form ω in this chart is

ω|U = dqi ∧ dpi.

These local charts are called symplectic charts and its coordinates are
called canonical coordinates or Darboux coordinates of the symplectic
manifold M .

Proof. The proof of this Theorem can be found in [17]. �

For presymplectic manifolds we have a similar result:

Theorem 1.1.3 (Darboux’s Theorem for presymplectic manifolds). Let (M,ω)
be a presymplectic manifold such that dimM = 2m + n and rankω = 2m.
Then, for every x ∈ M , there exists a chart (U , qi, pi, zj)i=1,...,m,j=1,...n such
that x ∈ U and the presymplectic form expressed in this chart is written as

ω|U = dqi ∧ dpi.

These charts are called presymplectic charts and its coordinates are called
canonical coordinates or Darboux coordinates of the presymplectic
manifold M .

Example 1.1.4. Let Q be an m-dimensional manifold. Consider the canon-
ical 2-form ω ∈ Ω(T ∗Q). Then, (T ∗Q,ω) is a symplectic manifold.
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Given a presymplectic manifold (M,ω) we can consider the following
morphism of C∞(M)-modules

[ : X(M) −→ Ω1(M)
X 7−→ iXω

Notice that if ω is a symplectic form, the morphism [ is also an isomorphism
and its inverse is denoted by ] = [−1.

Hamiltonian systems

Definition 1.1.5. A regular (resp. singular) symplectic (resp. presym-
plectic) Hamiltonian system is a triple (M,ω, γ) where (M,ω) is a sym-
plectic (resp. presymplectic) manifold and γ is a closed 1-form called the
Hamiltonian 1-form of the system.

Taking into account Poincaré’s Lemma, for every p ∈M , there exists an
open neighbourhood U of p and a function h ∈ C∞(U) such that γ|U = dh,
called the local Hamiltonian function of the system. If the Hamiltonian
1-form γ is exact, then there exists a function h ∈ C∞(M) such that γ = dh.
In this case we say that h is the global Hamiltonian function of the
system.

Given a symplectic Hamiltonian system (M,ω, γ), there exists a unique
Hamiltonian vector field vector field Xh ∈ X(M) such that

[(Xh) = iXhω = γ (1.1)

or, equivalently, Xh = ](γ). Consider a canonical chart (U , qi, pi) and let X
be an arbitrary vector field on M , whose local expression in this chart is

X|U = Ai
∂

∂qi
+Bi

∂

∂pi
.

Imposing that X must satisfy (1.1), which in coordinates looks like

i

(
Ai

∂

∂qi
+Bi

∂

∂pi

)
(dqi ∧ dpi) =

∂h

∂qi
dqi +

∂h

∂pi
dpi,

we get that 
Ai =

∂h

∂pi
,

Bi = − ∂h
∂qi

.
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Hence, the local expression of the Hamiltonian vector field in a canonical
chart is

Xh =
∂h

∂pi

∂

∂qi
− ∂h

∂qi
∂

∂pi

In case the form ω is presymplectic, equation (1.1) may not have a solution
defined on the whole manifold M , but just on some points of M . In this case
we can use a constraint algorithm in order to find a submanifold N ↪→ M
such that equation (1.1) has solutions in the submanifold N , if possible. We
will see these algorithms later on in the second chapter of this work.

1.1.2 Autonomous Lagrangian mechanics

In this subsection we will give a brief presentation of the canonical structures
in the tangent bundle of a manifold M . For more detail on this subject see
[1] and [2].

Let Q be an m-dimensional manifold. Consider the bundle TQ as our
phase space. Recall that in the tangent bundle we have the vertical endo-
morphism and the Liouville vector field whose coordinates in a natural
chart of coordinates of TQ are

J =
∂

∂vi
⊗ dqi

∆ = vi
∂

∂vi

where (qi, vi) are the canonical coordinates on TQ.
We want to make the tangent bundle TQ into a symplectic manifold. In

order to do this we consider a Lagrangian function L : TQ → R. Using
this Lagrangian function we can construct the Poincaré-Cartan forms. First,
consider the 1-form θL ∈ Ω1(TQ) defined by

θL = dL ◦ J.

Now we can define the Poincaré-Cartan 2-form ωL ∈ Ω2(TQ) as ωL = −dθL.
Notice that the 2-form ωL is closed. The matrix of ωL is

∂2L
∂qj∂vi

− ∂2L
∂qi∂vj

∂2L
∂vi∂vj

− ∂2L
∂vi∂vj

0

 .
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It is important to note that the 2-form ωL is nondegenerate if and only if the

matrix

(
∂2L
∂vi∂vj

)
is non singular. This motivates the following definition:

Definition 1.1.6. A Lagrangian function L is said to be regular if the form
ωL is nondegenerate.

Proposition 1.1.7. A Lagrangian function is regular if and only if the ma-

trix

(
∂2L
∂vi∂vj

)
is non singular.

If the Lagrangian is regular, then ωL is symplectic and thus we can con-
sider the isomorphism

[L : X(TQ) −→ Ω1(TQ)
X 7−→ iXωL.

with inverse ]L = [−1
L .

Given a Lagrangian function L, we can define the energy function EL
as the function

EL = ∆(L)− L.

With this last definition we can write the equation

[L(XL) = iXLωL = dEL. (1.2)

It can be seen that if the Lagrangian L is regular, there exists a unique
solution XL of equation (1.2) and it is a second order differential equation,
i.e., it satisfies the condition JXL = ∆.

Proposition 1.1.8. If L is regular, there exists a unique solution XL of
equation (1.2) and it is a second order differential equation, i.e., it satisfies
the condition JXL = ∆. Moreover, its integral curves are the solutions to
the Euler-Lagrange equations

∂L
∂qi
◦ α− d

dt

∣∣∣∣
t

(
∂L
∂vi
◦ α̇
)

= 0, 1 ≤ i ≤ m.

Hence, equation (1.2) is just a geometric version of the Euler-Lagrange
equations.
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1.2 Nonautonomous Hamiltonian and Lagrangian

mechanics

In this section we will consider the case of time-dependent mechanics. Some
references on this subject are [1], [4] and [5].

1.2.1 Nonautonomous Hamiltonian mechanics

As in the case of autonomous Hamiltonian systems, we will begin introducing
the geometric tools needed in order to give an intrinsic description of the
problem. We wil begin with a brief introduction to cosymplectic geometry.

Cosymplectic geometry

The main object of study of cosymplectic geometry are cosymplectic mani-
folds, which are somehow an odd-dimensional counterpart of symplectic man-
ifolds. Some references on cosymplectic and precosymplectic geometry are
[1] and [4].

Definition 1.2.1. Let M be a smooth manifold of dimension 2m + 1 and
ω ∈ Ω2(M), η ∈ Ω1(M) be closed differential forms. If ω and η are such
that rankω = 2r and ωr ∧ η 6= 0 we say that the triple (M,ω, η) is a pre-
cosymplectic manifold of rank 2r. If, in addition, ωm ∧ η 6= 0, we say
that (M,ω, η) is a cosymplectic manifold.

Let (M,ω, η) be a cosymplectic manifold. From the definition it is clear
that M is orientable as ωm ∧ η is a volume form. Consider the following
morphism between C∞(M)-modules

[ : X(M) −→ Ω1(M)
X 7−→ iXω + (iXη)η.

(1.3)

It is clear that [ is an isomorphism and we will denote its inverse by ] = [−1.

Remark 1.2.2. Notice that if M is a precosymplectic manifold, this mor-
phism [ is also defined but it is no longer an isomorphism.

Now we define the characteristic distribution of ω as

kerω = {v ∈ TM | ivω = 0}.
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Since rankω = 2m, it is clear that kerω has dimension 1. Hence, there exists
a unique vector field R called the Reeb vector field such that

iRω = 0, iRη = 1.

Notice that the Reeb vector field is R = ](η). As in the case of symplectic
manifolds, we also have a Darboux’s Theorem that ensures the existence of
canonical charts.

Theorem 1.2.3 (Darboux’s Theorem for cosymplectic manifolds). Let (M,ω, η)
be a cosymplectic manifold. Then, for every x ∈M there exists a local chart
(U , t, qi, pi), i = 1, . . . ,m, with x ∈ U such that

η|U = dt, ω|U = dqi ∧ dpi.

Such a chart is called a Darboux or canonical chart.

Proof. The proof of this theorem can be found in [1]. �

In Darboux coordinates, the Reeb vector field is expressed as R = ∂
∂t

.

Example 1.2.4. Let Q be an m-dimensional smooth manifold. Consider the
manifold R×T ∗Q with coordinates (t, qi, pi) and the projection π : R×T ∗Q→
T ∗Q. The manifold (R× T ∗Q, π∗ω, dt) is a cosymplectic manifold.

In case the manifold M is precosymplectic, we have the following Dar-
boux’s Theorem.

Theorem 1.2.5 (Darboux’s Theorem for precosymplectic manifolds). If
(M,ω, η) is a precosymplectic manifold of rank 2r and dimension 2m + 1,
there exists a coordinate neighbourhood U at each point x ∈ M with local
coordinates (t, qi, pi, u

s), 1 ≤ i ≤ r, 1 ≤ s ≤ 2m− 2r, such that

η|U = dt, ω|U = dqi ∧ dpi.

Such a chart is called a Darboux chart or a canonical chart.

Now let M be a precosymplectic manifold of rank 2r. Then, there exists
a vector field R ∈ X(M) such that

iRω = 0, iRη = 1.
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In fact, consider a partition of unity (Uα, ϕα) onM such that (Uα, tα, qiα, pαi , usα)
where 1 ≤ i ≤ r, 1 ≤ s ≤ 2m− 2r is a Darboux chart on M . Then the local
vector field

Rα =
∂

∂tα
∈ X(Uα)

satisfies
iRαω = 0, iRαη = 1.

Using the partition of unity, we can define global vector fields R̃α as follows:

R̃α(x) =

{
ϕα(x)Rα(x) if x ∈ Uα,
0 if x /∈ Uα.

Now we can construct a global vector field R =
∑

α R̃α that satisfies

iRω = 0, iRη = 1.

However, in the case of a precosymplectic manifold, the vector field R is not
unique.

Hamiltonian systems

Definition 1.2.6. Let (M,ω, η) be a cosymplectic manifold (resp. precosym-
plectic manifold) and γ ∈ Ω1(M) be a closed form called the Hamiltonian
1-form. Then, (M,ω, η, γ) is called a cosymplectic Hamiltonian sys-
tem (resp. precosymplectic Hamiltonian system).

As in the autonomous case, in virtue of Poincaré’s Lemma, we can put
γ|U = dh for some h ∈ C∞(U) for every coordinate neighbourhood U of M .
If, in addition, the 1-form γ is exact, we can put γ = dh for some h ∈ C∞(M).

Now given a cosymplectic Hamiltonian system (M,ω, η, γ), there exists
a unique vector field Xh ∈ X(M), called the evolution vector field that
satisfies the equations {

[(Xh) = γ + (1− γ(R))η,

iXhη = 1,
(1.4)

which can also be written as{
iXhω = γ − γ(R)η,

iXhη = 1.
(1.5)
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In order to write these equations in a more compact form, we can define
the 2-form Ω ∈ Ω2(M) as

Ω = ω + γ ∧ η.

Using this form Ω, we can write equations (1.4) in the form{
iXhΩ = 0

iXhη = 1.
(1.6)

Consider a canonical chart (U , t, qi, pi) and let X be an arbitrary vector field
on M , whose local expression in this chart is

X|U = A
∂

∂t
Bi ∂

∂qi
+ Ci

∂

∂pi
.

Imposing that X must satisfy the system of equations (1.5), which in coor-
dinates looks like

i

(
A
∂

∂t
+Bi ∂

∂qi
+ Ci

∂

∂pi

)
(dqi ∧ dpi) =

∂h

∂qi
dqi +

∂h

∂pi
dpi,

i

(
A
∂

∂t
+Bi ∂

∂qi
+ Ci

∂

∂pi

)
(dt) = 1,

we get that 
A = 1,

Bi =
∂h

∂pi
,

Ci = − ∂h
∂qi

.

Hence, the local expression of the evolution vector field Xh in a canonical
chart is

Xh|U =
∂

∂t
+
∂h

∂pi

∂

∂qi
− ∂h

∂qi
∂

∂pi
.

Remark 1.2.7. Notice that if the Hamiltonian function h is time-independent,
i.e., R(h) = ∂h

∂t
= 0, we recover equations (1.1) of the autonomous case.
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1.2.2 Nonautonomous Lagrangian mechanics

In this subsection we generalize the autonomous Lagrangian systems to
nonautonomous Lagrangian systems. We will briefly present the canonical
structures of the manifold R× TQ. More information on this matter can be
found in [1] and [12].

Consider an m-dimensional smooth manifold Q. In the autonomous case
our phase space was the tangent bundle TQ. Hence, in the nonautonomous
case we will use the product manifold R × TQ. We will denote by ∆ the
Liouville vector field on R × TQ which has local expression on an adapted
chart

∆ = vi
∂

∂vi
.

We shall consider the extension of the vertical endomorphism J in an obvious
way to R × TQ which we denote by J and it has the same local expression
J = ∂

∂vi
⊗ dqi.

Definition 1.2.8. A vector field X ∈ X(R×TQ) is a second order partial
differential equation if

iXη = 1, J(X) = ∆.

Consider a time-dependent Lagrangian function L : R× TQ→ R. Using
the vertical endomorphism J we can construct the forms θL, ωL as

θL = dL ◦ J and ωL = −dθL.

With these forms we can write the equations{
iXΩL = 0,

iXdt = 1,
(1.7)

where ΩL = ωL+dEL∧dt is the Poincaré-Cartan 2-form, or equivalently,{
iXωL = dEL + ∂L

∂t
dt,

iXdt = 1.

We say the Lagrangian is regular if the matrix (∂2L/∂vi∂vj) is nonsingular.
If this is the case, (ΩL, dt) is a cosymplectic structure on R× TQ and hence
equations (1.7) have a unique solution X.
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Proposition 1.2.9. Let L be a time-dependent Lagrangian on R× TQ and
X ∈ X(R×TQ) the vector field solution of (1.7). Then, X is a second order
partial differential equation and its integral curves α are solutions of

∂L
∂qi
◦ α− d

dt

(
∂L
∂vi
◦ α
)

= 0,

which are called the Euler-Lagrange equations for the time-dependent
Lagrangian L.

However, we are interested on those Lagrangians which are not regular.
We call these Lagrangians singular Lagrangians. In this case we cannot
assure uniqueness nor even existence of global solutions for the system. How-
ever, sometimes we can find a submanifold N ↪→M where we have existence
(but not necessarily uniqueness!) of global solutions. This is what we will be
dealing with in the next chapter.

1.3 k-symplectic formulation of classical field

theories

The k-symplectic formulation of classical field theories is the simplest way
of generalizing the symplectic formulation of classical mechanics. In this
section we will see how to extend this formalism to the cases of Hamiltonian
and Lagrangian field theories. It was introduced by A. Awane in 1992 [3].
See also [12] for details.

1.3.1 k-symplectic geometry

This first subsection is devoted to introducing k-symplectic manifolds, which
are a natural generalization of symplectic manifolds.

Definition 1.3.1. Let M be a smooth manifold. Suppose dimM = m(k+1).
Let ω1, . . . , ωk be a family of closed 2-forms on M and let V be an integrable
distribution of dimension mk such that

(1) ωα|V×V = 0, for 1 ≤ α ≤ k,

(2)
⋂k
α=1 kerωα = {0}.
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In this case, (M,ω1, . . . , ωk, V ) is a k-symplectic manifold.

On the other hand, in the degenerate case, we have the following defini-
tion:

Definition 1.3.2. A k-presymplectic manifold is a family (M,ω1, . . . , ωk)
where M is a manifold of dimension m(k+ 1) and the ωα are closed 2-forms
on M .

Remark 1.3.3. In the case k = 1, a 1-symplectic (resp. 1-presymplectic)
manifold (M,ω1) is a symplectic (resp. presymplectic) manifold

In the case of k-symplectic manifolds we have also a Darboux’s Theorem
that assures us the existence of some particular local coordinates.

Theorem 1.3.4 (Darboux’s Theorem for k-symplectic manifolds). Let (M,ω1, . . . , ωk, V )
be a k-symplectic manifold. For every x ∈ M we can find a local chart
(U , qi, pαi ), 1 ≤ i ≤ m, 1 ≤ α ≤ k such that x ∈ U and

ωα = dqi ∧ dpαi

for every 1 ≤ α ≤ k, and

V =

〈
∂

∂pαi
, 1 ≤ i ≤ m, 1 ≤ α ≤ k

〉
.

Proof. The proof of this theorem can be found in [3]. �

It is an open problem to find necessary and sufficient conditions to a
k-presymplectic manifold in order to assure the existence of Darboux coor-
dinates.

Example 1.3.5. The main example of k-symplectic manifold is the so-called
cotangent bundle of k1-covelocities of an m-dimensional manifold Q:

(T 1
k )∗Q = T ∗Q⊕Q

k· · · ⊕Q T ∗Q.

We can endow (T 1
k )∗Q with a k-symplectic structure using the natural pro-

jections

(T 1
k )∗Q πk,α //

πk

""

T ∗Q

π

��
Q
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by defining the forms θ1, . . . , θk ∈ Ω1((T 1
k )∗Q) as

θα = (πk,α)∗θ,

and the 2-forms ω1, . . . , ωk as

ωα = −dθα,

or equivalently as ωα = (πk,α)∗ω, where θ, ω are respectively the Liouville
1-form and 2-form of the cotangent bundle T ∗Q. It is an easy exercise to
check that taking V = ker(πk)∗, we have that ((T 1

k )∗Q,ω1, . . . , ωk, V ) is a
k-symplectic manifold.

1.3.2 k-vector fields and integral sections

In this subsection we introduce the concept of k-vector fields and we shall dis-
cuss what integrability means in the case of k-vector fields. These notions will
be of great importance when talking about k-symplectic and k-cosymplectic
field theories.

Let M be an m-dimensional smooth manifold. Consider its tangent bun-
dle τ : TM → M . Now consider the tangent bundle of k1-velocities
defined as the Whitney sum

T 1
kM = TM ⊕M

k· · · ⊕M TM.

with the canonical projection τ k : T 1
kM →M .

Definition 1.3.6. A k-vector field X on M is a section of the projection
τ k. We will denote by Xk(M) the set of all k-vector fields on M .

Notice that using the diagram

T 1
kM

τk,α

��
M

X

==

Xα // TM

we can decompose every k-vector field X as X = (X1, . . . , Xk) where Xα ∈
X(M).
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Definition 1.3.7. Let X = (X1, . . . , Xk) be a k-vector field on a smooth
manifold M . An integral section of X passing through p ∈ M is a map
ϕ : U ⊂ Rk →M , such that 0 ∈ U and such that

(1) ϕ(0) = p,

(2) ϕ∗(x)
(

∂
∂xα

∣∣∣
x

)
= Xα(ϕ(x))

for every x ∈ U and for all 1 ≤ α ≤ k.

1.3.3 k-symplectic Hamiltonian formalism

Definition 1.3.8. Let (M,ω1, . . . , ωk, V ) be a k-symplectic manifold and let
γ ∈ Ω1(M) be a closed 1-form which will be called the Hamiltonian 1-form.
Then, we say that (M,ω1, . . . , ωk, V, γ) is a k-symplectic Hamiltonian
system.

Given a k-symplectic manifold M , we can define the C∞(M)-module mor-
phism

[ : Xk(M) −→ Ω1(M)
X 7−→ iXαω

α (1.8)

where X = (X1, . . . , Xk). It can be checked that this morphism [ is surjective.
Consider the equation

[(X ) = iXαω
α = γ. (1.9)

Consider an arbitrary k-vector field X = (Xα) ∈ Xk(M), which in a canonical
chart is expressed as

Xα = (Aα)i
∂

∂qi
+ (Bα)βi

∂

∂pβi
, 1 ≤ α ≤ k.

Imposing equation (1.9), we get the conditions
∂h

∂pαi
= (Aα)i,

∂h

∂qi
= −

∑k
β=1(Bβ)βi ,

with 1 ≤ i ≤ m and 1 ≤ α ≤ k. We will denote by Xk
h(M) the set of k-vector

fields of M which are solution of equation (1.9).
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Remark 1.3.9. Notice that in the k-symplectic case, the existence of solu-
tions of (1.9) is guaranteed, although in general we do not have uniqueness
of solution. On the other hand, in the k-presymplectic case, we do not even
have assured the existence of solutions. Later on, we will show an algorithm
that allows us to find (if possible) a submanifold N ↪→ M where we can at
least assure the existence of solutions.

1.3.4 k-symplectic Lagrangian formalism

Consider the manifold T 1
kQ. Extending the case of the tangent bundle, we

have a canonical k-tangent structure in T 1
kQ given by a family (J1, . . . , Jk)

of (1,1)-tensor fields on T 1
kQ. The local expression of Jα in a canonical chart

of T 1
kQ is

Jα|U =
∂

∂viα
⊗ dqi.

We can also construct a Liouville vector field ∆ which has local expression

∆ =
m∑
i=1

k∑
α=1

viα
∂

∂viα
.

Given a Lagrangian function L : T 1
kQ→ R, in a similar way as in Lagrangian

mechanics, the k-tangent structure allows us to define k 1-forms θ1
L, . . . , θ

k
L

as
θαL = dL ◦ Jα.

Using these 1-forms, we can define a family ω1
L, . . . , ω

k
L of presymplectic forms

on T 1
kQ by

ωαL = −dθαL.

Definition 1.3.10. We say that a Lagrangian function L : T 1
kQ → R is

regular if (ω1
L, . . . , ω

k
L, V ) is a k-symplectic structure on T 1

kQ where

V = ker(τ k)∗ =

〈
∂

∂v1
1

, . . . ,
∂

∂vmk

〉
.

Proposition 1.3.11. A Lagrangian function L on T 1
kQ is regular if and only

if the matrix (
∂2L

∂viα∂v
j
β

)
is regular.
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In the same way that we did in the Hamiltonian case, given a Lagrangian
function L : T 1

kQ → R, we consider the manifold T 1
kQ endowed with the 2-

forms ω1
L, . . . , ω

k
L, which in the case L is regular give T 1

kQ the structure of a
k-symplectic manifold. Using the function EL = ∆(L)−L, we can write the
equation

iXαω
α
L = dEL. (1.10)

We denote by Xk
L(T 1

kQ) the set of solutions of equation (1.10).

Theorem 1.3.12. Let L : T 1
kQ → R be a Lagrangian function and X =

(X1, . . . , Xk) ∈ Xk
h(T

1
kQ). Then,

(1) If L is regular, then we have that Jα(Xα) = ∆α for every 1 ≤ α ≤
k. In other words, X is a second order partial differential equation.
Moreover, if ϕ : Rk → T 1

kQ is an integral section of X , then the map
φ = τ k ◦ ψ : Rk → Q is a solution of equations

∂L
∂qi

∣∣∣∣
φ(1)(x)

−
k∑

α=1

∂

∂xα

∣∣∣∣
x

(
∂L
∂viα

∣∣∣∣
φ(1)(x)

)
= 0, (1.11)

where φ(1) denotes the first prolongation of φ : Rk → Q.

(2) If X = (X1, . . . , Xk) is integrable and φ(1) : Rk → T 1
kQ is an integral

section of X then φ : Rk → Q is a solution to equations (1.11).

The differential equations (1.11) are the Euler-Lagrange Field Equa-
tions for the Lagrangian system (T 1

kQ,L).

Remark 1.3.13. Notice that if we put k = 1, equation (1.10) becomes the
Euler-Lagrange equation of Lagrangian mechanics. An important difference
between the case k > 1 and the case k = 1, is that in the case k > 1 we
cannot assure the uniqueness of solutions.

1.4 k-cosymplectic formulation of classical field

theories

In this section we present the nonautonomous counterpart of k-symplectic
field theory. k-cosymplectic field theory generalizes k-symplectic field theory
in the same way as cosymplectic mechanics generalize symplectic mechanics.
Some references on k-cosymplectic geometry and k-cosymplectic field theory
are [10], [11] and [12].
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1.4.1 k-cosymplectic geometry

Definition 1.4.1. Let M be a manifold of dimension k(m + 1) + m. A k-
cosymplectic structure on M is a family (ηα, ωα, V ; 1 ≤ α ≤ k), where
each ηα is a closed 1-form, each ωα is a closed 2-form and V is an integrable
mk-dimensional distribution on M satisfying

(1) η1 ∧ · · · ∧ ηk 6= 0, ηα|V = 0, ωα|V×V = 0,

(2)
(⋂k

α=1 ker ηα
)
∩
(⋂k

α=1 kerωα
)

= {0}, dim
(⋂k

α=1 kerωα
)

= k.

Then, (M, ηα, ωα, V ) is said to be a k-cosymplectic manifold.

In particular, if k = 1, then dimM = 2m+1 and (η1, ω1) is a cosymplectic
structure on M .

Definition 1.4.2. Let (M, ηα, ωα, V ) be a k-cosymplectic manifold. Then
there exists a family of k vector fields {Rα} which are called Reeb vector
fields, characterized by the following conditions

iRαη
β = δβα, iRαω

β = 0.

Theorem 1.4.3 (Darboux Theorem for k-cosymplectic manifolds). Let (M, ηα, ωα, V )
be a k-cosymplectic manifold. Then around each point of M there exist local
coordinates (xα, qi, pαi ) with 1 ≤ α ≤ k, 1 ≤ i ≤ n such that

ηα = dxα, ωα = dqi ∧ dpαi , V =

〈
∂

∂p1
i

, . . . ,
∂

∂pki

〉
i=1,...,n

.

Proof. The proof of this theorem can be found in [10]. �

These are called Darboux or canonical coordinates of the k-cosymplectic
manifold M . Given a k-cosymplectic manifold (M, ηα, ωα, V ), we can define
two vector bundle morphisms

[̃ : TM −→ (T 1
k )∗M

X 7−→ (iX1ω
1 + (iX1η

1)η1, . . . , iXkω
k + (iXkη

1)ηk)

and
[ : T 1

kM −→ T ∗M
X 7−→ iXαω

α + (iXαη
α)ηα
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Remark 1.4.4. Notice that [ = tr(̃[), and hence in the case k = 1 we have

that [ = [̃ which is the [ morphism defined for cosymplectic manifolds.

Example 1.4.5. Let (N,$α,V) be an arbitrary k-symplectic manifold. Then,
denoting by

πRk : Rk ×N −→ Rk, πN : Rk ×N −→ N

the canonical projections, we consider the differential forms

ηα = π∗Rk(dx
k), ωα = π∗N$

α,

and the distribution V in N defines a distribution V in M = Rk × N in a
natural way. All conditions given in Definition 1.4.1 are verified, and hence
M = Rk × N endowed with the k-cosymplectic structure (ηα, ωα, V ) is a
k-cosymplectic manifold.

The canonical model of a k-cosymplectic manifold is the so called stable
cotangent bundle of k1-covelocities of an n-dimensional manifold Q

Rk × (T 1
k )∗Q

where (T 1
k )∗Q is the Whitney sum of k copies of the cotangent bundle of Q,

i.e. (T 1
k )∗Q = T ∗Q⊕Q

(k)
· · · ⊕Q T ∗Q.

Thus, the elements of Rk × (T 1
k )∗Q are of the form (x, ν1q , . . . , νkq) where

x ∈ Rk, q ∈ Q and ναq ∈ T ∗qQ where 1 ≤ α ≤ k.
In the following diagram we collect the projections we will use from now

on:

Rk × (T 1
k )∗Q

π2 //

(πQ)1

%%

(πQ)1,0

��

π1

{{

πα1

��

πα2

''
(T 1

k )∗Q πk,α //

πk

��

T ∗Q

π

||
R Rkπαoo Rk ×Q

πRkoo
πQ // Q

If (qi) with 1 ≤ i ≤ n, is a local coordinate system defined on an open set
U ⊂ Q, the induced local coordinates (xα, qi, pαi ), 1 ≤ i ≤ n, 1 ≤ α ≤ k



1.4. K-COSYMPLECTIC FORMALISM 23

on Rk × (T 1
k )∗U =

(
(πQ)1

)−1
(U) are given by

xα(x, ν1q , . . . , νkq) = xα(x) = xα,

qi(x, ν1q , . . . , νkq) = qi(q),

pαi (x, ν1q , . . . , νkq) = ναk

(
∂

∂qi

∣∣∣∣
q

)
.

Thus, Rk × (T 1
k )∗Q is endowed with a k-cosymplectic structure and thus

it is a k-cosymplectic manifold of dimension k + n(k + 1), and the manifold
Rk × (T 1

k )∗Q with the projection (πQ)1 has the structure of a vector bundle
over Q.

On Rk × (T 1
k )∗Q we can define a family of canonical forms as follows

ηα = (πα1 )∗dx, Θα = (πα2 )∗θ and ωα = (πα2 )∗ω,

with 1 ≤ α ≤ k, being πα1 : Rk × (T 1
k )∗Q → R and πα2 : Rk × (T 1

k )∗Q → T ∗Q
the projections defined by

πα1 (x, ν1q , . . . , νkq) = xα, πα2 (x, ν1q , . . . , νkq) = ναq

and θ and ω are the canonical Liouville and symplectic forms on T ∗Q, re-
spectively. Let us observe that, since ω = −dθ, then ωα = −dθα.

If we consider a local coordinate system (xα, qi, pαi ) on Rk × (T 1
k )∗Q, the

canonical forms ηα, θα and ωα have the following local expressions:

ηα = dxα, θα = pαi dqi, ωα = dqi ∧ dpαi .

Moreover, let V = ker
(
(πQ)1,0

)
∗. Then, it is easy to see that in local

coordinates the forms ηα and ωα, with 1 ≤ α ≤ k, are closed and the
following relations hold:

(1) dx1 ∧ · · · ∧ dxk 6= 0, dxα|V = 0, ωα|V×V = 0,

(2)
(⋂k

α=1 ker dxα
)
∩
(⋂k

α=1 kerωk
)

= {0}, dim
(⋂k

α=1 kerωk
)

= k.

Remark 1.4.6. Notice that the canonical forms on (T 1
k )∗Q and Rk× (T 1

k )∗Q
are related by (π2)∗.
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1.4.2 k-cosymplectic Hamiltonian formalism

Definition 1.4.7. Consider a k-cosymplectic (M,ωα, ηα, V ) and let γ ∈
Ω1(M) be a closed 1-form on M , which will be called the Hamiltonian 1-form.
The family (M,ωα, ηα, V, γ) is a k-cosymplectic Hamiltonian system.

Let (M,ωα, ηα, V, γ) be a k-cosymplectic Hamiltonian system. We say
that a k-vector field X =(X1, . . . , Xk) ∈ Xk(M) is called a k-cosymplectic
Hamiltonian k-vector field if it is solution of the system of equations{

iXαω
α = γ − γ(Rα)ηα

iXβη
α = δαβ .

(1.12)

We denote this fact by X ∈ Xk
h(M). Notice that, if we put k = 1, we recover

equation (1.5). Using the [ morphism defined in the previous section, we can
write equations (1.12) as{

[(X ) = γ + (1− γ(Rα))ηα

iXβη
α = δαβ .

(1.13)

Consider an arbitrary k-vector field X = (Xα) ∈ Xk(M), which in a canonical
chart is expressed as

Xα = (Aα)β
∂

∂tβ
+ (Bα)i

∂

∂qi
+ (Cα)βi

∂

∂pβi
, 1 ≤ α ≤ k.

Imposing equation (1.12), we get the conditions
(Aα)β = δβα,
∂h

∂pαi
= (Bα)i,

∂h

∂qi
= −

∑k
β=1(Cβ)βi ,

(1.14)

where 1 ≤ i ≤ m and 1 ≤ α ≤ k.
These equations always have a global solution that can be defined by

pasting together local sections using an adequate partition of unity. However,
the solution, in general, will not be unique. On the other hand, in the singular
case, we will not even be able to assure existence of global solutions, but we
will be able to find (if possible!) a submanifold N ↪→M where we will have
existence of solutions.
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1.4.3 k-cosymplectic Lagrangian formalism

Consider the phase space Rk × T 1
kQ. We can trivially extend the canonical

structure {Jα}α from T 1
kQ to Rk×T 1

kQ, denoting these new tensor fields also
by Jα. Their local expression is

Jα =
∂

∂viα
⊗ dqi.

In the same fashion, we can extend the Liouville vector fields ∆,∆1, . . . ,∆k

from T 1
kQ to Rk×T 1

kQ, and they have the same local expression. Using these
Liouville vector fields, we can define

Definition 1.4.8. A k-vector field X ∈ Xk(Rk × T 1
kQ) is a second order

partial differential equation ( sopde) if

(1) Jα(Xα) = ∆α for every 1 ≤ α ≤ k,

(2) iXβη
α = δαβ for every 1 ≤ α, β ≤ k.

In a very similar way as we did in the previous chapter for the k-symplectic
approach, we can define a family of 1-forms θ1

L, . . . , θ
k
L ∈ Ω1(Rk× T 1

kQ) from
a Lagrangian function L : Rk × T 1

kQ→ R by

θαL = dL ◦ Jα,

and from these 1-forms we can define the so-called Poincaré-Cartan 2-forms

ωαL = −dθαL.

Definition 1.4.9. Let L a Lagrangian function on Rk × T 1
kQ. We say L is

regular if and only if (dxα, ωαL, V ) is a k-cosymplectic structure on Rk×T 1
kQ,

where
V = ker((πRk)1,0)∗.

Definition 1.4.10. We say that a k-vector field X of Rk × T 1
kQ is a k-

cosymplectic Lagrangian k-vector field if it is a solution of equations{
iXαω

α
L = dEL + ∂L

∂xα
dxα,

iXβdxα = δαβ ,
(1.15)

where EL = ∆(L) − L. We denote by Xk
L(Rk × T 1

kQ) the set of all k-
cosymplectic Lagrangian k-vector fields.
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Equations (1.15) are called k-cosymplectic Lagrangian equations.
Notice that if L is regular, then (dxα, ωαL, V ) is a k-cosymplectic structure

on Rk×T 1
kQ. We denote by RLα the corresponding Reeb vector fields. Hence,

if we write the k-cosymplectic Hamilton equations for the system (Rk ×
T 1
kQ, dx

α, ωαL,L) we get{
iXαω

α
L = dEL −RLα(EL)dxα,

iXβdxα = δαβ ,
(1.16)

which are equivalent to (1.15).

Remark 1.4.11. If we consider the case k = 1, we can see that equations
(1.15) become {

iXωL = dEL + ∂L
∂t

dt,

iXdt = 1,

which are equivalent to the dynamical equations{
iXΩL = 0,

iXdt = 1,

where ΩL = ωL + dEL ∧ dt is the Poincaré-Cartan 2-form.



Chapter 2

Constraint algorithms for
singular mechanics

This second chapter is devoted to the studying of constraint algorithms for
singular mechanical systems. It contains the constraint algorithms for sym-
plectic mechanics and cosymplectic mechanics.

2.1 A constraint algorithm for presymplectic

mechanics

In this section we will review the Gotay-Nester-Hinds algorithm for singular
symplectic mechanics [14] and [15]. Consider a 2m-dimensional manifold M .
Endow M with a presymplectic form ω ∈ Ω2(M). Consider a Hamiltonian
1-form γ ∈ Ω1(M) (recall that γ must be closed). Hence, (M,ω, γ) is a
presymplectic Hamiltonian system.

If the form ω is symplectic (nondegenerate), the morphism [ is an iso-
morphism and hence the equation

[(X) = iXω = γ (2.1)

has a unique solution X = ](γ) = [−1(γ).
However, if the form ω is not degenerate, we do not have existence nor

uniqueness of solutions to equation (2.1) on M . In this case, we want to find
(if possible) a maximal submanifold N ↪→ M such that equation (2.1) has
global solutions X ∈ X(N) (not necessarily unique!). In order to do this, we

27
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can proceed in an algorithmic way adding some constraints in every iteration
to obtain a chain of submanifolds

· · · ↪→Mj ↪→ · · · ↪→M2 ↪→M1 ↪→M,

where

Mj = {p ∈Mj−1 | ∃Xp ∈ TpMj−1 such that iXpωp = γp}

The first constraint submanifold M1 is the set of all the points in M
where we have solutions of equation (2.1). However, these solutions are not
necessarily tangent to this new submanifold M1. Hence, we restrict ourselves
to the submanifold M2 ↪→ M1 made by those points where those solutions
are tangent to M1. Again, these solutions are not necessarily tangent to M2.
Hence, we iterate this procedure until we find (if it exists!) a submanifold
Ml = Ml−1 such that dimMl > 0. If dimMl = 0, in this case, Ml is a set of
discrete points and the solutions have no interest. However, if dimMl > 0, we
callMl the final constraint submanifold and we have solutionsX ∈ X(Ml)
of (2.1) which are tangent to the final constraint submanifold Ml.

Proposition 2.1.1. The constraint submanifolds can be characterized by

Mj = {p ∈Mj−1 | iYpγp = 0, ∀Yp ∈ kerω ∩ TMj−1}.

This proposition allows us to compute the constraint submanifolds using
the j-ary constraint functions iYpγp where Yp ∈ kerω ∩ TMj−1

Notice that we can apply this algorithm not only to singular Hamiltonian
systems, but also,for instance, we can apply it to every singular Lagrangian
system (TQ, ωL,L) if the Lagrangian is singular (if it is regular we do not
need the algorithm, because we already have existence and uniqueness of
solution).

2.2 A constraint algorithm for precosymplec-

tic mechanics

The aim of this section is to present a constraint algorithm to solve nonau-
tonomous singular mechanical systems. The algorithm we present was de-
veloped by D. Chinea et al. in 1994 [5]. There are alternative presentations
of this algorithm which are equivalent in [7] and [8].
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2.2.1 Description of the algorithm

The purpose of this section is, given a singular cosymplectic Hamiltonian
or Lagrangian system, to find a submanifold N ↪→ M such that we can
assure the existence of global solutions of the Hamilton or Euler-Lagrange
equations. Suppose for instance that we have a singular nonautonomous
Lagrangian L : R× TQ → R. This was studied by D. Chinea et al. in 1994
[5]. In this case, (ΩL, dt) is not a cosymplectic structure on R× TQ, but in
general it is not even precosymplectic. This situation leads us to define the
following model.

We suppose that there exist closed forms Ω ∈ Ω2(M), η ∈ Ω1(M) such
that

Ωr ∧ η 6= 0, Ωr+1 ∧ η = 0, Ωr+2 = 0.

In such a case, we can deduce that 2r ≤ rank Ω ≤ 2r + 2. Under these
assumptions, we have the following result:

Proposition 2.2.1. For every p ∈ M , rank Ωp = 2r if and only if there
exists a tangent vector v ∈ TpM such that{

ivΩp = 0,

ivηp = 1.

Proof. This proof can be found in [5]. �

Consider now the system of equations{
iXΩ = 0,

iXη = 1,
(2.2)

where X ∈ X(M). Now, taking into account Proposition 2.2.1, we can
deduce that equations (2.2) have solution at a point p ∈ M if and only if
rank Ωp = 2r. It is natural then to take as our first constraint manifold

M1 = {p ∈M | rank Ωp = 2r}.

At this point we need to suppose that M1 is a submanifold of M . In this

case, we denote by j1 the natural embedding M1

j1
↪−→ M . Now it is clear

that (j∗1Ω)r+1 = 0, but it is not true in general that (j∗1Ω)r ∧ j∗1η 6= 0 and
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then (j∗1Ω, j∗1η) is not always a precosymplectic structure on M1. The only
thing that is clear is that rank(j∗1Ω) ≤ 2r.

Consider now the morphism [ defined in (1.3):

[ : X(M) −→ Ω1(M)
X 7−→ iXΩ + (iXη)η.

From Proposition 2.2.1 we can get

Proposition 2.2.2. Given p ∈ M1, the system of equations (2.2) have a
solution v ∈ TpM1 if and only if ηp ∈ [(TpM1).

We have that rank Ω = 2r at every point of M1. Hence, there exists a
vector field X on M such that X is a solution of (2.2) on M1. However,
the vector field X must be a vector field on M1, i.e., for every p ∈ M1, Xp

must be in TpM1 and not only on TpM . Hence, we restrict ourselves to the
submanifold M2 defined as

M2 = {p ∈M1 | ηp ∈ [(TpM1)}.

We denote by j2 the corresponding embedding M2

j2
↪−→ M1. In this way we

obtain a vector field Y on M1 solution of (2.2) on M2 but, again, this vector
field is not necessarily tangent to M2. Hence, we must iterate this procedure
and we obtain a sequence of submanifolds

· · · ↪→Mj ↪→ · · · ↪→M2 ↪→M1 ↪→M,

where each constraint submanifold is defined by

Mj = {p ∈Mj−1 | ηp ∈ [(TpMj−1)}, j ≥ 2.

We call this submanifold Mj the j-ary constraint manifold.
This procedure can end up in three different ways. It may happen that

at some point, Mk = ∅. In this case, the system of equations (2.2) has no
solution. It may also happen that we get a submanifold such that dimMk =
0, in this case the manifold Mk consists of isolated points and the dynamics
on this case have no interest. Finally, the interesting case is when there exists
l ≥ 1 such that Ml = Ml+1 and hence Ml = Ml+i for every i > 0. In this
situation we have a vector field X on Ml such that{

iXΩ = 0,

iXη = 1
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on Ml. In this case we call Ml the final constraint manifold.
Summing up, we have constructed an iterative procedure that theoretica-

lly gives us in favorable cases a final constraint submanifold. However, in this
way it cannot even be computed. Hence we will devote the next subsection
to give an alternative description of the algorithm in such a way that it will
be computable. By computable, we mean that it will allow us to explicitly
obtain the constraints at each step of the algorithm.

2.2.2 Alternative description of the algorithm

Consider a precosymplectic manifold (M,ω, η) of rank 2r. Hence we have
that the 2-form ω has constant rank 2r and ωr ∧ η 6= 0. Given a 1-form
γ ∈ Ω1(M), we consider the 2-form

Ω = ω + γ ∧ η.

This 1-form γ takes the role of the Hamiltonian 1-form in the Hamiltonian
formulation while it represents dEL in the Lagrangian counterpart. We will
suppose that Ω is closed. This is not asking too much because if ω, η and γ
are closed, so is Ω. ω and η are closed because they are a precosymplectic
structure on M . On the other hand, both in the Hamiltonian and in the
Lagrangian cases, the form γ will be exact and hence closed. Notice that
since ωr 6= 0 and ωr+1 = 0, we have that

Ωr ∧ η 6= 0, Ωr+1 ∧ η = 0, Ωr+2 = 0.

In addition, we suppose there exists a vector field R ∈ X(M) such that{
iRω = 0,

iRη = 1.

Under all these hypothesis, we have

Proposition 2.2.3. Let v ∈ TpM . Then we have that{
ivΩp = 0,

ivηp = 1

if and only if {
ivωp = γp − γp(Rp)ηp,

ivηp = 1.
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Proof. The proof of this result can be found in [5]. �

We have that rankω = 2r. We can construct a basis B = {e1, . . . , er, er+1, . . . , e2r, ηp, u
1, . . . , u2n−2r}

of T ∗pM such that in this basis,

ωp =
r∑
i=1

ei ∧ er+i.

Remark 2.2.4. Without loss of generality, we can assume that uα(Rp) = 0,
because if uα(Rp) 6= 0, it is enough to take ūα = uα − uα(Rp)ηp.

Hence, the corresponding dual basis of B is B∗ = {e1, . . . , er, er+1 . . . , e2r,Rp, u1, . . . , u2n−2r}.
With all this in mind it is easy to prove

Proposition 2.2.5. There exists a tangent vector v ∈ TpM satisfying{
ivωp = γp − γp(Rp)ηp,

ivηp = 1,

if and only if
γp ∈ (kerωp ∩ ker ηp)

0.

Proof. The proof of this result can be found in [5]. �

Taking into account Proposition 2.2.1, 2.2.3, 2.2.5 and the definition of
M1 given before, we have the following corollary:

Corollary 2.2.6. The first constraint manifold can also be characterized by

M1 = {p ∈M | γp ∈ (kerωp ∩ ker ηp)
0}.

The conditions
〈kerωp ∩ ker ηp, γp〉 = 0,

are called primary constraints. The functions iZγ, where Z ∈ kerωp ∩
ker ηp, are also called primary constraints.

Now let p ∈M1. Consider the anihilator of [(TpM1),

([(TpM1))0 = {v ∈ TpM | 〈v, [(TpM1)〉 = 0}.

If u ∈ TpM1, v ∈ ([(TpM1))0, we have that

([(u))(v) = (iuΩp + ηp(u)ηp)(v) = (−ivΩp + ηp(v)ηp)(v) = 0,
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and hence,

([(TpM1))0 = {v ∈ TpM | 〈TpM1,−ivΩp + ηp(v)ηp〉 = 0}.

And now, defining the cosymplectic orthogonal of TpM1 as

(TpM1)⊥ = {v ∈ TpM | 〈TpM1,−ivΩp + ηp(v)ηp〉 = 0},

we can deduce that
[(TpM1) = ((TpM1)⊥)0.

With all this, we have already proved

Proposition 2.2.7. The constraint submanifold M2 can be characterized as

M2 = {p ∈M1 | ηp ∈ ((TpM1)⊥)0} = {p ∈M1 | 〈(TpM1)⊥, ηp〉 = 0}.

We will call the conditions 〈(TpM1)⊥, ηp〉 = 0 secondary constraints.
The functions ivη, where v ∈ (TpM1)⊥ will also be called secondary con-
straints. Now, iterating this procedure we obtain the following.

Proposition 2.2.8. The (j+1)-ary constraint manifold can be characterized
as

Mj+1 = {p ∈Mj | ηp ∈ ((TpMj)
⊥)0} = {p ∈Mj | 〈(TpMj)

⊥, ηp〉 = 0},

where
(TpMj)

⊥ = {v ∈ TpM | 〈TpMj,−ivΩp + ηp(v)ηp〉 = 0},
for every j ≥ 2.

We call the conditions 〈(TpMj)
⊥, ηp〉 = 0 (j + 1)-ary constraints. The

functions ivη, where v ∈ (TpMj)
⊥, are also called (j+ 1)-ary constraints. We

are going to close this subsection giving an alternative proof of the existence
of solutions in the case the algorithm ends on a final constraint submanifold
Mk.

Proposition 2.2.9. Suppose that the constraint algorithm ends in a sub-
manifold Mk, then the system of equations{

iXΩ = 0,

iXη = 1
(2.3)

possesses solutions tangent to Mk if and only if

〈(TMk)
⊥, η〉 = 0.
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Proof. First we suppose that there exists a vector field X ∈ X(Mk) such that
the system of equations (2.3) holds on Mk. Now, given v ∈ (TpMk)

⊥,

0 = (−ivΩ + η(v)η)(Xp) = η(v).

Conversely, let us suppose that 〈(TMk)
⊥, η〉 = 0. Hence, η|Mk

∈ ((TMk)
⊥)0 =

[(TMk). Then, there exists a vector field X ∈ X(Mk) such that [(X) =
iXΩ + η(X)η = η. Hence, we have that iXΩ = 0 and iXη = 1, since
rank Ω = 2r on Mk. �

It is important to point out that this previous result holds for any sub-
manifold N ↪→ M . Actually, given a submanifold N of M , there exists a
solution of the system (2.3) on N if and only if

〈(TN)⊥, η〉 = 0,

where
(TN)⊥ = {v ∈ TM | 〈TN,−ivΩ + (ivη)η〉 = 0}.

Taking into account what we just pointed out, we could ask ourselves if
the final constraint submanifold Mk obtained with the constraint algorithm
is maximal. This is what states the following theorem.

Theorem 2.2.10 (Maximality of the final constraint manifold). Given a

submanifold N
j

↪−→M and a vector field X ∈ X(N) solution of (2.3) on N ,
then we have that j(N) ⊆Mk.

Proof. The proof of this result can be found on [5]. �

2.2.3 Constraint algorithm for degenerate time-dependent
systems

Now that we have the general algorithm for a precosymplectic manifold, it
is time to apply it in the particular cases of singular nonautonomous Hamil-
tonian and Lagrangian systems.

Hamiltonian systems

Consider a presymplectic manifold (M,ω) of rank 2r. Now we can take
the product manifold R×M with the nonautonomous Hamiltonian function
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h : R×M → R. With all this we can construct the precosymplectic Hamil-
tonian system (R×M,Ω, dt, h) where Ω = ω+ dh∧ dt, because it is easy to
check that

Ωr ∧ dt 6= 0, Ωr+1 ∧ dt = 0, Ωr+2 = 0,

and thus we have that 2r ≤ rank Ω ≤ 2r + 2. Moreover we have thati ∂∂tω = 0,

i ∂
∂t

dt = 1.

In this situation, we can apply the algorithm described before in order to
obtain a sequence of constraints submanifolds

· · · ↪→M3 ↪→M2 ↪→M1 ↪→ R×M,

defined by

M1 = {p ∈ R×M | 〈kerωp ∩ ker dpt, dph〉 = 0},

Mj+1 = {p ∈Mj | 〈(TpMj)
⊥, dpt〉 = 0},

where

(TpMj)
⊥ = {v ∈ Tp(R×M) | 〈TpMj,−ivΩp + (ivdpt)dpt〉 = 0}, j ≥ 1.

Lagrangian systems

Now let us consider a degenerate nonautonomous Lagrangian L : R×TQ→ R
and suppose that (ωL, dt) is a precosymplectic structure on R×TQ. Moreover
∂
∂t
∈ X(R× TQ) is a global vector field satisfyingi ∂∂tωL = 0,

i ∂
∂t

dt = 1.

In this case, we can apply the constraint algorithm described before to
obtain a sequence of submanifolds

· · · ↪→ P3 ↪→ P2 ↪→ P1 ↪→ R× TQ,

defined as

P1 = {p ∈ R× TQ | 〈kerωLp ∩ ker dpt, dpEL〉 = 0},
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Pj+1 = {p ∈ Pj | 〈(TpPj)⊥, dpt〉 = 0},

where

(TpPj)
⊥ = {v ∈ Tp(R× TQ) | 〈TpPj,−ivΩLp + (ivdpt)dpt〉 = 0}, j ≥ 1.



Chapter 3

Constraint algorithms for
singular field theories

In this chapter we present the algorithm developed by X. Gràcia en al. in 1994
to find in favorable cases a final constraint submanifold for k-presymplectic
field theories. We also develop an analogous algorithm for the nonautonomous
counterpart: k-precosymplectic field theory.

3.1 A constraint algorithm for k-presymplectic

field theories

The algorithm described in Section 2.1 can be generalized to k-presymplectic
field theories [16]. In this section we will focus on the techniques used to do
it, as these are the same techniques we will use to generalize the algorithms
in [5], [7] and [8] to the case of k-precosymplectic field theories.

Definition 3.1.1. A k-presymplectic Hamiltonian system is a family
(M,ωα, γ) where (M,ωα) is a k-presymplectic manifold and γ is a closed
1-form called the Hamiltonian 1-form.

Consider a k-presymplectic Hamiltonian system (M,ωα, γ). We consider
the Hamilton equation

[(X ) = iXαω
α = γ, (3.1)

where X = (X1, . . . , Xk) ∈ Xk(M). If the system was k-symplectic, the
morphism [ : Xk(M)→ Ω1(M) defined in (1.8) would be surjective and hence

37
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we would have existence (not uniqueness) of global solutions of equation (3.1).
However, this is not always the case, and we do not have the existence of
global solutions assured. We will try to find a submanifold N ↪→ M where
we can assure the existence of global solutions.

Given a k-presymplectic Hamiltonian system (M,ωα, γ) we want to find
a submanifold N ↪→M and k-vector fields X = (X1, . . . , Xk) ∈ Xk(M) such
that equation (3.1) holds on N and such that X is tangent to N (which is
the same as asking X1, . . . , Xk to be tangent to N).

Before we begin the description of the algorithm we need to introduce
some concepts. Given a submanifold N ⊆ M we can extend the natural
embedding j : N ↪→ M to T k1 j : T 1

kN → T 1
kM in a natural way. We will

denote its image as T 1
kN = T 1

k j(T
1
kN) ⊆ T 1

kM .

Using the morphism [ previously defined, we denote by (TN)⊥ the an-
nihilator of the image of T 1

kN by [:

(TN)⊥ =
(
[(T 1

kN)
)0

=
{
Xp ∈ TpM | for all (Yp1, . . . , Ypk) ∈ T

1
kN , 〈i(Ypα)ωαp , Xp〉 = 0

}
.

We say that (TN)⊥ is the k-presymplectic orthogonal complement
of T 1

kN in T 1
kM . It is easy to check that in the case N = M ,

(TM)⊥ =
k⋂

α=1

kerωα.

The following theorem will allow us to use the algorithm to do computa-
tions in particular cases.

Theorem 3.1.2. Let N ↪→M be a submanifold. Then, the following condi-
tions are equivalent:

(1) there exists a k-vector field X = (X1, . . . , Xk), tangent to N , such that

iXαω
α = γ.

(2) for every p ∈ N and every Yp ∈ (TpN)⊥, we have that

iYpγp = 0.

Proof. The proof of this result can be found in [16]. �
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Now we are ready to use the preceeding result to describe an algorithmic
procedure which will give us a sequence of subsets,

· · · ↪→Mj ↪→ · · · ↪→M2 ↪→M1 ↪→M,

which we will suppose to be submanifolds. The first submanifold, M1 ⊂ M ,
is defined as

M1 = {p ∈M | ∃Xp = (X1, . . . , Xk)p ∈ T 1
kM such that i(Xαp)ω

α
p = γp}.

So we restrict ourselves to the submanifold M1 where there exist k-vector
fields satisfying equation (3.1). However, in general, these k-vector fields
solution of (3.1) will not be tangent to M1. In this case, we need to consider
the submanifold

M2 = {p ∈M1 | ∃Xp = (X1, . . . , Xk)p ∈ T 1
kM1 such that i(Xαp)ω

α
p = γp}.

Again, the solutions may not be tangent to M2, so we need to iterate this
procedure. By doing this, we obtain a sequence of submanifolds,

· · · ↪→Mj ↪→ · · · ↪→M2 ↪→M1 ↪→M,

which we will call constraint submanifolds. As in the presymplectic case
discussed in the preceeding chapter, this procedure may end in a final con-
straint submanifold Ml with dimMl > 0 (this is the interesting case) or
may end in dimMl = 0 or Ml = ∅.

Now, taking into account Theorem 3.1.2, we see that each constraint
submanifold can also be defined as

Mj = {p ∈Mj−1 | i(Yp)γp = 0 for every Yp ∈ (TpMj−1)⊥},

where M0 = M .
We will denote by X(Mj)

⊥ the set of vector fields Y in M such that
Yp ∈ (TpMj)

⊥. We can obtain constraint functions {fµ} defining each Mj

from a local basis {Z1, . . . , Zr} of X(Mj−1)⊥ by setting fµ = iZµγ. With all
this in mind, we can proceed to describe the k-presymplectic constraint
algorithm:

(1) Obtain a local basis {Z1, . . . , Zr} of the submodule
⋂k
α=1 kerωα.

(2) Use Theorem 3.1.2 to obtain a set of independent constraints fµ = iZµγ
defining the submanifold M1 ↪→M .
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(3) Compute solutions X = (X1, . . . , Xk) of (3.1) on M1.

(4) Impose the tangency condition of X1, . . . , Xk on the constraints fµ.

(5) Iterate last item until no new constraints appear.

Notice that it is Theorem 3.1.2 what allows us to do actual computations
with concrete cases.

Remark 3.1.3. In particular, this algorithm works for singular Hamiltonian
systems of the type ((T 1

k )∗Q,ω1, . . . , ωk, h) and also for singular Lagrangian
systems (T 1

kQ,ω
1
L, . . . , ω

k
L,L).

In particular, if we put k = 1 in this algorithm, we recover the Gotay-
Nester-Hinds algorithm for presymplectic manifolds.

3.2 A constraint algorithm for k-precosymplectic

field theories

This section is devoted to the study of singular k-precosymplectic field theo-
ries and, in particular, to the development of a constraint algorithm in order
to obtain a submanifold where we can assure the existence of solutions of
the problem. We begin defining the k-precosymplectic manifolds as a gene-
ralization of k-presymplectic manifolds and introducing a particular kind of
coordinates in them (although the precise necessary and sufficient conditions
to ensure their existence is still unknown). We also prove the existence of
Reeb vector fields in k-presymplectic manifolds and find a particular type of
k-precosymplectic manifolds where they are uniquely determined.

With all this in mind, we proceed to develop a constraint algorithm which
will allow us to find (when possible!) a submanifold N ↪→ M where we can
assure the existence of global solutions tangent to N to our problem.

3.2.1 k-precosymplectic manifolds

We begin by introducing our main object of study: k-precosymplectic man-
ifolds, which are a generalization of k-cosymplectic manifolds described in
Section 1.4.
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Definition 3.2.1. A k-precosymplectic manifold is a family (M,ωα, ηα, V )
where M is a manifold of dimension k + m(k + 1), ωα ∈ Ω2(M) and ηα ∈
Ω1(M) where α = 1, . . . , k are closed and V is an integrable mk-dimensional
distribution on M such that

(1) η1 ∧ · · · ∧ ηk 6= 0,

(2) ηα|V = 0, ωα|V×V = 0 for every α = 1, . . . , k.

Example 3.2.2. As in the regular case, consider a k-presymplectic manifold
(P,$α). Then, the product manifold Rk×P is a k-precosymplectic manifold
taking ηα = τ ∗dtα where tα are the canonical coordinates in Rk and τ is the
canonical projection Rk×P τ−→ Rk and ωα = π∗$α where π is the canonical
projection Rk × P

π−→ P . In the description of the algorithm, we will ask
our manifolds to be of this type in order to have the problem well defined.

Now we are going to describe a particular kind of local coordinates, that
we will call Darboux coordinates. We begin by setting rankωα = 2rα.
Notice that in the regular case, rα = m for every α = 1, . . . , k, however this
is not true in the singular case.

Given p ∈ M , a Darboux chart is an open neighbourhood U ⊂ M of p
and a set of coordinates {tα, qi, pαiα ;uj} where

(1) α = 1, . . . , k,

(2) Iα ⊂ {1, . . . ,m} such that |Iα| = rα,

(3) i ∈
⋃
α Iα,

(4) iα ∈ Iα,

(5) j = 1, . . . , d, where d = m(k + 1)−
∣∣⋃

α Iα
∣∣−∑α |Iα|.

such that in these coordinates,

ωα|U =
∑
i∈Iα

dqi ∧ dpαi and ηα|U = dtα.

In Definition 3.2.1 we have imposed the condition of the existence of a
distribution V because it is precisely the existence of this distribution what
assures the existence of Darboux coordinates in the regular case. However, it
is an open problem to characterize the necessary and sufficient conditions for
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these coordinates to exist. Hence, we will assume the existence of Darboux
coordinates around every point.

Recall that the Hamilton equations for a k-cosymplectic Hamiltonian sys-
tem are {

iXαω
α = γ − γ(Rα)ηα,

iXβη
α = δαβ ,

(3.2)

where the Rα are the Reeb vector fields which in the regular case where
uniquely determined. Now we are going to prove that in the singular case
we can also asure the existence of Reeb vector fields, although they will not
be unique.

Proposition 3.2.3. Given a k-precosymplectic manifold (M,ωα, ηα, V ) with
Darboux charts, there exists a family Y1, . . . , Yk ∈ X(M) of vector fields sat-
isfying {

iYαω
β = 0,

iYαη
β = δβα.

Proof. Consider a partition of unity {(Ub, ψb)}b∈Λ on M such that on every
Ub we have Darboux coordinates {tαb , qib, pαiα,b;u

j
b}. Consider now the local

vector fields Y b
α = ∂

∂tαb
. These vector fields satisfy{

iY bαω
β = 0,

iY bαη
β = δβα

on Ub. Using these vector fields, we can define global vector fields

Ỹ b
α(p) =

{
ψb(p)Y

b
α(p), if p ∈ Ub,

0 if p /∈ Ub.

With these global vector fields we can construct global vector fields Yα =∑
b Ỹ

b
α which satisfies {

iYαω
β = 0,

iYαη
β = δβα,

for every α, β = 1, . . . , k. �

However, these vector fields are not necessarily unique, and hence the
system of equations (3.2) is not uniquely determined, so we need to impose
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some extra condition on M in order to uniquely determine the Reeb vector
fields. We will restrict ourselves to the situation where the k-precosymplectic
manifold M is of the type Rk × P where P is a k-presymplectic. Now, if
we ask the Reeb vectors fields to be vertical with respect to the projection
Rk × P τ−→ Rk, we can say that we have a uniquely determined family of
Reeb vector fields R1, . . . ,Rk, and hence the system of equations (3.2) is
well defined. An equivalent way of obtaining the same family of Reeb vector
fields is taking the vector fields ∂

∂tα
on the base space Rk and lifting them to

Rk × P with the trivial connection ∇ = dtα ⊗ ∂
∂tα

.

3.2.2 The constraint algorithm

Now we are ready to tackle the description of the constraint algorithm. We
consider the k-precosymplectic manifold M = Rk × P , where P is a k-
presymplectic manifold and suppose it has Darboux charts around every
p ∈ M . We now that this implies that we have uniquely determined Reeb
vector fields R1, . . . ,Rk.

Definition 3.2.4. A k-precosymplectic Hamiltonian system is a fam-
ily (M,ωα, ηα, V, γ) where (M,ωα, ηα, V ) is a k-precosymplectic manifold of
the type Rk × P and γ is a closed 1-form on M called the Hamiltonian
1-form.

The solutions of a k-presymplectic Hamiltonian system (M,ωα, ηα, V, γ)
are the integral sections of the k-vector fields X = (Xα) ∈ Xk(M) solution
of the system of differential equations{

iXαω
α = γ − γ(Rα)ηα,

iXαη
β = δβα,

Remark 3.2.5. Notice that in the case k = 1, we recover the case of singular
nonautonomous mechanics studied in Section 2.2. In that case, we made
wide use of the Poincaré-Cartan 2-form in the development of the constraint
algorithm. However, in the k-precosymplectic case we do not have Poincaré-
Cartan 2-forms and we will have to use other tools.

We want to find a submanifold N ↪→M such that the system of equations
(3.2) has global solutions on N tangent to N . In order to find this subman-
ifold (if it exists!) we construct a constraint algorithm which provides us a
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sequence of submanifolds

· · · ↪→Mj ↪→ · · · ↪→M2 ↪→M1 ↪→M

which in favorable cases will end in a final constraint submanifold.
The following Theorem will be the core of our algorithm and will give us

a way to compute the constraints at every step of the algorithm.

Theorem 3.2.6. Let (M,ωα, ηα, V, γ) be a k-precosymplectic Hamiltonian
system. Consider a submanifold C ↪→ M and a k-vector field X : C →
(T 1

k )CM such that Xp ∈ (T 1
k )pC for every p ∈ C. The following two condi-

tions are equivalent:

(1) There exists a k vector field X = (Xα) : C → (T 1
k )CM tangent to C such

that the system of equations{
iXαω

α = γ − γ(Rα)ηα,

iXαη
β = δβα,

(3.3)

holds on C.

(2) For every p ∈ C, there exists Zp = (Zα)p ∈ (T 1
k )pC such that iZαpη

β
p = δβα

and
∑

α η
α
p + γ̃p = [(Zp) where γ̃p = γp − γp(Rαp)η

α
p .

Proof. Take Zp = Xp ∈ (T 1
k )pC. It is clear that iZαpη

β
p = δβα for every p ∈ C.

On the other hand,

[(Zp) = iZαpω
α
p + (iZαpη

α
p )ηαp = γ̃p +

∑
α

ηαp .

Conversely, suppose that for every p ∈ C, there exists Zp ∈ (T 1
k )pC such

that iZαpη
β
p = δβα and [(Zp) = γ̃p +

∑
α η

α
p . Let p ∈ C. We take a Darboux

chart (U , {tα, qi, pαiα ;uj}) around p and hence

ηα = dtα,

ωα =
∑
i∈Iα

dqi ∧ dpαi ,

γ =
∂h

∂qi
dqi +

∂h

∂pαiα
dpαiα +

∂h

∂tα
dtα +

∂h

∂uj
duj.
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In this coordinates, γ̃ = γ − γ(Rα)ηα is

γ̃ =
∂h

∂qi
dqi +

∂h

∂pαiα
dpαiα +

∂h

∂uj
duj.

In the following, we will omit the point p everywhere in order to simplify the
notation. We write our k-vector Z in coordinates:

Zα = Aβα
∂

∂tβ
+Bi

α

∂

∂qi
+ Cβ

α,iβ

∂

∂pβiβ
+Dj

α

∂

∂uj
.

Now let us compute its image by the morphism [:

[(Z) =
∑
α

iZαω
α + (iZαη

α)ηα

=
∑
α

∑
i∈Iα

iZα(dqi ∧ dpαi ) +
∑
α

(iZαdtα)dtα

=
∑
α

∑
i∈Iα

(iZαdqi) · dpαi −
∑
α

∑
i∈Iα

dqi · (iZαdpiα) +
∑
α

(iZαdtα)dtα

=
∑
α

∑
i∈Iα

Bi
αdpαi −

∑
α

∑
i∈Iα

Cα
i dqi +

∑
α

Aααdtα.

Comparing this expression with∑
α

ηα + γ̃ =
∑
α

dtα +
∂h

∂qi
dqi +

∂h

∂pαiα
dpαiα +

∂h

∂uj
duj,

we get the following conditions on Z:

Aαα = 1,
∂h

∂uj
= 0,

∂h

∂qi
= −

∑
α such

that i∈Iα

Cα
α,i,

∂h

∂pαiα
= Biα

α .

Moreover, we know by hypothesis that Aβα = δβα. The second condition is a
compatibility condition of the Hamilton equations in the k-precosymplectic
case. It can be stated as follows: the Hamiltonian function must not depend
on the gauge variables. The second pair of conditions together with the
condition Aβα = δβα are equivalent to the system of equations (3.3) when
written in coordinates (see equation (1.14)). This finnishes the proof. �
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Now using the previous Theorem, we are able to give a description of
the constraint algorithm. First of all, we need to restrict orselves to those
points such that γ

(
∂
∂uj

)
= 0 ∀j, because it is a compatibility condition of the

system. The j-ary constraint submanifold Mj ⊂Mj−1 is defined as

Mj =
{
p ∈Mj−1 | ∃Z = (Zα) ∈ (T 1

k )Mj−1 such that

[(Z) = γ̃ +
∑
α

ηα and iZαη
β = δβα

}
,

where M0 = M .

Definition 3.2.7. Let C ↪→ M be a submanifold of a k-precosymplectic
manifold M . The k-precosymplectic orthogonal complement of C is

TC⊥ =
(
[
(
(T 1

k )C ∩DC

))0

where DC is the set of all k-vectors Zp = (Zα)p on C such that iZαpη
β
p = δβα.

With this definition and Theorem 3.2.6 we can give an alternative char-
acterization of the constraints submanifolds:

Mj =
{
p ∈Mj−1 | γ̃ +

∑
α

ηα ∈ ((TC)⊥)0
}
,

Although this allows us to effectively compute the constraints at every step of
the algorithm, an alternative and equivalent way to compute the constraint
submanifolds of the k-precosymplectic constraint algorithm, which is
much more operational, is the following:

(1) Obtain a local basis {Z1, . . . , Zr} of (TM)⊥.

(2) Use Theorem 3.2.6 to obtain a set of independent constraint functions
fµ = iZµ(γ̃ +

∑
α η

α) defining the submanifold M1 ↪→M .

(3) Compute solutions X = (Xα) of (3.2).

(4) Impose the tangency condition of X1, . . . , Xk on M1.

(5) Iterate item (4) until no new constraints appear.
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If this iterative procedure ends in a submanifold Ml with nonzero dimen-
sion, then we can assure the existence of global solutions to equation (3.2)
on this submanifold Ml.

Remark 3.2.8. As in the k-presymplectic case, this algorithms also works
for singular Hamiltonian field theories of the type (Rk × (T 1

k )∗Q,ωα, ηα, h)
and also for singular Lagrangian field theories (Rk × T 1

kQ,ω
α
L, dx

α,L).

Notice that we can treat k-presymplectic (autonomous) field theories as
k-precosymplectic (nonautonomous) field theories. In this case, we do not
have the 1-forms ηα and we recover the k-presymplectic algorithm described
in Section 3.1.
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Conclusions and outlook

In this thesis we have given a brief review of autonomous and nonautonomous
mechanics and field theory, focusing on the singular cases. We have reviewed
the constraint algorithms to solve the equations of motion of presymplec-
tic and precosymplectic mechanical systems and the field equations of k-
presymplectic field theories.

We have also defined the concepts of k-precosymplectic manifold and
proved the existence of global Reeb vector fields in these manifolds. We have
also defined the notion of k-precosymplectic Hamiltonian system. Finally we
have developed a constraint algorithm for singular k-precosymplectic field
theories in order to find a submanifold of the phase bundle where there
are solutions to the field equations. These algorithms can be applied to
the Hamiltonian and Lagrangian formalisms of timedependent singular field
theories.

However, there is still a lot of work to do in this area. It is still an
open problem to find necessary and sufficient conditions to assure the ex-
istence of some kind of Darboux coordinates in both k-presymplectic and
k-precosymplectic manifolds. We also want to work out some examples of
singular k-cosymplectic field theories to put to work the algorithm we have
developed.

49
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