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Abstract

We study a family of graphs related to the n-cube. The middle cube graph of parameter
k is the subgraph of Q2k−1 induced by the set of vertices whose binary representation has
either k − 1 or k number of ones. The middle cube graphs can be obtained from the well-
known odd graphs by doubling their vertex set. Here we study some of the properties of
the middle cube graphs in the light of the theory of distance-regular graphs. In particular,
we completely determine their spectra (eigenvalues and their multiplicities, and associated
eigenvectors).

1 Introduction

The n-cube Qn, or n-dimensional hypercube, has been extensively studied. Nevertheless, many
open questions remain. Harary et al. wrote a comprehensive survey on hypercube graphs [20].
Recall that the n-cube Qn has vertex set V = {0, 1}n and n-tuples representing vertices are
adjacent if and only if they differ in exactly one coordinate. Then, Qn is an n-regular bipartite
graph with 2n vertices and it is natural to consider its vertex set as partitioned into n + 1
layers, the layer Lk consisting of the

(
n
k

)
vertices containing exactly k 1s, 0 ≤ k ≤ n. Seeing the

vertices of Qn as the characteristic vector of subsets of [n] = {1, 2, . . . , n}, the vertices of layer
Lk correspond to the subsets of cardinality k, while the adjacencies correspond to the inclusion
relation.

If n is odd, n = 2k − 1, the middle two layers Lk and Lk−1 of Qn have the same number(
n
k

)
=
(
n
k−1
)

of vertices. Then the middle cube graph, denoted by MQk, is the graph induced by
these two layers. It has been conjectured by Dejter, Erdős, Havel [21] among others, that MQk
is Hamiltonian. It is known that the conjecture holds for n ≤ 16 (see Savage and Shields [26]),
and it was almost solved by Robert Johnson [25].

In this paper we study some of the properties of the middle cube graphs in the light of
the theory of distance-regular graphs. In particular, we completely determine their spectra
(eigenvalues and their multiplicities, and associated eigenvectors). In this context, Qiu and Das
provided experimental results for eigenvalues of several interconnection networks for which no
complete characterization were known (see [24, §3.2]).

Before proceeding with our study, we fix some basic definitions and notation used throughout
the paper. We denote by G = (V,E) a (simple, connected and finite) graph with vertex set V
an edge set E. The order of the graph G is n = |V | and its size is m = |E|. We label the
vertices with the integers 1, 2, . . . , n. If i is adjacent to j, that is, ij ∈ E, we write i ∼ j or

i
(E)∼ j. The distance between two vertices is denoted by dist(i, j). We also use the concepts of

even distance and odd distance between vertices (see Bond and Delorme [6]), denoted by dist+
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and dist−, respectively. They are defined as the length of a shortest even (respectively, odd)
walk between the corresponding vertices. The set of vertices which are `-apart from vertex i,
with respect to the usual distance, is Γ`(i) = {j : dist(i, j) = `}, so that the degree of vertex i is
simply δi := |Γ1(i)| ≡ |Γ(i)|. The eccentricity of a vertex is ecc(i) := max1≤j≤n dist(i, j) and the
diameter of the graph is D ≡ D(G) := max1≤i≤n ecc(i). Given 0 ≤ ` ≤ D, the distance-` graph
G` has the same vertex set as G and two vertices are adjacent in G` if and only if they are at
distance ` in G. An antipodal graph G is a connected graph of diameter D for which GD is a
disjoint union of cliques. In this case, the folded graph of G is the graph G whose vertices are
the maximal cliques of GD and two vertices are adjacent if their union contains and edge of G.
If, moreover, all maximal cliques of GD have the same size r then G is also called an antipodal
r-cover of G (double cover if r = 2, triple cover if r = 3, etc.).

Recall that a graph G with diameter D is distance-regular when, for all integers h, i, j
(0 ≤ h, i, j ≤ D) and vertices u, v ∈ V with dist(u, v) = h, the numbers

phij = |{w ∈ V : dist(u,w) = i,dist(w, v) = j}|

do not depend on u and v. In this case, such numbers are called the intersection parameters
and, for notational convenience, we write ci = pi1i−1, bi = pi1i+1, and ai = pi1i (see Brower et
al. [7] and Fiol [11]).

2 Preliminaries

2.1 The odd graphs

The odd graph, independently introduced by Balaban et al. [2] and Biggs [3], is a family of
graphs that has been studied by many authors (see [4, 5, 18]). More recently, Fiol et al. [16]
introduced the twisted odd graphs, which share some interesting properties with the odd graphs
although they have, in general, a more involved structure.

For k ≥ 2, the odd graph Ok has vertices representing the (k − 1)-subsets of [2k − 1] =
{1, 2, . . . , 2k − 1}, and two vertices are adjacent if and only if they are disjoint. For example,
O2 is the complete graph K3, and O3 is the Petersen graph. In general, Ok is a k-regular graph
on n =

(
2k−1
k−1

)
vertices, diameter D = k − 1 and girth g = 3 if k = 2, g = 5 if k = 3, and g = 6

if k > 4 (see Biggs [5]).
The odd graph Ok is a distance-regular graph with intersection parameters

bj = k −
[
j + 1

2

]
, cj =

[
j + 1

2

]
(0 ≤ j ≤ k − 1).

With respect to the spectrum, the distinct eigenvalues of Ok are λi = (−1)i(k − i), 0 ≤ i ≤
k − 1, with multiplicities

m(λi) =

(
2k − 1

i

)
−
(

2k − 1

i− 1

)
=
k − i
k

(
2k

i

)
.

2.2 The bipartite double graph

Let G = (V,E) be a graph of order n, with vertex set V = {1, 2, . . . , n}. Its bipartite double
graph G̃ = (Ṽ , Ẽ) is the graph with the duplicated vertex set Ṽ = {1, 2, . . . , n, 1′, 2′, . . . , n′},
and adjacencies induced from the adjacencies in G as follows:

i
(E)∼ j ⇒

{
i

(Ẽ)∼ j′, and

j
(Ẽ)∼ i′.

(1)
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Figure 1: The path P4 and its bipartite double graph.
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Figure 2: Graph G has diameter 2 and G̃ has diameter 3.

Thus, the edge set of G̃ is Ẽ = {ij′|ij ∈ E}.
From the definition, it follows that G̃ is a bipartite graph with stable subsets V1 = {1, 2, . . . , n}

and V2 = {1′, 2′, . . . , n′}. For example, if G is a bipartite graph, then its bipartite double graph
G̃ consists of two non-connected copies of G (see Fig. 1).

The bipartite double graph G̃ has an involutive automorphism without fixed edges, which
interchanges vertices i and i′. On the other hand, the map from G̃ ontoG defined by i′ 7→ i, i 7→ i
is a 2-fold covering.

If G is a δ-regular graph, then G̃ also is. Moreover, if the degree sequence of the orig-
inal graph G is δ = (δ1, δ2, . . . , δn), the degree sequence for its bipartite double graph is
δ̃ = (δ1, δ2, . . . , δn, δ1, δ2, . . . , δn).

The distance between vertices in the bipartite double graph G̃ can be given in terms of the
even and odd distances in G. Namely,

dist
G̃

(i, j) = dist+G(i, j)

dist
G̃

(i, j′) = dist−G(i, j).

Note that always dist−G(i, j) > 0 even if i = j. Actually, G̃ is connected if and only if G is
connected and non-bipartite.

More precisely, it was proved by Bond and Delorme [6] that if G is a non-bipartite graph
with diameter D, then its bipartite double graph G̃ has diameter D̃ ≤ 2D+ 1, and D̃ = 2D+ 1
if and only if for some vertex i ∈ V the subgraph induced by the vertices at distance less than
D from i, G≤D−1(i), is bipartite.

In Figs. 2-5, we can see the bipartite double graph of three different graphs. The cycle C5

and Petersen graph both have diameter D = 2, and their bipartite double graphs have diameter
D̃ = 2D + 1 = 5, while in the first example (Fig. 2) G̃ has diameter D̃ = 3 < 2D + 1.

The extended bipartite double graph Ĝ of a graph G is obtained from its bipartite double
graph by adding edges (i, i′) for each i ∈ V . Note that when G is bipartite, then Ĝ is the direct
product G�K2.
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Figure 3: C5 and its bipartite double graph.

1

2

4

5

3

1

5‘

4‘

3‘

2‘

12

3

4

5

‘

Figure 4: C5 and C10 as another view of its bipartite double graph.

2.3 Spectral properties of the bipartite double graph

Let us now recall a useful result from spectral graph theory. For any graph, it is known that the
components of its eigenvalues can be seen as charges on each vertex (see Fiol and Mitjana [17]
and Godsil [19]). Let G = (V,E) be a graph with adjacency matrix A and λ-eigenvector v.
Then, the charge of vertex i ∈ V is the entry vi of v, and the equation Av = λv means that
the sum of the charges of the neighbors of vertex i is λ times the charge of vertex i:

(Av)i =
∑
i
(E)∼ j

vj = λvi.

In what follows we compute the eigenvalues of the bipartite double graph G̃ and the extended
bipartite double graph Ĝ as functions of the eigenvalues of a non-bipartite graph G. We also
show how to obtain the eigenvalues together with the corresponding eigenvectors of G̃ and Ĝ.

First, we recall the following technical result, due to Silvester [27], on the determinant of
some block matrices:

Theorem 2.1 Let F be a field and let R be a commutative subring of Fn×n, the set of all n×n
matrices over F . Let M ∈ Rm×m, then

detF (M) = detF
(
detR(M)

)
.

For example, if M =

(
A B
C D

)
, where A,B,C,D are n×n matrices over F which commute

with each other, then Theorem 2.1 reads

detF (M) = detF (AD −BC). (2)

Now we can use the above theorem to find the characteristic polynomial of the bipartite
double and the extended bipartite double graphs.
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Figure 5: Petersen’s graph and its bipartite double graph.

Theorem 2.2 Let G be a graph on n vertices, with the adjacency matrix A and characteristic
polynomial φG(x). Then, the characteristic polynomials of G̃ and Ĝ are, respectively,

φ
G̃

(x) = (−1)nφG(x)φG(−x), (3)

φ
Ĝ

(x) = (−1)nφG(x− 1)φG(−x− 1). (4)

Proof. From the definitions of G̃ and Ĝ, their adjacency matrices are, respectively,

Ã =

(
O A
A O

)
and Â =

(
O A + I

A + I O

)
.

Thus, by (2), the characteristic polynomial of G̃ is

φ
G̃

(x) = det(xI2n − Ã) = det

(
xIn −A
−A xIn

)
= det(x2In −A2)

= det(xIn −A) det(xIn + A) = (−1)nφG(x)φG(−x),

whereas, the characteristic polynomial of Ĝ is

φ
Ĝ

(x) = det(xI2n − Â) = det

(
xIn −A− In

−A− In xIn

)
= det

(
x2In − (A + In)2

)
= det

(
xIn − (A + In)

)
det
(
xIn + (A + In)

)
= det

(
(x− 1)In −A

)
(−1)n det

(
− (x+ 1)In −A

)
= (−1)nφG(x− 1)φG(−x− 1).

�

As a consequence, we have the following corollary:

Corollary 2.3 Given a graph G with spectrum

spG = {λm0
0 , λm1

1 , . . . , λmd
d },
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where the superscripts denote multiplicities, then the spectra of G̃ and Ĝ are, respectively,

sp G̃ = {±λm0
0 ,±λm1

1 , . . . ,±λmd
d },

sp Ĝ = {±(1 + λ0)
m0 ,±(1 + λ1)

m1 , . . . ,±(1 + λd)
md}.

Proof. Just note that, by (3) and (4), for each root λ of φG(x), µ = ±λ are roots of
φ
G̃

(x), whereas µ = ±(1 + λ) are roots of φ
Ĝ

(x). �

Note that the spectra of G̃ and Ĝ are symmetric, as expected, because both G̃ and Ĝ are
bipartite graphs.

In the next theorem we are concerned with the eigenvectors of G̃ and Ĝ, in terms of the
eigenvectors of G. The computations also give an alternative derivation of the above spectra.

Theorem 2.4 Let G be a graph and v a λ-eigenvector of G. Let us consider the vector u+

with components u+i = u+i′ = vi, and u−, with components u−i = vi and u−i′ = −vi, 1 ≤ i, i′ ≤ n.
Then,

• u+ is a λ-eigenvector of G̃ and a (1 + λ)-eigenvector of Ĝ;

• u− is a (−λ)-eigenvector of G̃ and a (−1− λ)-eigenvector of Ĝ.

Proof. In order to show that u+ is a λ-eigenvector of G̃, we distinguish two cases:

• For a given vertex i, 1 ≤ i ≤ n, all its adjacent vertices are of type j′, with i
(E)∼ j. Then

(Au+)i =
∑
j′

(Ẽ)∼ i

u+j′ =
∑
j
(E)∼ i

vj = λvi = λu+i .

• For a given vertex i′, 1 ≤ i ≤ n, all its adjacent vertices are of type j, with i
(E)∼ j. Then

(Au+)i′ =
∑
j
(Ẽ)∼ i′

u+j =
∑
j
(E)∼ i

vj = λvi = λu+i .

By a similar reasoning with u−, we obtain

(Au−)i =
∑
j′

(Ẽ)∼ i

u−j′ = −
∑
j
(E)∼ i

vj = −λu−i and (Au−)i′ =
∑
j
(Ẽ)∼ i′

u−j =
∑
j
(E)∼ i

vj = −λu−i′ .

Therefore, u− is a (−λ)-eigenvector of the bipartite double graph G̃.
In the same way, we can prove that u+ and u− are eigenvectors of Ĝ with respective

eigenvalues 1 + λ and −1− λ. �

Notice that, for every linearly independent eigenvectors v1 and v2 of G, we get the linearly
independent eigenvectors u±1 and u±2 of G̃. As a consequence, the geometric multiplicity of

eigenvalue λ of G coincides with the geometric multiplicities of the eigenvalues λ and −λ of G̃,
and 1 + λ and −1− λ of Ĝ.
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3 The middle cube graphs

For k ≥ 1 and n = 2k−1, the middle cube graph MQk is the subgraph of the n-cube Qn induced
by the vertices whose binary representations have either k − 1 or k number of 1s. Then, MQk
has order 2

(
n
k

)
and is k-regular, since a vertex with k − 1 1s has k zeroes, so it is adjacent to k

vertices with k 1s, and similarly a vertex with k 1s has k adjacent vertices with k − 1 1s (see
Figs. 6 and 7).

The middle cube graph MQk is a bipartite graph with stable sets V0 and V1 constituted by
the vertices whose corresponding binary string has, respectively, even or odd Hamming weight,
that is, number of 1s. The diameter of the middle cube graph MQk is D = 2k − 1.

3.1 MQk is the bipartite double graph of Ok

Notice that, if A and B are both subsets of [2k− 1], A ⊂ B if and only if A and B are disjoint.
Moreover, if |B| = k then |B| = k − 1. This gives the following result.

Proposition 3.1 The middle cube graph MQk is isomorphic to Õk, the bipartite double graph
of Ok.

Proof. The mapping from Õk to MQk defined by:

f : V [Õk] → V [MQk]
u 7→ u
u′ 7→ u

is clearly bijective. Moreover, according to the definition of bipartite double graph in Eq.(1), if
u and v′ are two vertices of Õk, then

u ∼ v′ ⇔ u ∩ v = ∅⇔ u ⊂ v,

which is equivalent to say that if u ∼ v′, in Õk, then f(u) = u ∼ v = f(v′), in MQk. �

For example, the middle cube graph MQ2 contains vertices with one or two 1s in their binary
representation. The adjacencies give simply a 6-cycle (see Fig. 6), which is isomorphic to Õ2.
As another example, MQ3 has 20 vertices because there are

(
5
2

)
= 10 vertices with two 1s, and(

5
3

)
= 10 vertices with three 1s in their binary representation (see Fig. 7). Compare the Figs. 5

and 7 in order to realize the isomorphism between the definitions of MQ3 and Õ3.
It is known that Õk is a bipartite 2-antipodal distance-regular graph. See Biggs [5] and

Brower et al. [7] for more details.

3.2 Spectral properties

The spectrum of the hypercube Q2k−1 contains all the eigenvalues (including multiplicities) of
the middle cube MQk:

spMQk ⊆ spQ2k−1.

According to the result of Corollary 2.3, the spectrum of the middle cube graph MQk ' Õk
can be obtained from the spectrum of the odd graph Ok. The distinct eigenvalues of MQk are
θ+i = (−1)i(k − i) and θ−i = −θ+i , 0 ≤ i ≤ k − 1, with multiplicities

m(θ+i ) = m(θ−i ) =
k − i
k

(
2k

i

)
. (5)
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Figure 6: The middle cube graph MQ2 as a subgraph of Q3 or as the bipartite double graph of
O2 = K3.

11000

11100 11010 11001

01100 10100 01010 10010 01001 10001

01110 10110 01101 10101 01011 10011

00110 00101 00011

00111

Figure 7: The middle cube graph MQ3.

For example,

spMQ3 = {±2,±12},
spMQ5 = {±3,±24,±15},
spMQ7 = {±4,±36,±214,±114},
spMQ9 = {±5,±48,±327,±248,±142}.

The middle cube graph is a distance-regular graph. For instance, the distance polynomials of
MQk are

p0(x) = 1,

p1(x) = x,

p2(x) = x2 − 3,

p3(x) =
1

2
(x3 − 5x),

p4(x) =
1

4
(x4 − 9x2 + 12),

p5(x) =
1

12
(x5 − 11x3 + 22x).
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As the sum of the distance polynomials is the Hoffman polynomial [22], we have

5∑
i=0

pi(x) =
1

12
(x− 1)(x− 2)(x+ 3)(x+ 2)(x+ 1). (6)

The eigenvalues of the MQ3 are λ0 = 3 and the zeroes of polynomial (6):

evMQ3 = {3, 2, 1,−1,−2,−3},

and their multiplicities, m(λi), can be computed using the highest degree polynomial p2k−1,
according to the result by Fiol [11]:

m(λi) =
φ0p2k−1(λ0)

φip2k−1(λi)
, 0 ≤ i ≤ 2k − 1,

where φi =
∏2k−1
j=0, j 6=i(λi − λj). Of course, this expression yields the same result as Eq. (5).

Namely, m(λi) = m(λ2k−1−i) = m(θ±i ), 0 ≤ i ≤ k − 1.
The values of the highest degree polynomial are p5(3) = p5(1) = p5(−1) = 1 and p5(2) =

p5(−1) = p5(−3) = −1. Moreover, φ0 = −φ5 = 240, φ1 = −φ4 = −60, and φ2 = −φ3 = 48.
Then,

m(λ0) = m(λ5) = m(θ±0 ) = 1,
m(λ1) = m(λ4) = m(θ±1 ) = 4,
m(λ2) = m(λ3) = m(θ±2 ) = 5.

3.3 Middle cube graphs as boundary graphs

Let G be a graph with diameter D and distinct eigenvalues evG = {λ0, λ1, . . . , λd}, where
λ0 > λ1 > · · · > λd. A classical result states that D ≤ d (see, for instance, Biggs [5]). Other
results related to the diameter D and some (or all) different eigenvalues have been given by Alon
and Milman [1], Chung [8], van Dam and Haemers [9], Delorme and Solé [10], and Mohar [23],
among others. Fiol et al. [12, 14, 15] showed that many of these results can be stated with the
following common framework: If the value of a certain polynomial P at λ0 is large enough, then
the diameter is at most the degree of P . More precisely, it was shown that optimal results arise
when P is the so-called k-alternating polynomial, which in the case of degree d−1 is characterized
by P (λi) = (−1)i+1, 1 ≤ i ≤ d, and satisfies P (λ0) =

∑d
i=1

π0
πi

, where πi =
∏d
j=0,j 6=i |λi−λj |. In

particular, when G is a regular graph on n vertices, the following implication holds:

P (λ0) + 1 =
n∑
i=0

π0
πi

> n ⇒ D ≤ d− 1.

This result suggested the study of the so-called boundary graphs [13, 15], characterized by

d∑
i=1

π0
πi

= n. (7)

Fiol et al. [13] showed that extremal (D = d) boundary graphs, where each vertex has maximum
eccentricity, are 2-antipodal distance-regular graphs. As we show in the next result, this is the
case of the middle cube graphs MQk where the antipodal pairs of vertices are (x;x), with
x = x0x1 . . . x2k−1 and x = x0 x1 . . . x2k−1.

Proposition 3.2 The middle cube graph MQk is a boundary graph.
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Proof. Recall that the eigenvalues of MQk are

evMQ2k−1 = {k, k − 1, . . . , 1,−1, . . . ,−k},

that is, λi = k − i, λk+i = −(i + 1), 0 ≤ i < k. Now, according to Eq. (7), we have to prove
that

∑2k−1
i=0

π0
πi

= 2
(
2k−1
k

)
. Computing πi, for 0 ≤ i ≤ 2k − 1, we get

πi =
i!(2k − i)!
k − i

= π2k−(i+1), for 0 ≤ i < k.

This implies

π0
πi

=
π0

π2k−(i+1)
=

(2k)!

k

(k − i)
i! (2k − i)!

=
k − i
k

(
2k

i

)
, for 0 ≤ i < k,

giving exactly the multiplicities of the corresponding eigenvalues, as found in Eq. 5. By summing
up we get

2k−1∑
i=0

π0
πi

= 2

k−1∑
i=0

π0
πi

= 2

(
k−1∑
i=0

(
2k

i

)
−
k−1∑
i=1

i

k

(
2k

i

))
. (8)

But

k−1∑
i=0

(
2k

i

)
=

1

2

(
22k −

(
2k

k

))
= 22k−1 −

(
2k − 1

k

)
, (9)

and
k−1∑
i=1

i

k

(
2k

i

)
= 2

k−2∑
i=0

(
2k − 1

i

)
= 22k−1 − 2

(
2k − 1

k − 1

)
,

where we have used Eq. (9) changing k by k − 1. Thus, replacing the above values in Eq. (8),
we get the result. �
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