
UNIVERSITAT POLITÈCNICA DE CATALUNYA

MASTER THESIS

Physically-based rendering of human skin

Author:
Roger Hernando Buch

Supervisors:
Antonio Chica

Pere-Pau Vázquez

A thesis submitted in fulfilment of the requirements
for the degree of Master in Innovation and Research in Informatics

in the

Facultat d’Informàtica de Barcelona
Department of Computer Science

October 15, 2015

http://www.upc.edu/
http://www.fib.upc.edu/en.html
https://www.cs.upc.edu/

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract

Facultat d’Informàtica de Barcelona

Department of Computer Science

Master in Innovation and Research in Informatics

Physically-based rendering of human skin

by Roger Hernando Buch

The plausible rendering of human skin is a challenging but crucial problem for photo-
realistic graphics, due to the inherent complexity of the interaction between the light
and the different layers of the skin.

This thesis explores a set of screen space physically-based subsurface scattering algo-
rithms in order to improve the rendering of scanned human faces. More specifically,
three subsurface scattering simulation methods and one forward scattering simulation
method are introduced and discussed. Then, we present some extensions to those
methods, in order to tackle the artifacts those methods produce. Additionally, we pro-
pose an strategy to modulate the subsurface scattering effect over the face using the
local mesh curvature.

Furthermore, we implement an application which integrates the whole subsurface scat-
tering rendering pipeline along with some Physically Based Rendering strategies to
produce high quality renderings. Moreover, the application will be a test-bed to eval-
uate the implemented methods both in therms of performance and perceptual appeal-
ing.

We show that combining the subsurface scattering methods along with the extensions
we propose in order to tackle the artifacts introduced by the screen space methods,
improves the rendering quality of human faces, and also eliminates the artifacts intro-
duced by the screen-space methods.

i

HTTP://WWW.UPC.EDU/
http://www.fib.upc.edu/en.html
https://www.cs.upc.edu/

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract

Facultat d’Informàtica de Barcelona

Department of Computer Science

Master in Innovation and Research in Informatics

Physically-based rendering of human skin

by Roger Hernando Buch

El renderitzat realista de pell humana es un problema desafiant en el camp dels gràfics
foto-realistes, degut a la complexa interacció inherent entre la llum, i les diverses capes
de la pell.

Aquesta tesi, explora un conjunt d’algorismes que intenten imitar el fenomen del sub-
surface scattering en espai de pantalla, per tal de millorar el renderitzat de caps humans
escanejats. Específicament, es presenten tres mètodes per simular l’efecte de subsurface
scattering, i un per simular l’efecte de forward scattering. A continuació presentem
algunes extensions per a aquests mètodes, amb l’objectiu de reduir els possibles er-
rors visuals que aquests metodes produeixen. Addicionalment, es proposa un conjunt
d’estratègies per modular l’efecte del subsurface scattering utilitzant la curvatura de
l’objecte computada en espai de pantalla.

A més a més, implementem una aplicació que integra el pipeline per simular el sub-
surface scattering, a més a més d’utilitzar algunes estratègies de Physically Based Ren-
dering per produir renders d’alta qualitat. Addicionalment, l’ aplicació serà utilitzada
com a banc de proves per avaluar el rendiment dels mètodes implementats.

En aquest treball, mostrem que combinant els mètodes per simular el subsurface scat-
tering, i les extensions que proposem, podem obtindre renders de cares humanes d’alta
qualitat, i eliminant els problemes que presenten els metodes de subsurfac escattering
en espai de pantalla.

ii

HTTP://WWW.UPC.EDU/
http://www.fib.upc.edu/en.html
https://www.cs.upc.edu/

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract

Facultat d’Informàtica de Barcelona

Department of Computer Science

Master in Innovation and Research in Informatics

Physically-based rendering of human skin

by Roger Hernando Buch

El renderizado realista de piel humana es un problema desafiante en el campo de los
gráficos foto-realistas, debido a la compleja interacción inherente entre la luz, y las
diversas capas de la piel.

Esta tesis, explora un conjunto de algoritmos que intentan imitar el fenómeno del sub-
surface scattering en espacio de pantalla, a fin de mejorar el renderizado de cabezas hu-
manas escaneadas. Específicamente, se presentan tres métodos para simular el efecto
de subsurface scattering, y uno para simular el efecto de forward scattering. A con-
tinuación presentamos algún extensiones para estos métodos, con el objetivo de re-
ducir los posibles errores visuales que estos producen. Adicionalmente, se propone un
conjunto de estrategias para modular el efecto del subsurface scattering utilizando la
curvatura del objeto computada en espacio de pantalla.

Además, implementamos una aplicación que integra el pipeline para simular el sub-
surface scattering, además de utilizar algunas estrategias de Physically Based Render-
ing para producir renders de alta calidad. Adicionalmente, la aplicación será utilizada
como banco de pruebas para evaluar el rendimiento de los métodos implementados.

En este trabajo, mostramos que combinando los métodos para simular el subsurface
scattering, y las extensiones que proponemos, podemos obtener renders de caras hu-
manas de alta calidad, y eliminando los problemas que presentan los metodos de sub-
surface scattering en espacio de pantalla.

iii

HTTP://WWW.UPC.EDU/
http://www.fib.upc.edu/en.html
https://www.cs.upc.edu/

Acknowledgements

I would like to thank my supervisors, Antonio Chica and Pere-Pau Vázquez, for their
exemplary guidance, support and encouragement throughout the elaboration of these
work.

A special thanks to all the peers I have met during this two years and a half. This
Master would not have been the same without them. Finally, I thank all my family and
girlfriend for their constant and unconditional support.

iv

Contents

Abstract i

Abstract ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Objective . 3
1.2 Outline . 4

2 Related Work 5
2.1 Introduction . 5
2.2 Off-line techniques . 6
2.3 On-line techniques . 8

3 Methods 11
3.1 Subsurface scattering . 12

3.1.1 Screen Space sum of gaussinas subsurface scattering 13
3.1.2 Separable subsurface scattering . 17
3.1.3 Artistic separable subsurface scattering 18

3.2 Forward Scattering Simulation . 21
3.3 Extensions . 24

3.3.1 Reducing halos . 24
3.3.2 Reducing blurring between skin and non-skin zones 27
3.3.3 Modulating the scattering effect 28

4 Application 31
4.1 Description . 31

4.1.1 Overview . 31
4.1.2 Physically-based speculars . 33
4.1.3 Indirect illumination . 34
4.1.4 Importance of Linearity . 36

5 Evaluation 38

v

5.1 Performance . 38
5.2 Perceptual . 40

6 Conclusions 43
6.1 Conclusions . 43
6.2 Future Work . 44

Bibliography 45

vi

List of Figures

1.1 BRDF and BSSRDF . 2
1.2 Skin Layers . 2
1.3 Hand photograph . 3
1.4 Render with and without scattering . 4

2.1 subsurface scattering in Film vs Games 5
2.2 Jensen BSSRDF on faces . 6
2.3 Skin diffusion profile . 8

3.1 Skin Layers . 12
3.2 Screen space overview . 14
3.3 Screen space subsurface scattering gaussian 15
3.4 Screen space subsurface scattering shader example 16
3.5 Separable subsurface scattering example 18
3.6 Separable subsurface scattering shader example 19
3.7 Separable artistic subsurface scattering example 21
3.8 Separable artistic subsurface scattering parameters example 21
3.9 Object thickness . 22
3.10 Transmittance . 23
3.11 Transmittance shader example . 23
3.12 Halos and incorrect diffusion . 24
3.13 CBF Normalized . 25
3.14 CBF Artifacts . 26
3.15 Auxiliar CBF image . 27
3.16 Halos reduction strategies . 27
3.17 Blurring between zones . 28
3.18 Screen space curvature . 29
3.19 Subsurface scattering modulation example 30
3.20 Subsurface scattering modulation example 30

4.1 Application snapshot . 32
4.2 Application pipeline . 32
4.3 Specular comparision . 34
4.4 Indirect lighting comparision . 35
4.5 Gamma function . 36

vii

4.6 Linear color comparision . 37

5.1 Samples vs Time . 39
5.2 Methods Comparison . 41
5.3 Other Materials . 42

viii

Chapter 1

Introduction

Skin is probably one of the most difficult materials to reproduce in computer graphics.
Indeed, the plausible rendering of human skin is a challenging but crucial problem for
photo-realistic graphics, owing to the fact that the light enters at one point, scatters
within it, and then exists at some another point. Such effects are poorly approximated
by traditional surface shading models, which are usually described in terms of the
Bidirectional Reflectance Distribution Function (BRDF) [Nic+92].

There are several factors that distinguish skin from other materials and put it in a very
special category. The first one is the complexity of the skin itself, because the skin is
made up of multiple layers (Figure 1.2), which are composed of different types of cel-
lular level elements [INN]. Hence, they scatter light according their own composition.
The second factor is a perceptual one. Human perception is highly specialized for per-
ception of skin, and especially sensitive to facial appearances and expressions. Slightly
errors in its simulation would be picked easier and for example if its shading is a bit
off, it would look waxy, dead, or just awkward for our perception.

The light reflected and scattered through a translucent object such as the skin is de-
scribed in terms of the Bidirectional Surface Scattering Reflectance Distribution Func-
tion (BSSRDF) [Nic+92] which is depicted in Figure 1.1. This effect softens the lighting
on the skin, making it less geometrically dependent, because the light is absorbed and
scattered in its way through the different layers of the skin. This softens the appearance
of the skin imperfections, in such a way that non-lit areas in the pores and imperfec-
tions are filled with light coming from well-lit adjacent zones. Furthermore the skin is
also affected by the forward scattering effect, which takes into account the light that
travels through thin slabs like ears and nostrils, according to the transmittance factor
of the skin, giving a reddish colour as we can see in the Figure 1.3.

Taking into account that human perception of skin is very accurate, in any rendered
scene where a human-like character with visible skin appears, the accurate or believ-
able simulation of the subsurface scattering is very important to make the scene con-
vincing. For that reason, in this master thesis we want to explore and compare several
methods to physically-based render translucent materials (human skin) in real time. A

1

Chapter 1. Introduction 2

FIGURE 1.1: In an opaque object, light reflects in the same point where
it hits the surface (left); in a translucent object, light scatters inside the

object before exiting the surface (right)

FIGURE 1.2: Figure depicting the different layers of teh skin

second objective is to propose and test several techniques intended to improve the ren-
der quality of raw scanned acquired human faces, that is, without manual prepocessing
by an artist.

Raw scanned acquired models are 3d photographs of an object, which just include color
and geometry information, and sometimes a normal map depicting the fine details of
the skin (e.g. pores, wrinkles). This means that the models do not come with a mask
which indicates what parts of the model are skin or not, thus causing some artifacts
that we will try to solve, such as halos and blurring between skin and non-skin zones.

Chapter 1. Introduction 3

FIGURE 1.3: Lighted hand photograph showing the subsurface and for-
ward scattering effect present on human skin

1.1 Objective

The aim of this thesis is to explore the real-time physically-based rendering of human
skin, in particular to improve the rendering of scanned human faces. In order to do, so
we defined the following sub-objectives:

• Implement three state-of-the-art methods in order to simulate the subsurface scat-
tering effect [JG10; JJG15; JJ] and one to simulate the forward scattering [Jim+10].
The subsurface scattering simulation methods are physically based and what
they try is to simulate the light diffusion through the skin in screen space. The
forward scattering method obtains the thickness of the object and uses it to sim-
ulate the light transmitted through it. It is important to note that the simulation
of subsurface scattering is done in screen space because we want it to run in real-
time.

• Propose some extensions to the subsurface simulation algorithms. Some of the
extensions are inspired by the literature, whereas the others are meant to solve
some artifacts that the former methods present with our models.

• Implement an application which integrates the subsurface scattering methods
and also some Physically Based Rendering (PBR) strategies in order to be able
to generate high quality renders. Moreover, the application will be a test-bed to
evaluate the performance of the implemented methods.

• Compare and test the implemented methods, and also evaluate their performance.

Chapter 1. Introduction 4

As a preliminary example, Figure 1.4 shows a comparison between two renderings
with and without subsurface scattering done in our application. The skin of the subsur-
face scattering simulated image looks smoother than the other, and has a more natural
appearance, in contrast to the skin of the image without subsurface scattering

FIGURE 1.4: The difference between render which simulate (left) and do
not simulate (right) the subsurface scattering effect is noticeable because

the latter one seems more unnatural.

1.2 Outline

The remainder of this thesis is organized as follows. Chapter 2 reviews different ap-
proaches to render human skin that appear in recent literature. Chapter 3 introduces
and explains the studied methods. Moreover, in Section 3.3 we propose several exten-
sions to the subsurface scattering methods. Later the methods will be experimentally
evaluated in Chapter 5. Chapter 4 presents the application we implemented in order
to generate the renderings shown in this thesis, and evaluate the methods presented.
Finally, Chapter 6 concludes this dissertation.

Chapter 2

Related Work

2.1 Introduction

Subsurface skin rendering/simulation techniques according to their temporal cost, can
be initially classified into off-line or on-line rendering techniques. Off-line techniques
are used, for instance, in movies, or in applications which need to compute accurately
and in a photorealistic way the skin appearance and do not require interactive manip-
ulation. Such techniques involve the accurate simulation of light rays going through
the skin simulating their scattering effects, which is a very demanding process in terms
of computational time, especially if solved for a high number of ray bounces.

In contrast, on-line techniques are useful for real-time environments such as video
games, which need real-time interaction and manipulation. The main challenge of
such techniques is to compute an approximation of the complex subsurface scatter-
ing effects, which should be good enough to be perceptually plausible, but at the same
time fast enough to allow for real-time rendering. Furthermore, they should be easy to
implement so that they integrate well with existing pipelines (e.g. rendering engines).

FIGURE 2.1: Comparison between an off-line technique such such as the
one used in the render of Gollum from The Lord of the Rings movie
(left), and an on-line one as in Metal Gear Solid V: The Phantom Pain

game (right)

5

Chapter 2. Related Work 6

2.2 Off-line techniques

The scattering simulation inside translucent materials dates back to the radiative trans-
fer equation [Cha60]. Off-line techniques compute the BSSRDF accurately, although
the full multiple scattering simulation within a BSSRDF might be computationally pro-
hibitive. A BSSRDF is an 8D function (Equation 3.1) that describes the light transport
from one point to another for a given illumination and viewing direction. Monte Carlo
simulation (ray tracing) is often the tool of choice to solve the light transport problem.

Jensen et al. [Jen+01], and later as a follow up article [JB02], used the complete BSSRDF
along with a diffusion approximation to model subsurface scattering. The main idea
behind this paper is to decouple the incident illumination from the evaluation of the
BSSRDF by using a two-pass approach. In the first pass they compute the irradiance
at selected points on the surface, and in the second pass the diffusion approximation
is calculated using the dipole diffusion approximation from a pre-computed irradiance
samples. The dipole diffusion approximation assumes that the material is homoge-
neous and semi-infinite, which is not the case of the human skin. This approach is
substantially faster than directly sampling the BSSRDF since it only evaluates the in-
cident illumination once at a given surface location. Figure 2.2 shows an example of
their results using human faces.

FIGURE 2.2: Figure taken from [JB02], Face rendered using the BRDF
approach (left) and rendered using the BSSRDF proposed by Jensen et

al. [Jen+01; JB02] (right).

Later, Donner and Jensen [DJ05] extended the dipole model into a multipole one, which
allows the modeling of multi-layered translucent materials, such as skin. They present
a multipole diffusion approximation for light scattering in thin slabs, which general-
izes to an arbitrary number of layers. This way, it enables the composition of arbitrary
multi-layered materials with different optical parameters for each layer (i.e. roughness
and refraction indices). This method is both accurate and efficient, and can be easily in-
tegrated into ray-tracing simulation methods using the dipole diffusion approximation
to compute the scattering effects.

Chapter 2. Related Work 7

Following the previous work, the same authors introduced a photon diffusion tech-
nique to combine photon tracing and the diffusion approximation [DJ08]. This com-
bination makes it possible to efficiently render highly scattering translucent materials
while accounting for internal blockers, complex geometry, translucent inter-scattering,
and transmission and refraction of light at the boundary causing internal caustics. In-
stead of sampling lighting at the surface as the previous techniques, this technique
performs a photon tracing step to distribute photons in the material and store them
volumetrically at the first scattering interaction with the material. Then, the radiant
emittance at points on the material surface is computed by hierarchically integrating
the diffusion of the light from photons.

More recently, D’Eon and Irving [DI11] presented a new BSSRDF for rendering images
of translucent materials. Previous diffusion BSSRDFs are limited by the accuracy of
classical diffusion theory. However, they introduce a modified diffusion theory which
is more accurate for highly absorbing materials near the point of illumination. This
new diffusion solution separates single and multiple scattering terms. Moreover, the
authors derive an extended-source solution to the multi-layer searchlight problem by
quantizing the diffusion Green’s function obtaining a quantized-diffusion (QD) model.
This can be done because the contribution from many depth sources at once arises from
the separability of Gaussian functions. This allows the application of the QD multipole
model to material layers several orders of magnitude thinner than previously possible
and creates accurate results under high-frequency illumination.

Finally, Habel, Christensen and Jarosz [HCJ13] published the photon beam diffusion
method, an efficient numerical method for accurately rendering translucent materials.
Their approach interprets incident light as a continuous beam of photons inside the
material. They leverage the improved diffusion model [DI11], but propose an efficient
and numerically stable Monte Carlo integration scheme that gives equivalent results
using only 3–5 samples instead of 20–60 Gaussians. This method can account for finite
and multi-layer materials, and additionally supports directional incident effects at sur-
faces. Besides, their numerical approach allows to extend the accuracy and capabilities
of the diffusion model and even combine it efficiently with more general Monte Carlo
rendering algorithms.

Unfortunatelly, those methods are not suited for real-time because they require more
than a few milliseconds to be computed; therefore, not being able to produce frame
rates higher than 32 fps. Moreover, such methods are intended to be used with Monte
Carlo rendering algorithms (e.g. ray tracing, photon mapping), which definitely are
not able to produce high quality noiseless results in real time.

Chapter 2. Related Work 8

2.3 On-line techniques

On-line techniques are mainly based on, or try to improve, the approach presented in
[BL03], which approximates subsurface scattering by blurring a 2D diffuse irradiance
texture using a gaussian filter. While it is efficient and maps well to the GPU, it neglects
the more subtle details of subsurface scattering.

The previous idea is extended by D’Eon and Luebke [dL08] to develop a high-quality
real-time skin shader. The key idea of this paper is to approximate the multipole diffu-
sion profiles of thin homogeneous slabs [DJ05] of a multi-layered translucent material
such as the human skin, as a linear combination of carefully chosen gaussian basis
functions, in order to use them to blur the irradiance signal in texture space. Since the
gaussian convolution is separable, this allows transforming the expensive 2D convolu-
tions into a cheaper set of 1D convolutions. This representation greatly accelerates the
computation of multi-layer profiles and enables improved algorithms for texture-space
diffusion and global scattering. In order to compute the light transmitted through thin
parts of the object, the technique presented in [DS03] is used.

FIGURE 2.3: A visualization of the skin diffusion profile. Figure taken
from [dL08].

Although the previously mentioned techniques are based on blurring the irradiance
signal in texture space providing real-time performance, they scale poorly with the
number of translucent objects in the scene, since the subsurface-scattering simulation
needs to be performed on a per-object basis. To overcome this issue, Jimenez and
Gutierrez [JG10] proposed to translate the simulation from texture to screen space. The
diffuse irradiance of all objects is blurred once as a preprocessing step employing the
sum-of-Gaussians formulation, thereby limiting subsurface scattering computations to
the visible parts of the objects. Although the algorithm is faster due to the fact that it
works on screen space, the algorithm has less information to work with, as opposed
to algorithms that work in 3D or texture space. Therefore, the screen-space algorithm

Chapter 2. Related Work 9

loses irradiance in all points of the surface not seen from the camera, since only the vis-
ible pixels are rendered. Thus, the method cannot calculate the transmittance of light
through thin parts of an object.

Moreover, due to this screen space lack of information, the method produces artifacts
such as thin halos near the silhouette of the surface. Mikkelsen [Mik10] showed that
the surface convolution by a Gaussian function can be weighted with a cross bilateral
filter (CBF) over an image containing the edges from the observer point of view, thus
solveing these silhouette errors.

The aforementioned method also fails to simulate the light transmitted through high-
curvature features because of the lack of lighting information behind the objects. For
this reason, its authors extended the method in [Jim+10] to simulate the transmittance
of light through the skin. Basically, the authors proposed an approximation to recon-
struct the irradiance on the back of an object. This, in turn, is used to approximate the
transmittance based on the multipole theory [DJ05] theory. Such technique requires
standard shadow maps as input, which eases its integration with rendering pipelines,
also reducing the memory usage compared to previous work techniques which take
transmittance into account.

In [SKP09], Shah et al. proposed a method that computes the BSSRDF using the dipole
diffusion model. The main idea of this work is to employ the dipole diffusion model
with a splatting approach to evaluate the integral over the surface area in an image-
space framework, in order to compute the illumination due to multiple scattering. The
main contribution of this paper is to take sample points on the surface visible from
the light source, and splat the scattering contribution to all points visible to the viewer
within the effective scattering range from each point. Finally, each point on the ren-
dered surface receives the scattering contribution from all points that have an influence
on it.

One of the most recent contributions [JJG15] proposes two real-time models to gen-
erate separable approximations of diffuse reflectance profiles to simulate subsurface
scattering. It just uses two 1D convolutions, reducing both execution time and mem-
ory consumption, while delivering results comparable to techniques with higher cost.
To approximate a 2D diffuse reflectance profile by a single separable kernel, the authors
relax the requirement of the radial symmetry of the diffusion models. They also show
how by combining importance sampling and jittering strategies such as the one used in
[Hua+11], a small number of samples per pixel are enough in many cases of practical
interest. In order to compute the light transmitted through thin parts of the object, the
approach presented in [Jim+10] is used.

Unlike the previous described methods, which are based on gathering the neighboring
light in order to simulate the subsurface scattering effects, the authors of [PB10] pre-
sented an approach where the effects of scattered light are pre-integrated into a texture.

Chapter 2. Related Work 10

They define three regions of the mesh, in which the subsurface scattering it is important
to render the object realistically: zones with high surface curvature, zones with small
surface bumps and the zones which lay onto the shadow edges. To obtain the scattering
that occurs due to the curvature of the surface and the shadow edges, a precomputed
subsurface texture texture is used, and accessed with the surface local curvature and
the shdowness level of the region. To take into account the subsurface scattering due
the small surface bumps, they propose a strategy of diffuse normals in which they fil-
ter the mesh normal map with R/G/B skin profiles (Figure 2.3). The authors claim that
this strategy allows to achieve the non-local effects of subsurface scattering using only
locally stored information.

Finally, Chen et al. [CLP14] presented Pre-integrated Deferred Subsurface Scattering
(PDSS), a technique that adapts pre-integrated skin scattering to screen space, making
it suitable for use in a deferred lighting pipeline and increasing its visual quality. Sur-
face curvature is calculated in real time by evaluating the curvature from the gradient
of the world space normals in the G-Buffer, avoiding curvature calculation artifacts.
PDSS has the advantages of being independent of the scene geometry and scaling well
in the number of lights and the number of objects. The method presented in [PB10] is
used to calculate the subsurface scattering, which uses the curvature and a shadowing
factor to look up into a pre-baked scattering texture and also the diffused normals. The
approach presented in [Jim+10] is used to compute the light transmitted through thin
parts of the object.

Chapter 3

Methods

As our objective is to improve the rendering appearance of scanned human faces but
the hard constraint here is to do it in real time, in order to simulate the subsurface
scattering, we have chosen methods which operate in screen space because they are
fast and the additional memory consumption is relatively low in comparison to other
sate-of-the-art methods. Moreover, those methods scale very well with the number
of translucent objects in the scene, which is not so important in our particular case
when only one model is in the scene, but it is worth to mention to understand the
attractiveness of the screen space methods.

However apart from being fast and efficient, simulating the subsurface scattering in
screen space produces some artifacts, such as halos. Furthermore, since our models
do not have any mask that indicates which areas are skin or not, the algorithms dif-
fuse the light between skin and non-skin zones. Later in this chapter (Section 3.3) we
propose some extensions to the screen space methods in order to solve or alleviate the
aforementioned problems.

We have implemented three methods in order to simulate the subsurface scattering
effect in screen-space, and one to simulate the forward scattering, which are:

• Screen space subsurface scattering [JG10].

• Separable pre-integrated subsurface scattering [JJG15].

• Separable artistic subsurface scattering [JJ].

• Real-Time realistic skin translucency [Jim+10].

Some of the techniques are simple adaptations of the shader source code that accom-
panies some papers, but in any case, the images shown throughout this section come
from our implementation of the described techniques.

11

Chapter 3. Methods 12

FIGURE 3.1: Image showing an example of light ray traveling trough the
skin. Figure taken from [dL08].

3.1 Subsurface scattering

Subsurface scattering is a complex phenomena which describes how light enters an
object, interacts with its different layers (Figure 3.1), and may exit at various points
around the incident point or by transmitted through the object. This effect is described
in terms of the BSSRDF S which relates the outgoing radiance L0(x0,−→ω0) at a point x0

to the radiant flux Φi(xi,−→ωi) at the point xi from the direction ωi:

dL0(x0,−→ω0) = S(xi,−→ωi;x0,−→ω0)dΦi(xi,−→ωi) (3.1)

The subsurface scattering effect can also be described using radially symmetric diffu-
sion profiles. A diffusion profile is a function Rd(x, y) that describes the light reflected
around a normally incident pencil beam on the origin of a surface of an infinite half-
space. For an homogeneous material,Rd is radially symmetric and can be characterized
by a 1D diffusion profile Rd(r), which describes how the light attenuates at each point
as a function of the distance r = ||(x, y)|| from the incident point. To obtain such dif-
fusion profiles, the authors of [Jen+01] use the diffusion theory to arrive at a diffusion
equation:

D∇2φ(x) = ρα(x)−Q0(x) + 3D
−→∇ · −→Q1(x) (3.2)

For an infinite media this equation has a simple solution, however for a finite media
this equation has no analytical solution.

Applying a diffusion profile is simple. Consider a point P (x, y) on the surface. We
want to obtain the contribution of all the points around P . Part of the light arriving
at such adjacent points will penetrate into the object and exit at P , with the specific
attenuation given by the diffusion profile R(r), expressed by:

Chapter 3. Methods 13

M(x, y) =

∫ ∫
E(x′, y′)Rd(r

′)dx′dy′ (3.3)

being M(x, y) the radiant exitance at point P , and E(x, y) the irradiance around P .
Equation 3.3 sums the contribution of each point around P , each of them weighted by
the diffusion profile R(r) according to its distance r to P . Threfore, it can be rewritten
as a two-dimensional convolution:

M(x, y) = E(x, y) ∗Rd(r) (3.4)

Carrying out the 2D convolution of Equation 3.4 is costly for real-time applications.
However, if Rd(r) can be approximated by a sequence of 2N 1D separable convolu-
tions, A, represented as:

A(r) =
N∑
i=1

ai(r) (3.5)

where the approximation A is defined by 1D functions ai.Due the radial symmetry of
Rd the same functions ai can be employed in both coordinate directions.

3.1.1 Screen Space sum of gaussinas subsurface scattering

From Equation 3.4, D’Eon and Luebke [dL08] observed that the skin diffusion profile
(Figure 2.3) reassembles the aspect of a gaussian, so a sum of gaussian functions (Ta-
ble 3.1) is suitable for approximation, being Rd(r):

Rd(r) =
k∑
i=1

wiG(vi, r) (3.6)

Chapter 3. Methods 14

Variance Color Weights
Red Green Blue

0.0064 0.233 0.455 0.69
0.0484 0.1 0.336 0.344
0.187 0.118 0.198 0
0.567 0.113 0.007 0.007
1.99 0.358 0.004 0
7.41 0.078 0 0

TABLE 3.1: Sum-of-gaussians parameters for a skin model depicted in
[dL08].

Following the previous idea, Jimenez et al. [JG10] propose to perform this sum of
gaussians approach in screen space instead of in texture space. The method requires
the diffuse render, the linear depth of the scene, and the use of the stencil buffer to
distinguish the zones which are skin or not. Next, it generates the different levels of
gaussian blurring, and adds up all these levels using the weights of Table 3.1 in order
to obtain the subsurface scattering contribution. Finally, it adds up the specular term
to obtain the final render.

FIGURE 3.2: Overview of our screen space algorithm. Figure taken from
[JG10].

It is worth noting that pixels located far from the camera will have narrower kernel
sizes than pixels near the camera, so the width of the kernel is modified accordingly to

Chapter 3. Methods 15

FIGURE 3.3: Comparison between two renders, the original render with-
out subsurface scattering (left), and teh one using the scree space sum of

gaussians technique (right).

the distance to the camera. Besides, a correction component is introduced to prevent
scattering through neighboring pixels in screen space but farther away in the geometry.
Figure 3.3 shows an example of our implementation of this algorithm, and Figure 3.4
shows the shader function we applied to compute one separable step of the gaussian
blurring used to compute the subsurface scattering in screen space.

This way, the technique mimics the results of the method proposed by D’Eon and Lue-
bke [dL08], at a fraction of its cost both in time and memory usage. What this method
cannot reproduce or match from the previous method is to simulate the light transmit-
ted through the thin slabs of skin. Therefore, this method must be used along with
methods that simulate the forward scattering.

We implemented this approach by taking the example shader and adapting it to handle
an arbitrary number of samples. Besides, we had to implement the generation of the
gaussian kernel which is performed every time the number of samples changes.

Chapter 3. Methods 16

uniform int ssss_n_samples;

uniform float offsets[100];

uniform float weights[100];

vec4 BlurSSSS(float sssWidth, float gauss_size, vec2 pixel_size, vec2 dir,

float correction, vec2 vUV, sampler2D color_texture, sampler2D depth_texture,

float fovy)

{

// Fetch color of current pixel:

vec4 colorM = texture(colorTex, texcoord).rgba;

// Fetch linear depth of current pixel:

float depthM = texture(depthTex, texcoord).r;

// Calculate the sssWidth scale (1.0 for a unit plane sitting on the

// projection window):

float distanceToProjectionWindow = 1.0 / tan(0.5 * fovy);//fovy in rads

float scale = distanceToProjectionWindow / depthM;

// Calculate the final step to fetch the surrounding pixels:

vec2 finalStep = gauss_size*sssWidth*scale*dir;

vec3 colorBlurred = vec3(0);

float weigths = 0;

for (int i = 0; i < ssss_n_samples; i++)

{

//Fetch color and depth for current sample:

vec2 despl = offsets[i] * finalStep;

vec2 offset = vUV + despl;

vec3 colorS = texture2D(color_texture, offset).rgb;

float depth = texture2D(depth_texture, offset).r;

//correction

float s = min(correction * abs(depthM - depth), 1.0);

colorS = mix(colorS, colorM, s);

float weight = weights[i];

colorBlurred += weight * colorS;

weigths += weight;

}

return vec4(colorBlurred/vec3(weigths), 1);

}

FIGURE 3.4: Code used to compute one step of the separable blurring of
the screen space subsurface scattering.

Chapter 3. Methods 17

3.1.2 Separable subsurface scattering

The previous method shows that the skin diffusion profile can be approximated by a
sum of separable gaussian functions. To be more precise six gaussian blurrings have
to be applied to the diffuse render. In total, it performs twelve convolutions to an
image. This is quite costly, and in order to alleviate this, the authors of [JJG15] propose
a method to reduce it to just two separable convolutions.

Due to the non-separability of discretized representations of realistic diffusion profiles,
it is not possible to fully reconstruct the effect of their convolution with 2D signals by a
single separable kernel. It is, however, possible to completely reproduce a profile’s be-
havior on a special class of signals: assuming that the irradiance is additively separable,
E(x, y) = E1(x) + E2(y). Then, the Equation 3.3 becomes:

M(x, y) =

∫ ∫
E(x′, y′)

1

||ap||1
ap(r)dx

′dy′ (3.7)

where ap denotes the pre-integrated one dimensional approximation of Rd along a co-
ordinate axis. Due to the radial symmetry of Rd, ap is equal for each axis y or x, and
||Rd||1 = ||ap||1 by definition. Hence, the pre-integrated kernel Ap of the diffusion pro-
file is defined as follows:

Ap(x, y) =
1

||Rp||1
ap(r) (3.8)

The basic idea is to compute those kernels, and later apply them directly to simulate
the subsurface scattering, just in the two separable convolutions.

In order to compute the kernels, the diffusion reflectance profiles are simulated using
Monte Carlo modeling of light transport in multi-layered tissues (MCML) [Wan+92].
MCML simulates cylindrically symmetric tissue models, and outputs the diffuse re-
flectance profile as a 1D function. In order to be used in a render, this 1D function
must be discretized. In general, those functions exhibit very uneven energy distribu-
tion, concentrating its energy near the origin, such that more samples are taken near
the center, and few far away from it.

Chapter 3. Methods 18

FIGURE 3.5: Comparison between two renders, the original render with-
out subsurface scattering (left), and the one using the pre-integrated ker-

nel subsurface scattering technique (right).

Figure 3.5 shows an example of our implementation of this algorithm, whereas Fig-
ure 3.6 shows the shader function we employed to compute one separable step of the
blurring using the pre-integrated kernels described above.

Using the pre-integrated kernel computed exactly with a Monte Carlo simulation, this
method produces high quality results, close to the ground truth of the simulation ac-
cording to its authors.

We implemented this approach by taking the full computed kernels provided with the
paper additional material. Then, we sample the kernels taking more samples near the
center of the kernel and few far from it. Thus, obtaining the final kernel we will use
for rendering. Finally, in order to use the kernel we obtain, we adapted the shader that
we used at the previous method Figure 3.4 to handle a kernel with different weight per
each color channel.

3.1.3 Artistic separable subsurface scattering

The previous method produces good results, but it is not practical in a production envi-
ronment. Such environments require more flexible methods that could be easily tuned
and tested, and usually the exact physical simulation it is not as important as the final
appearance. Consequently, this is not the case of the previous method since each kernel
needs to be simulated and discretized, this being a costly process and offering a limited

Chapter 3. Methods 19

uniform int ssss_n_samples;

uniform vec4 kernel[100];

vec4 SSSBlur(vec2 texcoord, sampler2D colorTex, sampler2D depthTex,

float sssWidth, vec2 dir, float fovy, bool follow_surf)

{

// Fetch color of current pixel:

vec4 colorM = texture(colorTex, texcoord).rgba;

// Fetch linear depth of current pixel:

float depthM = texture(depthTex, texcoord).r;

// Calculate the sssWidth scale (1.0 for a unit plane sitting on the

// projection window):

float distanceToProjectionWindow = 1.0 / tan(0.5 * fovy);

float scale = distanceToProjectionWindow / depthM;

// Calculate the final step to fetch the surrounding pixels:

vec2 finalStep = sssWidth * scale * dir;

vec4 colorBlurred = vec4(0);

vec3 weigths = vec3(0);

for (int i = 0; i < ssss_n_samples; i++) {

// Fetch color and depth for current sample:

vec2 despl = kernel[i].a * finalStep;

vec2 offset = texcoord + despl;

vec4 colorS = texture2D(color_texture, offset).rgba;

//correction

float depth = texture(depthTex, offset).r;

float s = min(correction * abs(depthM - depth), 1.0);

colorS.rgb = mix(colorS.rgb, colorM.rgb, s);

vec3 weight = kernel[i].rgb;

// Accumulate:

colorBlurred.rgb += weight * colorS.rgb;

weigths += weight;

}

colorBlurred.rgb /= weigths;

return colorBlurred;

}

FIGURE 3.6: Code used to compute on step of the separable blurring of
the separable subsurface scattering.

Chapter 3. Methods 20

artistic control over the final result. Consequently, Jimenez, Jarabo and Gutierrez [JJ]
propose an artist friendly method to compute a diffusion kernel.

The artistic diffusion profile is formulated using the initial 1D sum of gaussians dif-
fusion profile, but modified according to three parameters: weight, strength and falloff.
Weight defines the global level of subsurface scattering (the filter width). Strength de-
fines how much diffuse light penetrates the skin per channel and contributes to the
subsurface scattering. Finally, falloff defines the amount of light travelling through the
skin per channel. Therefore, the artistic friendly diffusion profile Aa is defined as fol-
lows:

Aa(x, y) = p

[
x ∗ w

0.001 + f

]
∗ s+ δ(x) + (1− t) (3.9)

where w, s, and f are the parameters weight, strength, and falloff, respectively. δ(s) is a
delta function which returns one if x = 0 and zero otherwise, and p[x] is the initial 1D
sum of gaussians diffusion profile of Equation 3.6.

We implemented this method firstly creating a function to build the kernel according
to its parameters, and re-using the shader used by the previous method (Figure 3.6)
but with the parameters, kernel, and number of samples defined accordingly. Fig-
ure 3.7 depicts an example of our implementation of this algorithm, using the baseline
parameters to generate similar results to the skin diffusion profile, which are set as
follows: weight = 0.014, strength = (0.48, 0.40, 0, 28), and falloff = (1, 0.37, 0.3).
Figure 3.8 shows examples of subsurface scattering customization by modifying the
weight, strength and falloff parameters.

Using this easily configurable kernel, this method produces a wide range of results
according to its parameters. Moreover, the computation of the kernel is easy and fast,
so this method allows to test and tune various sets of parameters according to an artistic
criteria, making this method suitable for a production environment while producing
high quality results.

Chapter 3. Methods 21

FIGURE 3.7: Comparison between two renders, the original render with-
out subsurface scattering (left), and the one using the separable artistic

subsurface scattering technique (right).

FIGURE 3.8: Examples of editing the appearance of subsurface scatter-
ing: artistic kernel fitted to be similar to the original diffusion profile
(left), strength = (0.48, 0.40, 0.70) to increase the amount of blue light
absorbed by the skin (centre), and falloff = (0, 1, 0) to only allow green

light to travel through the skin (right).

3.2 Forward Scattering Simulation

The aforementioned methods simulate the subsurface scattering over the visible sur-
face of the skin shown by the screen, but do not simulate the light transmitted through
thin geometry. Thus, in order to simulate the light coming from the light sources be-
hind the observed geometry, we applied the method described in [Jim+10], because it
produces nice results and it is widely used to simulate forward scattering effects.

The key fact of this method is to find a way to capture the distance that light travels
inside the object(s), in other words, the thickness of the object from the light source to

Chapter 3. Methods 22

light

eye

FIGURE 3.9: Light travels through the object. The thickness from the
light source to the eye is needed to get the distance travelled by the light
inside the object. Sb and Sa are the thickness associated with points B

and A respectively.

the eye. Then, it employs a physically based function T(s) which relates the attenuation
of the light to the object thickness.

One naive approach to obtain the thickness of the object would be to render the object
from the light point of view, and subtract the depth of its front faces with the depth
of its back faces. Then, using that thickness value to obtain The amount of light trans-
mitted trough the object. However, that strategy would not capture the thickness of
some points, as shown by the points A and B depicted in Figure 3.9. Moreover, with
this strategy the full geometry must be rendered, thus not exploiting the face culling
benefits, so a more clever strategy is required.

It is important to note that, if we are in a usual render pipeline which perform shadow
mapping, we are already capturing this notion of how far the front faces of the object
are from the light. Moreover, in the main render pass, where the visible parts of the
objects are reprojected to the light space coordinates in order to found if these parts are
occluded or not, we are implicitly obtaining information about how far the visible part
is from the light. Then, by combining this information with the previous one, the object
thickness s from the light to the eye is found.

Once s is found, T (s) is used to get the light transmitted through the skin. This result
is multiplied by the diffuse emission of the model, and then added to the diffuse re-
flectance of the main rendering, in order to feed the subsurface scattering algorithms
with this information, and simulate the diffusion between the areas lighted from the
forward scattering and its neighbours. Figure 3.10 shows an example of our imple-
mentation of this algorithm, and Figure 3.11 shows the shader function we used to
compute the light transmitted through the skin.

T (s) =
k∑
i=1

wie
−s2/vi (3.10)

Chapter 3. Methods 23

FIGURE 3.10: Comparison between ears, rendered without (left) and
with (right) forward scattering.

T (s) is defined in terms of the skin diffusion profile approximated by the sum of gaus-
sians depicted in Table 3.1, being wi its weights and vi its variance.

We implemented this approach by taking the example shaders provided by the authors
method, and adapting them to our framework.

vec3 transmittance(float translucency, float sss_width, vec3 world_position,

vec3 world_normal, vec3 light_vector, sampler2D shadow_map, mat4 light_V,0

mat4 ligh_BP, float light_far_plane)

{

//scale factor

float scale = 8.25 * (1.0 - translucency) / sss_width;

//distance calculus

vec4 shrinked_pos = vec4(world_position - 0.005 * world_normal, 1.0);

vec4 shadow_pos = light_V*shrinked_pos;

float d2 = (shadow_pos.z/shadow_pos.w)/-light_far_plane;

shadow_pos = ligh_BP * shadow_pos;

//linear depth stored in the shadow map texture

float d1 = texture(shadow_map, shadow_pos.xy/shadow_pos.w).r;

d1 *= light_far_plane;

d2 *= light_far_plane;

//distance between the point observed by the light and the point observed

//by the camera

float d = abs(d1 - d2)*scale;;

float dd = -d * d;

vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +

vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +

vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +

vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +

vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +

vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);

return profile * clamp(0.3 + dot(light_vector, -world_normal), 0.0, 1.0);

}

FIGURE 3.11: Code used to compute the light transmitted through the
skin due to the forward scattering effect.

Chapter 3. Methods 24

FIGURE 3.12: Figure depicting the problems we have detected using the
screen space subsurface scattering algorithms. Halos (left) and incorrect

diffusion (right).

3.3 Extensions

While testing the algorithms to simulate the subsurface scattering, we detected some
problems (Figure 3.12). The screen space approaches produce halos between neighbor-
ing zones in image space but at different depth levels. Furthermore, as our scanned
faces do not have a mask that indicates which areas are skin or not, the algorithms
diffuse the light between skin and non-skin zones (e.g. eyes, hair).

Therefore, we propose some extensions to the methods in order to deal with the afore-
mentioned problems, namely:

• Halo reduction: we propose an strategy extending the method proposed by Mikkelsen
[Mik10], to effectively reduce the halos produced by the subsurface simulation
techniques.

• Incorrect diffusion: in order to not diffuse light between skin and non-skin zones
we propose to weight the kernels with a bilateral filter, to effectively improve the
render quality.

In addition, we try to modulate the subsurface scattering according to the mesh local
information (e.g. curvature), inspired by [PB10].

3.3.1 Reducing halos

The authors of the aforementioned subsurface scattering methods noticed the halos
problems as well, and tried to tackle them with the correction factor (central image of
Figure 3.16), which modulates the color of the samples which, although being near the
central point of the diffusion profile in image space, are far away in the geometry, using
the difference in depth between the central and the sampled points. Unfortunately, the

Chapter 3. Methods 25

FIGURE 3.13: The image shows the unnormalized strategy proposed in
[Mik10] (left) vs. our normalized strategy (right).

correction factors are not enough and Mikkelsen [Mik10] showed that using a cross
bilateral filter (CBF) to weight the diffusion profile fixes the halos problem.

A CBF, works like a bilateral filter (Equation 3.13), but uses an auxiliary image to com-
pute the weights instead of the image that is being filtered. CBF is characterized by the
following equation:

CBF [I, E]p =

∑
q∈S Gσse

−||p−q||Gσre
−(Ep−Eq)Iq∑

q∈S Gσse
−||p−q||Gσre

−(Ep−Eq)
(3.11)

where I is the original input image, E is the auxiliary image used to compute the dif-
ference of intensities, p are the coordinates of the current pixel to be filtered, S is the
window centered in p, and Gσr and Gσs are the distance and color weighting factors,
respectively.

The auxiliary image I is defined as an image that distinguishes between zones whose
normal is perpendicular to the view direction and zones which are not. This creates an
image of contours from the point of view of the observer, highlighting the edges be-
tween continuous areas in screen space but not in the geometry. That image is defined
as follows:

I(p) = I(x(p)) ∗ cos3(φi)
||x(p)||2

cos(φj)
(3.12)

where x(p) is the object point which is drawn in pixel p, φi is the angle between z-axis
and the direction from the observer to the point x(p), φj is the angle between the surface
normal and the vector from x(p) to the observer, and I(x(p)) the intensity of the pixel
p.

Chapter 3. Methods 26

FIGURE 3.14: The image shows the artifacts (black dots near teh edges)
introduced by the CBF method when used directly with our shaders.

However, the effectively of this approach as is proposed depends on how far the model
is from the projection plane, losing the power of detecting edges and therefore not
removing the halos, as can be seen in Figure 3.13. In order to obtain the auxiliar image
invariant to the distance, we always take the point x(p) as if was always resting on
the projection plane. Moreover, using this cross bilateral weighting directly within our
shaders (Figures 3.6 and 3.4) produces some ugly artifacts as can be seen in Figure 3.14.
Consequently, in order to fix those issues we had to modify our shaders to take into
account that if the final color is black the original diffuse color must be used. In contrast
to what Mikkelsen proposes, we use this technique along with the correction factors.

Figure 3.15 shows the auxiliary image used by the CBF with a highlighted area which
is the same as used in the Figure 3.16, which shows the halos effect and its reduction
using this method.

Chapter 3. Methods 27

FIGURE 3.15: The auxiliar image used in the CBF weighting, in order
to reduce the halos. The highlighted section corresponds to the region

used in Figure 3.16.

FIGURE 3.16: Halos comparison: not using any method to correct them
(left), using the correction factors (center), and using our modified CBF

approach(right).

3.3.2 Reducing blurring between skin and non-skin zones

The scanned models are 3d photographs, and do not differentiate between the dif-
ferent parts of the captured reality. Therefore, the subsurface scattering simulation is
equally applied to all elements of the object, whether they be skin or not, and due to
the symmetry of the diffusion profile this produces the light being diffused from skin
and non-skin zones (e.g. eyes, hair, cloths). The main difference between skin areas
and non-skin areas is the color of such areas, being for example the eyes or hair of a
completely different color compared to the surrounding skin.

In video games or production environments, an artist usually segments the areas which
are or not skin, or each different part that composes the model comes directly as sepa-
rated models. As our scanned models do not come with this information, we propose
to use of a bilateral filter weighted by the color distance of neighboring pixels, in order
to modulate the contribution of each sample. To take into account the human percep-
tion of colors, the color distance is performed in lab color space. Lab color space groups

Chapter 3. Methods 28

FIGURE 3.17: Blurring between skin and non-skin zones: without simu-
lating subsurface scattering (left), simulating subsurface scattering (cen-
tre), and using a bilateral filter to avoid blurring between skin and non-

skin zones (right).

colors according to their perceptual similarity. Therefore, colors with less distance be-
tween them are going to be perceptually more similar, whereas colors with greater
distance between them are not.

The bilateral filter we used is defined by the following equation:

BF [I]p =

∑
q∈S Gσse

−||p−q||Gσse
−(Ip−Iq)Ip∑

q∈S Gσse
−||p−q||Gσse

−(cp−cq)
(3.13)

where I is the original input image, p are the coordinates of the current pixel to be
filtered, S is the window centered in p, Ip and Iq are the lab color of the image I at pixel
p and q respectively, and Gσr and Gσs are the distance and color weighting factors,
respectively. As for the CBF method, we used Gσr as the diffusion kernel weight and
Gσs is set to one.

Figure 3.17 shows the blurring of skin and non-skin zones, and how the bilateral filter-
ing deals with the problem. It is not a perfect solution because it still blurs some high
frequency details (i.e. thin hair), but it substantially improves the render quality.

3.3.3 Modulating the scattering effect

Inspired by the work of [PB10], which states that the scattering is more noticeable in
higher curvature zones, we try to modulate our physically-based subsurface scattering
with the curvature. Therefore, being the effect stronger at zones with higher curvature
and weaker at zones with lower curvature. We also tried to modulate the forward
scattering strength in the high curvature zones. Our contribution consists in trying
to merge the physically-based subsurface scattering simulation with a non-physically
based subsurface scattering technique, such as the curvature modulation.

The curvature is computed in screen space, using the normals of the neighboring pix-
els, to obtain the oriented gradient in each x and y axis, and finally obtain the curvature

Chapter 3. Methods 29

FIGURE 3.18: Using the normal map stored normals to compute the
screen space curvature results in a noisier curvature(left). Meanwhile,
using the geometry normals reduces the noise (center), we smooth that
curvature to feed the algorithm with an smooth curvature (right) free of

high frequency discontinuities.

analyzing the magnitude of the variation of these axes. It is worth noting that, in or-
der not to introduce high frequency discontinuities, the normals used to compute the
curvature are the geometry normals and not the normal map normals (Figure 3.18).
Besides, the curvature should be smoothed (i.e. mean blurring) to avoid such artifacts.

We have modulated the subsurface scattering effect with the curvature in three differ-
ent ways (Figure 3.19):

• Increasing the subsurface scattering strength of a pixel according to its local cur-
vature. Such strategy proved to be a poor option, because the screen space curva-
ture is higher at the contours of the geometry, causing the subsurface scattering
effect stronger on the edges. Therefore, increasing the filter size at the contours
and making the halo artifacts more noticeable.

• Reducing the subsurface scattering effect at zones with lower curvature and re-
maining the same at zones with higher curvature. This strategy caused the zones
with nearly zero curvature not to simulate the subsurface scattering at all, and
breaking the high quality skin rendering.

• Reducing the subsurface scattering effect at zones with lower curvature up to a
minimum and remaining the same at zones with higher curvature. This proved to
be a good strategy because the subsurface scattering is simulated and strengthens
the effect at the high curvature zones.

We have also tried to modulate the forward scattering strength according to the mesh
local curvature, which proved to be a bad idea since it produces ugly artifacts (i.e.
extremely bright translucency areas) at high curvature zones as shown in Figure 3.20.

Chapter 3. Methods 30

FIGURE 3.19: Face rendered without the subsurface scattering effect (top
left). Face rendered simulating the subsurface scattering but not modu-
lating its effect (middle top). Face rendered using the blurred screen
space curvature (top right) to modulate its subsurface scattering effect:
increasing the subsurface scattering strength according to its local curva-
ture (bottom left), reducing the subsurface scattering effect at zones with
lower curvature (middle botom), and reducing the subsurface scattering

effect at zones with lower curvature up to a minimum (bottom right).

FIGURE 3.20: When the forward scattering is modulated with the screen
space curvature, it produces bright artifacts at high curvature areas (e.g.

nostrils).

Chapter 4

Application

4.1 Description

In order to test all the methods, an OpenGL application has been developed, which
allows to explore an scene, load different kinds of models, load textures and use them
in the render phase to enhance the model appearance, use the previously mentioned
methods to simulate and render human skin, and also to tune the algorithm parame-
ters in an interactive fashion. Moreover, the application uses some physically-based-
rendering techniques to improve the quality of the scene rendering, which will be fur-
ther explained in the next sections. Figure 4.1 shows the main view of the developed
application.

4.1.1 Overview

The application can be subdivided into the different rendering steps used to generate
the final rendering, which are:

• Shadow mapping. At the shadow mapping step, is where the geometry is ren-
dered from the light point of view to create the shadow maps, which are used
later to compute the shadows and the forward scattering effect.

• Main rendering step. At main rendering step, the diffuse and specular scene
colors are rendered, and the auxiliary CBF factor and the screen space curvature
are computed.

• Subsurface scattering simulation step. The subsurface simulation step is the stage
that uses the methods described in Section 3.1 to simulate the subsurface scatter-
ing effect.

• The speculars addition step. At the speculars addition step, the specular color is
added to the subsurface scattering simulated rendering obtained from the previ-
ous rendering step.

31

Chapter 4. Application 32

FIGURE 4.1: Snapshot of the application interface.

• Tonemap step. At the tonemap step, the final rendering is composed, re-correcting
the gamma of the scene object to be correctly shown by the screen, and also ren-
ders the background of the scene.

Figure 4.2 shows the abovementioned application rendering pipeline.

FIGURE 4.2: Application pipeline

Chapter 4. Application 33

4.1.2 Physically-based speculars

Phong specular model is well known and widely used in computer graphics, but us-
ing a more accurate physically based surface reflectance model will improve the im-
age quality. The Phong model fails to capture increased specularity at grazing angles
and it is not physically plausible, since it outputs more energy than it receives. The
physically-based specular BRDF terms are typically based on microfacet theory [Hil+15],
which assumes that the surface is composed of many microfacets, too small to be seen
individually. The specular BRDF term is defined as follows:

Cspec(l, v) = π
F (l, h)G(l, v, h)D(h)

4(n · l)(n · v)
Lc(n · l) (4.1)

where l and v are the light and the viewing vector respectively, h is the half vector
h = l+v

|l+v| , and Lc is the light color. D is the distribution of normals function which
defines the concentration of microfacets that are oriented such that they could reflect
light from l into v. G is the shadow-masking function, which defines the percentage
of microfacets with h as their normal vector that are not shadowed or masked. F is
the Fresnel therm which defines the fraction of light reflected from an optically flat
surface. Owing to the fact that the full Fresnel equation is rather complex, and the
parameters that it uses are not convenient for a production environment, the Fresnel
term is approximated with the Slick’s Fresnel equation [Sch94]:

Fslick(F0, l, h) = F0 + (1− F0)(1− (l · h))5 (4.2)

where F0 is the characteristic specular reflectance of the material. In order to simulate
the skin specular we set F0 = (0.029, 0.029, 0.029).

As a shadow-masking function G(l, v, h) we use, as many games do, the so-called "im-
plicit" masking function (Equation 4.3), which is equal to one when l = n and v = n,
and equal to zero for either glancing view angles or glancing light angles. That means
that the probability of a microfacet being occluded by other microfacets increases with
viewing angle, going up to 100% in the limit. Furthermore, it simplifies the specular
equation, thus reducing the computation time.

Gimplicit(l, v, h) = (n · l)(n · v) (4.3)

Finally, as a distribution of normals function D(h) we used the so-called "Phong NDF"
(Equation 4.4), where the parameter αr is the roughness parameter. High αr values
represent smooth surfaces, whereas low values rough ones. Roughness is not an artist-
friendly parameter because it is arbitrarily huge (infinite for perfect mirrors) and is

Chapter 4. Application 34

FIGURE 4.3: Comparison between the two specular models, phong (left)
and BRDF (right).

expressed in terms of the glossiness s (which has a range from zero to one), being
αr = αmax

s. Usually, αmax is set to 8192.

Dphongt(h) =
αr + 2

2π
(n · h)αr (4.4)

Finally, our physically-based specular BRDF is defined as follows:

Cspec(l, v) =
αr + 2

8
(n · h)αrFslick(F0, l, h)Lc(n · l) (4.5)

4.1.3 Indirect illumination

In order to enhance the visualization, we use a skybox to depict the scene surround-
ing environment. A skybox is a cube map which reproduces a panoramic view of an
environment that has been mapped to the inside of a cube.

Since the scene is surrounded by that environment, the interaction of the environment
light and the scene must be taken into account. A good way to simulate the global
light from the environment is to consider a cube map as a light source. This tech-
nique is called Image Based Lighting (IBL) [CON99] and it is often associated with PBR
pipelines.

Given a point to be shaded with normal n, color Cp, and occlusion factor Op, the
amount of environment light received by the point coming from the environment is
defined as follows:

Chapter 4. Application 35

FIGURE 4.4: Comparison between two renders without (left) and with
(right) indirect lighting.

EMdiff (n) = CpAOp

∑
k∈Ωmax(0, lk · n)L(lk)∑

k∈Ωmax(0, lk · n)
(4.6)

where lk is a direction over the hemisphere Ω centered at n , L(lk) is the cube map
color at the direction lk. Computing this equation in real time would be very costly
and prohibitively because a lot of look-ups to the cube map would be needed.

From Equation 4.6 we can see that points with the same normal will have the same
environment contribution. Hence, we can create a pre-filtered irradiance map such
that each value maps the environment light at a given direction:

EMdiff (n) =

∑
k∈Ωmax(0, lk · n)L(lk)∑

k∈Ωmax(0, lk · n)
(4.7)

Then, during the rendering, only one texture look-up to the irradiance map is needed.

The occlusion component Op, which says how exposed each point in a scene is to am-
bient lighting, is given by the ambient occlusion factor. Particularly in our application,
the ambient occlusion is not computed in real time, but baked into a texture for conve-
nience instead. Anyway, this factor can also be computed in real time using a screen
space approach.

Chapter 4. Application 36

FIGURE 4.5: Example of gamma correction. The dashed line
represents the linear intensities perceived by the camera, and
the continuous line the gamma encoded intensities. Figure
adapted from https://commons.wikimedia.org/wiki/File:

GammaFunctionGraph.svg.

4.1.4 Importance of Linearity

It is important to note that, as we are working with 3d scanned models whose color is
captured by a camera, the color is stored in a non-linear way. This is due to the fact
that cameras do not perceive the light the same way humans do. With a digital camera,
when twice the number of photons hit the sensor, it receives twice the signal (a "linear"
relationship). Instead, we perceive twice the light as being only a fraction brighter
(a "nonlinear" relationship). Compared to a camera, we are much more sensitive to
changes in dark tones than we are to similar changes in bright tones.

Therefore, when a camera captures a photo and saves it, the information is "gamma
encoded" such that the image is stored in a non linear way, redistributing the native
camera tonal levels to ones more perceptually uniform. Consequently, devoting more
bits to describe darker tones and fewer bit to describe brighter tones. Later, when
the image is visualized on a monitor, a step of "gamma correction" is automatically
performed by the monitor to convert the light stored in the image into light from the
original scene.

When a pixel is read from a texture it pixel is "gamma encoded" and therefore non
linear, but the rendering color operations assume linear color so we should feed the
render algorithms with linear color values, and later "gamma encodeing" the final ren-
der to be shown correctly by the screen. If this steps of correcting the gamma, use the
algorithm with the gamma corrected colors, and finally "gamma encode" the image are
not performed, the result of the algorithms would be wrong (e.g. yellowish specular
highlights), as shown in Figure 4.6.

https://commons.wikimedia.org/wiki/File:GammaFunctionGraph.svg
https://commons.wikimedia.org/wiki/File:GammaFunctionGraph.svg

Chapter 4. Application 37

FIGURE 4.6: Comparison between two renders without (left) and with
(right) gamma taken into account.

Wen the cammera codifies the image in order to store it raises the color intensity to
some power gamma (cγ). The precise value of gamma which encodes an image is
usually specified by a color profile that is embedded within the file, which is usually
γ = 1/2.2. If no color profile is embedded, then a "standard" gamma of 1/2.2 is as-
sumed. This way when a color is read from an image to linearize its value a "gamma
correction" of γ = 2.2 is performed. Later, a "gamma encoding" of γ = 1/2.2 is applied
to render the final image on the screen.

Moreover, since we are internally working with linear color not checking if it’s rage
exceeds the typically RGB range (zero to one). HDR tone mapping strategies can be
used to correct the range of the rendering from zero to one, such as linear, exponential,
Reinhard[Rei+02], or filmic tone mapping.

Chapter 5

Evaluation

In this chapter we are going to evaluate and compare the different methods used, and
also the overall performance of the application that integrates all the methods, and each
of its non subsurface scattering simulation methods.

5.1 Performance

All test were performed using a viewport size of 1681x942 and a model of 900096 tri-
angles, in a computer with a Nvidia GeForce GTX 970M graphics card with 3Gb of
memory, Intel Core i7-4710HQ CPU, 16Gb of RAM memory.

Each time sample actually is an average of hundreds of frames, in each frame the time
elapsed in each of the application steps is measured, using the OpenGL glFinish() call
to ensure that the graphics card has finished the operations associated with the task.

As we stated at Secction 4 the application can be subdivided into different render-
ing steps: shadow mapping, main render, subsurface simulation, add speculars, and
tonemapping. In Table 5.1 we evaluate the time elapsed in each step, except the sub-
surface simulation step, for which each included method will be separately evaluated
next. For all the renders shown in this thesis we also enabled FXAAx6 Nvidia graphics
card antialiasing to improve the render quality.

Note that the execution time of every method described is dominated by the convo-
lution computation, so their timings are roughly proportional to the number of con-
volutions they require. Therefore, the method using sum of six gaussians approach is

Application
Shadow map MainRender AddSpecular Tonemapp

0.447 ms 1.262 ms 0.148ms 0.977 ms

TABLE 5.1: Elapsed time of each non-subsurface scattering simulation
application render steps.

38

Chapter 5. Evaluation 39

View Gausian sum Artistic Pre-int Kernel

Close 9.428 ms 1.731 ms 1.799 ms
Mid 2.01 ms 0.492 ms 0.487 ms
Far 0.676 ms 0.312ms 0.36 ms

TABLE 5.2: Elapsed time of each subsurface scattering simulation algo-
rithm, with different points of view to fill the screen with more or less

skin area. In this test the number of samples was set to 20.

be much slower than the methods using just two separable convolutions. As well as
the methods presented are in screen space, the amount of skin filling the screen would
affect the algorithms performance, as Table 5.2 shows. Moreover, the performance of
subsurface simulation methods is also influenced by the number of samples of that
such algorithms take. Increasing more rapidly in the sum of six gaussian method, as
shown in Figure 5.1.

FIGURE 5.1: Graphic showing how the number of samples taken by the
algorithms affects its performance.

The methods that perform two one-dimensional convolutions perform a total of twice
samples, and the screen space sum of six gaussian method performs twelve times the
samples, thus being much slower than the other methods, since it takes six times more
samples than the others. The time each extension adds to the render is given by the
number of samples that are added to the algorithm, being twice the samples in both
curvature and CBF. From Figure 5.1 it can be seen that the overhead added by those
extensions would be a real performance killer for the sum of six gaussians method,
whereas the other two methods could assume the overhead and perform in real time.

Chapter 5. Evaluation 40

5.2 Perceptual

Figure 5.2 shows the different subsurface scattering simulation methods used to ren-
der the same scene. We can observe that each of the presented methods enhances the
rendering by softening the appearance compared to the render without scattering, as
well as changing a little bit the color of the rendering according to the diffusion profile
used.

Perceptually, in our opinion, the best results are obtained with the pre-integrated method
combined with the CBF in order to remove halos, and the bilateral filter using the lab
color space to eliminate the diffusion between skin and non-skin zones. The render-
ing with the least amount of artifacts that we have been able to achive is shown in
Figure 1.4.

In order to correctly evaluate the methods, perceptually speaking a formal user study
should be performed. Due to the lack of time a user study is left as future work. With
a user study we could conclude which methods are more perceptually realistic and
which are not, and how the Extensions we propose affect positively or negatively the
final rendering.

The methods implemented in this thesis, even though meant to simulate human skin
subsurface scattering effect, could also be used to simulate other translucent materials,
such as marble or leaves as shown in Figure 5.3.

Chapter 5. Evaluation 41

FIGURE 5.2: Methods comparison: original (top left), screen space
sum of gaussians (top right), separable Artistic (bottom left), and pre-

integrated kernel (bottom right).

Chapter 5. Evaluation 42

FIGURE 5.3: The subsurface simulation methods used also can be used
to simulate other translucent materials such as marble or leaves.

Chapter 6

Conclusions

6.1 Conclusions

The main contributions of this master thesis are:

• The development of an application that covers most of the state of the art screen
space skin rendering methods.

• The implementation of some extensions to the current methods: halos reduction,
incorrect diffusion between skin and non-skin zones, and modulate the subsur-
face scattering strength overt the mesh.

• The evaluation of the methods both in terms of quality and rendering speed.

This thesis had explored different algorithms of real-time physically-based rendering of
human skin. Next, we have introduced the problematics associated and the importance
of having a high quality rendering of human skin. Then, a review of the literature
associated has been made. And after that different methods to render skin realistically
have been presented. We have explained three screen space methods to simulate the
subsurface scattering effect based on diffusion profiles, and one to simulate the forward
scattering effect.

Later, we have proposed and explained an extension to improve the rendering quality,
by modulating the subsurface scattering effect with the local curvature as is done in the
literature. Moreover, we have also proposed two extensions to fix the artifacts which
those methods present, such as halos and diffusion between skin and non-skin zones.

We have also implemented a full featured application that integrates the methods to
simulate the skin rendering, and the extensions we propose to them. This application
has been used as a test-bed system for the different algorithms in the literature, and
the extensions we have proposed. It also includes other physically-based techniques
in addition to the simulation of skin, in order to increase the realism and rendering
quality. As a result, our application is capable of rendering high quality human scanned
faces as shown in the extensive amount of examples shown in this memoir.

43

Chapter 6. Conclusions 44

We have also analyzed the performance of the presented methods as well as the im-
provements we have proposed, in order to show the impact the methods have on the
overall rendering time. We have shown that the method which performs a sum of
six gaussians to simulate the subsurface scattering is the most costly method and de-
pending on the number of samples and the skin elements on the scene could not be a
viable option to real-time rendering of human skin. In terms of the perceptual valid-
ity of the methods, further analysis should be made (i.e. user study), but subjectively
we think that the best method, perceptually speaking, is the separable pre-integrated
kernel method coupled with the techniques we have presented to solve the artifacts it
presents.

6.2 Future Work

As a future work, we would like to explore non-physically-based methods to render
the skin such as [CLP14], and explore non-real-time physically-based methods such as
[HCJ13], in order to further complete the study about physically-based skin rendering
presented in this thesis.

In addition, in order to improve the re-usability of the forward scattering method it
would be usefull, to include method to deduce its weights from the kernels used by
the separable artistic and pre-integrated methods.

Finally, it would be interesting to explore on-the-fly or pre-process methods to seg-
mentate the skin from the non-skin zones, and create a mask to effectively distinguish
between zones where the subsurface scattering should be applied and zones which it
should not.

Bibliography

[BL03] George Borshukov and J. P. Lewis. “Realistic Human Face Rendering for
"The Matrix Reloaded"”. In: ACM SIGGRAPH 2003 Sketches &Amp; Appli-
cations. SIGGRAPH ’03. 2003.

[Cha60] S. Chandrasekhar. Radiative Transfer. Dover Books on Intermediate and Ad-
vanced Mathematics. Dover Publications, 1960. ISBN: 9780486605906. URL:
http://books.google.es/books?id=CK3HDRwCT5YC.

[CLP14] Xi M. Chen, Timothy Lambert, and Eric Penner. “Pre-integrated Deferred
Subsurface Scattering”. In: ACM SIGGRAPH 2014 Posters. SIGGRAPH ’14.
2014. ISBN: 978-1-4503-2958-3.

[CON99] Brian Cabral, Marc Olano, and Philip Nemec. “Reflection Space Image Based
Rendering”. In: Proceedings of the 26th Annual Conference on Computer Graph-
ics and Interactive Techniques. SIGGRAPH ’99. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 165–170. ISBN: 0-201-48560-
5. DOI: 10.1145/311535.311553. URL: http://dx.doi.org/10.
1145/311535.311553.

[DI11] Eugene D’Eon and Geoffrey Irving. “A Quantized-diffusion Model for Ren-
dering Translucent Materials”. In: ACM Trans. Graph. 30.4 (July 2011), 56:1–
56:14. ISSN: 0730-0301. DOI: 10.1145/2010324.1964951. URL: http:
//doi.acm.org/10.1145/2010324.1964951.

[DJ05] Craig Donner and Henrik Wann Jensen. “Light Diffusion in Multi-layered
Translucent Materials”. In: ACM Trans. Graph. 24.3 (July 2005), pp. 1032–
1039. ISSN: 0730-0301. DOI: 10.1145/1073204.1073308. URL: http:
//doi.acm.org/10.1145/1073204.1073308.

[DJ08] Craig Donner and Henrik Wann Jensen. “Rendering Translucent Materials
Using Photon Diffusion”. In: ACM SIGGRAPH 2008 Classes. SIGGRAPH
’08. 2008.

[dL08] Eugene d’Eon and David Luebke. “Advanced Techniques for Realistic Real-
Time Skin Rendering”. In: GPU Gems 3. Ed. by Hubert Nguyen. Addison-
Wesley, 2008, pp. 293–347.

[DS03] Carsten Dachsbacher and Marc Stamminger. “Translucent Shadow Maps”.
In: Proceedings of the 14th Eurographics Workshop on Rendering. EGRW ’03.
2003. ISBN: 3-905673-03-7.

45

http://books.google.es/books?id=CK3HDRwCT5YC
http://dx.doi.org/10.1145/311535.311553
http://dx.doi.org/10.1145/311535.311553
http://dx.doi.org/10.1145/311535.311553
http://dx.doi.org/10.1145/2010324.1964951
http://doi.acm.org/10.1145/2010324.1964951
http://doi.acm.org/10.1145/2010324.1964951
http://dx.doi.org/10.1145/1073204.1073308
http://doi.acm.org/10.1145/1073204.1073308
http://doi.acm.org/10.1145/1073204.1073308

BIBLIOGRAPHY 46

[HCJ13] Ralf Habel, Per H. Christensen, and Wojciech Jarosz. “Photon Beam Diffu-
sion: A Hybrid Monte Carlo Method for Subsurface Scattering”. In: Com-
puter Graphics Forum (Proceedings of EGSR) 32.4 (June 2013). DOI: 10.1111/
cgf.12148.

[Hil+15] Stephen Hill et al. “Physically Based Shading in Theory and Practice”. In:
ACM SIGGRAPH 2015 Courses. SIGGRAPH ’15. 2015. ISBN: 978-1-4503-3634-
5.

[Hua+11] Jing Huang et al. “Separable Approximation of Ambient Occlusion”. In:
Eurographics 2011 - Short papers. 2011.

[INN] Takanori Igarashi, Ko Nishino, and Shree K. Nayar. The Appearance of Hu-
man Skin: A Survey.

[JB02] Henrik Wann Jensen and Juan Buhler. “A Rapid Hierarchical Rendering
Technique for Translucent Materials”. In: ACM Trans. Graph. 21.3 (July 2002),
pp. 576–581. ISSN: 0730-0301. DOI: 10.1145/566654.566619. URL: http:
//doi.acm.org/10.1145/566654.566619.

[Jen+01] Henrik Wann Jensen et al. “A Practical Model for Subsurface Light Trans-
port”. In: Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’01. New York, NY, USA: ACM, 2001,
pp. 511–518. ISBN: 1-58113-374-X. DOI: 10.1145/383259.383319. URL:
http://doi.acm.org/10.1145/383259.383319.

[JG10] Jorge Jimenez and Diego Gutierrez. “GPU Pro: Advanced Rendering Tech-
niques”. In: ed. by Wolfgang Engel. AK Peters Ltd., 2010. Chap. Screen-
Space Subsurface Scattering, pp. 335–351.

[Jim+10] Jorge Jimenez et al. “Real-Time Realistic Skin Translucency”. In: IEEE Com-
puter Graphics and Applications 30.4 (2010), pp. 32–41.

[JJ] Diego Gutierrez Jorge Jimenez Adrian Jarabo. Separable Subsurface Scatter-
ing. Tech. rep. Universidad de Zaragoza.

[JJG15] Adrian Jarabo Christian Freude Thomas Auzinger Xian-Chun Wu Javier
von der Pahlen Michael Wimmer Jorge Jimenez Károly Zsolnai and Diego
Gutierrez. “Separable Subsurface Scattering”. In: Computer Graphics Forum
(2015), n/a–n/a. ISSN: 1467-8659. DOI: 10.1111/cgf.12529. URL: http:
//dx.doi.org/10.1111/cgf.12529.

[Mik10] Morten S Mikkelsen. “Skin Rendering by Pseudo–Separable Cross Bilateral
Filtering”. In: Naughty Dog Inc (2010), p. 1.

[Nic+92] F. E. Nicodemus et al. “Radiometry”. In: ed. by Lawrence B. Wolff, Steven
A. Shafer, and Glenn Healey. USA: Jones and Bartlett Publishers, Inc., 1992.
Chap. Geometrical Considerations and Nomenclature for Reflectance, pp. 94–
145. ISBN: 0-86720-294-7. URL: http://dl.acm.org/citation.cfm?
id=136913.136929.

http://dx.doi.org/10.1111/cgf.12148
http://dx.doi.org/10.1111/cgf.12148
http://dx.doi.org/10.1145/566654.566619
http://doi.acm.org/10.1145/566654.566619
http://doi.acm.org/10.1145/566654.566619
http://dx.doi.org/10.1145/383259.383319
http://doi.acm.org/10.1145/383259.383319
http://dx.doi.org/10.1111/cgf.12529
http://dx.doi.org/10.1111/cgf.12529
http://dx.doi.org/10.1111/cgf.12529
http://dl.acm.org/citation.cfm?id=136913.136929
http://dl.acm.org/citation.cfm?id=136913.136929

BIBLIOGRAPHY 47

[PB10] Eric Penner and George Borshukov. “GPU Pro 2: Advanced Rendering
Techniques.” In: ed. by Wolfgang Engel. AK Peters Ltd., 2010. Chap. Pre-
Integrated Skin Shading, pp. 41–55.

[Rei+02] Erik Reinhard et al. “Photographic Tone Reproduction for Digital Images”.
In: ACM Trans. Graph. 21.3 (July 2002), pp. 267–276. ISSN: 0730-0301. DOI:
10.1145/566654.566575. URL: http://doi.acm.org/10.1145/
566654.566575.

[Sch94] Christophe Schlick. “An Inexpensive BRDF Model for Physically-based Ren-
dering”. In: Computer Graphics Forum 13.3 (1994), pp. 233–246. ISSN: 1467-
8659. DOI: 10.1111/1467-8659.1330233. URL: http://dx.doi.
org/10.1111/1467-8659.1330233.

[SKP09] Musawir A. Shah, Jaakko Konttinen, and Sumanta Pattanaik. “Image-space
Subsurface Scattering for Interactive Rendering of Deformable Translucent
Objects”. In: IEEE Comput. Graph. Appl. 29.1 (Jan. 2009), pp. 66–78. ISSN:
0272-1716. DOI: 10.1109/MCG.2009.11. URL: http://dx.doi.org/
10.1109/MCG.2009.11.

[Wan+92] Lihong Wang et al. “Monte Carlo modeling of light transport in multi-
layered tissues in standard C”. In: Cancer Center, University of Texas, Hous-
ton,Tex (1992).

http://dx.doi.org/10.1145/566654.566575
http://doi.acm.org/10.1145/566654.566575
http://doi.acm.org/10.1145/566654.566575
http://dx.doi.org/10.1111/1467-8659.1330233
http://dx.doi.org/10.1111/1467-8659.1330233
http://dx.doi.org/10.1111/1467-8659.1330233
http://dx.doi.org/10.1109/MCG.2009.11
http://dx.doi.org/10.1109/MCG.2009.11
http://dx.doi.org/10.1109/MCG.2009.11

	Abstract
	Abstract
	Abstract
	Acknowledgements
	Introduction
	Objective
	Outline

	Related Work
	Introduction
	Off-line techniques
	On-line techniques

	Methods
	Subsurface scattering
	Screen Space sum of gaussinas subsurface scattering
	Separable subsurface scattering
	Artistic separable subsurface scattering

	Forward Scattering Simulation
	Extensions
	Reducing halos
	Reducing blurring between skin and non-skin zones
	Modulating the scattering effect

	Application
	Description
	Overview
	Physically-based speculars
	Indirect illumination
	Importance of Linearity

	Evaluation
	Performance
	Perceptual

	Conclusions
	Conclusions
	Future Work

	Bibliography

