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Abstract. Three fractional-order models for uniaxial large strains and rate-dependent
plastic behavior of materials in structural analysis are proposed. Our approach is amenable
to modeling nonlinear and more sophisticated effects namely wvisco-elasto-plastic response
of materials. This approach seamlessly interpolates between the standard elasto-plastic
and visco-plastic models in plasticity, taking into account the history-dependency of
the accumulated plastic strain to specify the state of stress. To this end, we propose
three models namely i) viscoelasto-plastic with linear hardening plastic model, ii) elasto-
viscoplastic model, and iii) visco-elasto-plastic model, which combines the first the second
models. We employ a fractional-order constitutive law that relates the Kirchhoff stress
to its Caputo time-fractional derivative of order a € (0,1]. When o — 0 the standard
elasto-plastic (rate-independent) model and when a = 1, the corresponding visco-plastic
model is recovered. Since the material behavior is path-dependent the evolution of the
plastic strain is achieved by fractional-order time integration of the plastic strain rate with
respect to time. The strain rate is then obtained by means of the corresponding plastic
multiplier and deriving proper consistency conditions. Finally, we develop a so called
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fractional return-mapping algorithm for solving the nonlinear system of the equilibrium
equations developing in each model.

1 INTRODUCTION

Fractional differential operators appear in many systems in science and engineering
such as viscoelastic materials [1, 2|, electrochemical processes [3], porous or fractured
media [4]. For instance, it has been found that the transport dynamics in complex and/or
disordered systems is governed by non-exponential relaxation patterns [5, 6]. For such
processes, a time-fractional equation, in which the time-derivative emerges as Dyu(t),
appears in the continuous limit. One interesting application of fractional calculus is to
model (in a reduced fashion) complex elasto-plastic behavior of engineering materials
(e.g. [7, 8]) employing fractional-order models. Recently, fractional calculus has been
employed as a novel tool for modelling material of heterogeneity /multi-scale effects to
the constitutive model [9, 10], where the fractional viscoplasticity has been introduced as
a generalization of classical Perzynas type viscoplasticity [11]. The fundamental role in
the formulation plays the definition of the directions of a viscoplastic strains given as a
fractional gradient of plastic potential. Formulating fast and accurate numerical methods
for solving the resulting system of fractional ODEs/PDEs in such problems is the key to
incorporate such nonlocal models in engineering applications.

Efficient discretization of the fractional operators is crucial. Lubich [12, 13] is the
pioneer of the idea of discretized fractional calculus within the spirit of finite difference
method (FDM). Later, Sanz-Serna [14] adopted the idea of Lubich and presented a tempo-
ral semi-discrete algorithm for partial integro-differential equations, which was first order
accurate. Sugimoto [15] also employed a FDM for approximating the fractional derivative
emerging in Burgers’ equation. Later on, Gorenflo et. al. [16] adopted a finite-difference
scheme by which they could generate discrete models of random walk in such anoma-
lous diffusion. Diethelm et al. proposed a predictor-corrector scheme in addition to a
fractional Adams method [17, 18]. After that, Langlands and Henry [19] considered the
fractional diffusion equation, and analyzed the L' scheme for the time-fractional deriva-
tive. Sun and Wu [20] also constructed a difference scheme with L* approximation of
time-fractional derivative. Of particular interest, Lin and Xu [21] analyzed a FDM for the
discretization of the time-fractional diffusion equation with order (2 — «). However, there
are other class of global methods (spectral and spectral element methods) for discretizing
fractional ODEs/PDEs (e.g., [22, 23, 24]), which are efficient for low-to-high dimensional
problems.

The main contribution of the present work is to propose and solve three fractional-order
models for uniaxial large deformation and rate-dependent plastic behavior of materials in
structural analysis. This generalized framework is amenable to modeling nonlinear and
more sophisticated effects namely visco-elasto-plastic response of materials. Furthermore,
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we develop a novel algorithm, called fractional return-mapping algorithm for solving the
nonlinear system of the equilibrium equations developing in each model.

2 DEFINITIONS

We start with some preliminary definitions of fractional calculus [25]. The left-sided
Riemann-Liouville integrals of order p, when 0 < p < 1, is defined, as

ML) = i [ e @ 0

where I' represents the Euler gamma function. The corresponding inverse operator, i.e.,
the left-sided fractional derivatives of order p, is then defined based on (1) as

Ly ~d g, B 1 d [* f(s)ds
BN = LT N0 = s | oo T @

T — s)H

Furthermore, the corresponding left-sided Caputo derivatives of order p € (0, 1) is ob-
tained as

CPHFY () — (RL 1—uﬂ r) = 1 “ f(s)ds >
PEn) = BT D@ - g | SN

dx L (x =)W

The definitions of Riemann-Liouville and Caputo derivatives are linked by the following
relationship, which can be derived by a direct calculation

f(zr)

(I;fngf)(x) = (1 — p)(x+ )

(D) (), (4)

which denotes that the definition of the aforementioned derivatives coincide when dealing
with homogeneous Dirichlet initial/boundary conditions.

3 MATHEMATICAL MODELING

We adopt a hierarchy approach and in three steps, we develop a novel framework, in
which the history effects in elasto-plastic large strains in a mechanical member can be
rigorously incorporated in computing the plastic strains. We present an efficient algorithm
to solve the nonlinear system of fractional-order differential equations for the third model
and remark how it recovers the first two models.

First, we consider a viscoelastic material with a linear hardening model, shown in Fig.
1 (top). In this model, we assume that the total strain e splits into a viscoelastic part
€’ on the Scott-Blair element with constant £ and the fractional order , and a plastic
strain €P. The fractional-order Scott-Blair element in fact interpolates between a perfect
linear elastic spring when = 0 and an ideal Newtonian viscous element if 5 = 1. The
second model considers an elastic-viscoplastic material with nonlinear hardening, shown
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in Fig. 1 (middle). In this case, the total strain ¢ is split into an elastic strain ¢ for the
elastic spring with constant F and a viscoplastic strain "7 on the Scott-Blair element
with constant K; and fractional order ;. Therefore the Scott-Blair element interpolates
between a linear hardening spring and an ideal Newtonian viscous element. The third
model combines the first two, thus with viscoelastic strain €"¢ for the Scott-Blair element
with constant E and fractional order [ and viscoplastic strain P for the Scott-Blair
element with constant K, with fractional order Sy.

K
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E.B
9 i | g
€——O0—
GOy
1
K
A
- K+, B E s
< ~1 ANN——>
Oy
1
K
A
s Kt, By E,B 5
Oy
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Figure 1: (top): viscoelasto-plastic model with standard linear hardening model, (middle):
elasto-viscoplastic model, (bottom): visco-elasto-plastic model.

3.1 Rate-Dependent Visco-Elasto-Plastic Model with Nonlinear Hardening

The nonlocal constitutive law for this model is assumed to be of the form:

o = B D) 5)
= E {Dl(e —e).

To designate a set of admissible stresses, we define the the following closed convex stress

space:
E, ={o eR| f(o,a) <0}, (6)
where [ : R x Rt — R represents the yield condition, given by:

flo.a) = |o| — |oy + Ka + K; §D/(a)]. (7)
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The corresponding boundary of E, is a convex set JE,, given as
OE, = {oc e R| f(o,a) = 0}. (8)

In this model, we assume that the hardening is isotropic in the sense that at any state
of loading the center of E, remains at the origin, moreover, the hardening is nonlinear in
the amount of plastic flow.

3.2 Incremental Strain

In this section we present the nonlocal backward-Euler time integration procedure for
model 3, based on time integration procedures for plasticity, where a trial state is defined
by freezing the internal variables. However, in this case we have a fractional return-
mapping algorithm, where the solution for the plastic slip is now given by a fractional
order differential equation.

3.2.1 Fractional return-mapping algorithm
i - Database at x € Q : {&'?, a,,, A7, }

ii - Impose a strain increment Ag,

iii - Trial state (freezing the viscoplastic state):

trial

e = &7 oy = a, (10)
ot = E §D} (e — 2) (11)
firist = logid] - [UY + Ko, + Ky §D' a, (12)

If firisl < 0 then viscoelastic state

82&1 = 517}Lp7 Ont1 = Qp,  Opyl = Ufmrfﬁl (13>
Else: viscoplastic state
We require that f(o,41, @,+1) = 0, which translates into the following FODE:
E 9D (Ay) + K; SDY (Ay) + K Ay = firi (14)
After solving for Ay, we update:

el = e + Ay sign (ollY) (15)
Opt1 = Gy + AW (16)
oni1 = oiiY — E GD] [A9] sign (o)1) (17)
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We remark that by setting Ky = 0 in Egs. 12 and 14 we recover model 1, and model
2 is recovered when 8 — 0. Furthermore, when K; = 0 and 8 — 0 we recover rate-
independent elastoplasticity with linear isotropic hardening.

The fractional derivatives present in the modified return-mapping procedure are com-
puted implicitly using the finite difference method (FDM) developed in [21], where D} u(t)
is represented as

1 L ultig) — ultey) | g
Piult) = 5y 20 = (it)y Bt) 1 i, (18)

=0
where it < C,(At)>™ and b; == (j + 1)}V — j17,j =0,1,--- , k.

4 COMPUTATIONAL RESULTS

In order to show the influence of the fractional order parameters 3 and 5y on the stress
response, we performed monotonic and cyclic tests at different strain rates. The purpose
is to show the recovery of rate-independent elastoplasticity with isotropic hardening when
B and [y are close to zero (e.g. = By = 0.01), and viscoelastic and viscoplastic behaviors
when 3, 3¢ approach 1.

The material properties used for all models are £ = 100, oy = 1. For rate-independent
elastoplasticity and model 1 we consider K = 1. For models 2 and 3 we used K = 0 and
K; = 1, to make the evolution of the internal hardening variable o dependent only on
the Caputo derivative of Eq. 7.

4.1 Monotonic strains

For this test, we apply incremental prescribed strains until € = 0.4. We consider two
distinct strain rates, with respective time parameters presented in Table 1.

Table 1: Time discretization parameters for the monotonic strains.

Strain rate ¢ [s~!] Total time T [s] Number of increments N Time increment At [s]
0.005 80 1000 0.08
0.05 8 200 0.016

The results for stress using model 1 are shown in Fig. 2 with several values for .
We note that the effect of increasing viscosity with the increase of 5 is clear for both
strain rates and the solution becomes rate-independent as f — 0. The observed change
in slope in the plastic region occurs because of the application of the fractional derivative
in the constitutive equation, which involves the total and the plastic strains. The results
obtained for model 2 are shown in Fig. 3. We recover the same results of rate-independent-
elastoplasticity when 3y = 0.01. Also, the viscoplastic range becomes more sensitive to
rate-dependent strains as we increase [3;.
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A more interesting behavior is presented in Fig. 4 for model 3 when 3 = B¢. The
results obtained for § = [y = 0.99 are the same as model 1, because in this case the
Scott-Blair element behaves as a Newton viscous element, which is too dissipative to
surpass the yield stress for lower strain rates. Generally, model 3 recovers model 1 when
B¢ — 0, while model 2 is recovered if 8 — 0.

Stress

e Elastoplasticity-
0.4 —p=0.01 0.4
—pB=03
. |—p=05
—p=07
—p=0.99
0 0.05 0.1 015 02 025 03 035 04 0 0.05 0.1 0.15 0.2 0.25
Strain Strain

(a) € =0.005s71 (b) ¢ =0.0551

Figure 2: Stress versus strain response for model 1. We observe the recovery of the rate-
independent solution when 5 = 0.01. The variation of 5 has effect on the viscoelastic
response which influences the strain threshold for plasticity and also the slope of the curve
in the plastic region.
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Figure 3: Stress versus strain response for model 2. We observe the rate-independent
behavior when 3y = 0.01 and the nonlinear behavior in viscoplasticity as we increase the
value of 8 for a higher strain rate in (b). Because we chose K = 0, when Sy = 0.99 the
fractional element behaves as a Newton element, which recovers perfect viscoplasticity
when the strain rates are sufficiently small (a).
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Figure 4: Stress versus strain response for model 3 with 8 = 5;. We observe a combined
behavior of models 1 and 2, constituting visco-elasto-plastic behavior. In this case, the
viscoplastic range is affected by both fractional-order parameters. We also observe the
significant change in behavior of the stress from (a) to (b) when g = §; = 0.99.
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4.2 Cyclic strains

To compute the loading/unloading response of the models and analyze the harden-
ing behavior, we perform a cyclic test comprising three loading cycles with incremental
strains. We start with a traction cyclic from ¢ = 0 to ¢ = 0.4, followed by unloading
and compression cycle until € = —0.4, from where we increment the strains again up to
e = 0.4. We consider the same strain rates as the case of monotonic loading, with time
parameters presented in Table 2.

Table 2: Time discretization parameters for the cyclic strains.

Strain rate ¢ [s~!] Total time T [s] Number of increments N Time increment At [s]
0.005 400 5000 0.08
0.05 40 10000 0.004

The results for the cyclic tests are presented in Figs. 5-7. All models recover the rate-
independent behavior when the order of the fractional derivative gets sufficiently close to
zero. It is important to note for all models, despite the lower stress levels of 8 = 3y = 0.7
compared to 8 = [y = 0.01 obtained for the applied strain rates, the inverse situation
may occur if the strain rates are sufficiently high.

3
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& 7]
-0.5
-1 -1
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s -0.25 0 0.25 0.5 s -0.25 0 0.25 0.5
Strain Strain
(a) é =0.005s71 (b) ¢ =0.0551

Figure 5: Cyclic stress versus strain response for model 1 with different values of 5. We
observe the inelastic loading/unloading behavior. The use of higher fractional order values
like B = 0.7 led to increased stiffness in the viscoelastic region, according to the applied
strain rate. However, the influence of the fractional derivative on the plastic strains led
to less hardening at the end of the cycle when compared to smaller values of .
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Figure 6: Cyclic stress versus strain response for model 2 with different values of 3. The
loading/unloading behavior is linear. We observe that when we increase §; the cyclic

stress response presents less hardening for the
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Figure 7: Cyclic stress versus strain response for model 3 with 8 = 3y. We observe the

inelastic loading/unloading response with the
the cyclic response of model 2.

5 CONCLUSION

same viscoplastic effects as observed from

The main contribution of the present work was to propose three fractional-order models
for uniaxial large strains and rate-dependent plastic behavior of materials in structural
analysis. This generalized framework is amenable to modeling nonlinear and more sophis-
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ticated effects namely visco-elasto-plastic response of materials. A novel algorithm, called
fractional return-mapping algorithm was proposed to solve nonlinear system of equilib-
rium equations developing in the third model. The recovery of the incremental equations
to the other models was shown using the appropriate fractional-order parameters. All
proposed models recover rate-independent plasticity when 3,3y — 0. Also, the third
model generalized the first two models. According to the choice of material parameters
K, Ky and the fractional orders 3, 8¢, models 2 and 3 can recover viscous Newtonian
elements with or without hardening, and also the mixed spring-dashpot behavior of the
Scott-Blair element. The formulation presented in this work can be added to a FEM pla-
nar or three-dimensional truss code in a straightforward way and simulate the behavior
of time-dependent large inelastic strains.
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