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Abstract

In this paper a kernel for time-series data is introduced so that it can be used for any data mining task
that relies on a similarity or distance metric. The main idea of our kernel is that it should recognize as
highly similar time-series that are essentially the same but may be slightly perturbed from each other: for
example, if one series is shifted with respect to the other or if it slightly misaligned. Namely, our kernel tries
to focus on the shape of the time-series and ignores small perturbations such as misalignments or shifts.
First, a recursive formulation of the kernel directly based on its definition is proposed. Then it is shown how
to efficiently compute the kernel using an equivalent matrix-based formulation. To validate the proposed
kernel three experiments have been carried out. As an initial step, several synthetic datasets have been
generated from UCR time-series repository and the KDD challenge of 2007 with the purpose of validating
the kernel-derived distance over shifted time-series. Also, the kernel has been applied to the original UCR
time-series to analyze its potential in time-series classification in conjunction with Support Vector Machines.
Finally, two real-world applications related to ozone concentration in atmosphere and electricity demand
have been considered.
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1. Introduction

Time-series analysis is an important problem
with application in domains as diverse as engineer-
ing, medicine, astronomy or finance [11, 29]. In
particular, the problem of time-series classification
and prediction is attracting a lot of attention among
researchers. One of the most successful and popular
methods for classification and prediction are kernel-
based methods suchlike as support vector machines
(SVM) [26, 12, 35, 25]. Despite their popularity,
there seem to be only a handful of kernels designed
for time-series. This paper tries to fill this gap,
and proposes a kernel exclusively designed for time-
series. Moreover, using a standard trick, we are able
to convert our kernel into a distance for time-series,
therefore allowing us to use our kernel in distance-
based algorithms as well.

A crucial aspect when dealing with time-series is
to find a good measure, either a kernel similarity or
a distance, that captures the essence of the time-
series according to the domain of application.

For example, Euclidean distance between time-

series is commonly used due to its computational
efficiency; however, it is very brittle and small shifts
in one time-series can result in huge changes in the
Euclidean distance. Therefore, more sophisticated
distances have been devised and designed to be
more robust to small fluctuations of the input time-
series. Notably, Dynamic Time Warping (DTW)
[30] is held as the state-of-the-art method for com-
paring the similarity among time-series. The DTW
is very powerful in the sense that it can deal op-
timally with contractions, expansions and shifts in
time-series in addition to being able to handle time-
series of different lengths. Unfortunately, comput-
ing the DTW distance is prohibitively costly for
many practical applications [33]. Moreover, it can-
not be used to define a positive definite kernel since
it violates the triangle inequality [3].

Therefore, researchers are coming up with dis-
tances for time-series that approximate the DTW at
lower computational costs either by adding global
path constraints [30, 36] or by reducing the number
of instances e.g. in nearest neighbor classification
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[35].
In this paper we introduce a new kernel, called

MUlti-Scale Smoothing Kernel (MUSS). The basic
idea behind our kernel is to take into account many
smoothed versions of the time-series and compute
the similarity of the time-series as the aggregation
of the similarities of the multiple smoothed ver-
sions of the original time-series. The underlying
idea is that by smoothing the original time-series
we will get rid of slight perturbations, and so the
basic trends will become apparent and more easily
detected. The main strength of this kernel is the in-
tegration of multiple time-scales, that is, at a high
level, the MUSS kernel is a combination of linear
kernels obtained by using several smoothed versions
over different scales from the original time-series. In
a sense, the kernel-derived distance that is proposed
here tries to fix the brittleness of Euclidean dis-
tance without incurring in the high computational
costs of DTW. Moreover, our kernel can easily be
adapted to deal with multidimensional time series
by considering multi-variate versions of the point-
wise distance between time-series. In addition, we
can derive a distance metric from the kernel defini-
tion that satisfies the triangle inequality.

The main goal of the proposed kernel is to rec-
ognize as similar time-series that may be slightly
perturbed from one another. Namely, it tries to fo-
cus on the shape of the time-series and not so much
on the details. It is conceivable that small errors
in measurement or delivery of data may result in
slight shifts or misalignments of time-series. Conse-
quently, any data that is sent through complicated
machinery can suffer from this type of misalignment
as for example astronomic data, and could benefit
from our kernel.

In this work, two ways of computing the ker-
nel are presented: a recursive formulation and an
equivalent matrix-based formulation. To evaluate
the proposed kernel three experiments have been
carried out. As an initial step, several synthetic
datasets have been generated from UCR time-series
repository [20] and the KDD challenge of 2007 [19],
with the purpose of validating our kernel-derived
distance over shifted time-series. In particular,
a comparison with DTW and Euclidean distances
shows that our kernel-derived distance outperforms
the Euclidean distance and is competitive with re-
spect to the DTW distance while having a much
lower computational cost. The DTW distance is
designed to deal with misalignments and shifts op-
timally. Therefore, our objective is not to beat the

DTW, but to approach its performance without in-
curring its high computational cost. On the other
hand, the Euclidean distance has been considered
as baseline distance. In the second experiment,
the proposed kernel has been applied to the orig-
inal UCR time-series [20] to analyze its potential
in time-series classification using an SVM. In this
case, the proposed kernel shows a remarkable per-
formance when comparing with a kernel based on
DTW [10] and a linear kernel. Finally, two real-
world applications related to ozone concentration
in atmosphere and electricity demand have been
considered to show the performance of the MUSS
kernel over very specific datasets. In this case, an
accuracy ranging from 97% to 99% has been ob-
tained.

The paper is structured as follows. Section 2
presents the most relevant related works found in
literature. Section 3 describes our time-series kernel
and its corresponding derived distance. The exper-
imental results are presented in Sections 4, 5 and
6. Finally, Section 7 concludes with a summary of
our main contributions and possible directions for
future work.

2. Related work

Similarity and distance measures for time-series
are a crucial ingredient in solving time-series clas-
sification and forecasting problems [29, 15]. For
this reason, many distances have been proposed.
For example, [1] defines a distance between two
time-series representing the convexities/concavities
of two shape contours. In [4] the authors modify the
Euclidean distance with a correction factor based
on the complexity of the input time-series.

The success and popularity of Support Vector
Machines has motivated researchers to design ker-
nels that capture similarity between time-series and
sequences. For example, [32] define a kernel for the
particular task of handwritten character recogni-
tion. In this work, the authors approximate each
time-series by a linear combination of piecewise
polynomial functions and the kernel is based on
the product of the coefficients and functions that
form part of this approximation. Another family of
kernels for time-series based on Echo State Network
[23, 27] with a deterministic reservoir architecture is
proposed in [6]. Their kernel is defined by the gaus-
sian kernel with the L2 distance between the cor-
responding readouts for each time-series from the
same reservoir.
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It is well-known that the DTW distance is not
a distance in a strict sense as it does not satisfy
the triangle inequality and, therefore, it can not be
used to define a positive definite kernel [3]. Despite
this disadvantage, many variants of DTW and defi-
nitions of kernels based on DTW have been recently
proposed in the literature. As an example, [17] use
a gaussian kernel and the DTW distance with a spe-
cial support vector machine, which has the ability
to handle non positive-definite kernel matrices.

Another example of the use of (a weighted vari-
ant of) DTW for time-series classification, this time
based on nearest neighbors is [18]. The weights
penalize instances with higher phase difference be-
tween a reference point and a testing point with
the purposes of minimizing the distortion caused
by outliers.

More recently, non linear kernels have been pro-
posed for time-series classification. In [10] a new
kernel based on the DTW distance is defined by
global alignments (GA-DTW). In particular, the
kernel is defined as the sum of the exponential func-
tion of the distances for all possible alignments.
However, this kernel has a high computational cost
and similar constraints on alignments to that of [30]
are presented to speed-up the computation in [8].
The same author presents another kernel based on
the idea that similar time-series should be fit well
by the same models [9]. The author used autore-
gressive models and thus the name of autoregressive
kernel. In particular, these two global alignment-
based and autoregressive kernels defined in [8] and
[9] have been recently used in machine olfaction ap-
plications in conjunction with SVM [33]. An exten-
sion of SVM based on nonlinear dynamical systems
theory is presented in [16]; here it is shown that
these non-linear methods perform better and faster
than the DTW distance-based methods. However,
linear kernels may still be preferred over their more
accurate non-linear counterparts due to their inter-
pretability, computational efficiency and the lack
metaparameters that need tuning.

A kernel for periodic time-series arising in the
field of astronomy is presented in [34]. This kernel
is similar to a global alignment kernel as it consists
of the sum of the exponential function of the in-
ner products for all possible shifts of a time series
instead of alignments.

Finally, another kernel for time-series is proposed
in [22]. In particular, the time series are represented
with a summarizing smooth curve in a Hilbert space
and the learning method of the kernel is based on

Gaussian processes.
In the lasts years, several approaches have been

proposed to combine multiple kernels instead of us-
ing a single kernel. In [28] a combination of kernels
for long-term time-series forecasting is presented.
In particular, a kernel that takes into account the
seasonality of the time-series to improve the perfor-
mance of the predictor is combined with the well-
known gaussian or rational quadratic kernel. A de-
tailed description can be found in [14].

Due to the fact that annotation of class labels in
time-series is very expensive, researchers are explor-
ing the semi-supervised methodology to the prob-
lem of time-series classification. The main strate-
gies within this line of work are the extension of
well-known semi-supervised techniques for static
data classification to time-series problems [21], and
the definition of new distances for time-series that
work well in semi-supervised classification [7].

3. Kernel Description

This Section presents the notation used in this
paper and also provides the definitions underlying
the proposed kernel.

3.1. Preliminaries

Definition 1. Time-series. A time-series X is a
set of temporally sorted sequence of real values. In
this work, X = {x1, ..., xN}, where N is the length
of the time-series.
Definition 2. Subsequence time-series. A subse-

quence of length k of a time-series X = {x1, ..., xN}
is a time-series Xk

j = {xj , xj+1, ..., xj+k−1} for
1 ≤ j ≤ N − k + 1.
Definition 3. {k, j}–Order partial sum. A

{k, j}–order partial sum of a time-series X, sXk,j , is
the sum of the values of the Xk

j subsequence time-
series of length k. That is:

sXk,j =

k−1∑
i=0

xj+i = xj + xj+1 + · · ·+ xj+k−1.

Definition 4. k–Order partial sum time-series.
A k–order partial sum time-series is a time-series
SXk whose values are sXk,j for 1 ≤ j ≤ N − k + 1,
that is, the sum of all the values of the subsequences
of length k of the time-series X.

SXk = {sXk,1, sXk,2, ..., sXk,N−k+1}.
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Figure 1: Example of two similar time-series. These time-
series represent measurements taken each second over an 11
minute period. One of the time-series (thin, dotted blue)
has been obtained from the other (thick, red continous) as
follows: within each minute block, the values of the original
(red) time-series have been circularly shifted with an offset
of 30 measurements. The Euclidean distance, as illustrated
by the shaded regions between these two time-series, is high.
On the other hand our kernel should recognize both time-
series as very similar. Plot best seen in color.

For example, the {k, j}–order partial sums and
the k–order partial sum time-series for the X =
{3, 2, 4, 1} time-series are:

sX2,1 = 3 + 2 = 5
sX2,2 = 2 + 4 = 6 SX2 ={5,6,5}
sX2,3 = 4 + 1 = 5
sX3,1 = 3 + 2 + 4 = 9 SX3 ={9,7}
sX3,2 = 2 + 4 + 1 = 7
sX4,1 = 3 + 2 + 4 + 1 = 10 SX4 ={10}

3.2. Motivation

The main motivation in the definition of the
MUSS kernel proposed in this paper is to obtain
a similarity measure for time-series that yields high
values when two time-series X and Y have the same
shape but may be slightly perturbed from each
other. As an illustration, Figure 1 shows two time-
series that are in fact similar in the sense that they
follow the same trend, however, the Euclidean dis-
tance between the two time-series is high and so it
fails at detecting the similarity. As a consequence,
using the Euclidean distance in distance-based clas-
sification algorithms may lead to poor results. The
purpose of this work is to propose a kernel that

Figure 2: Example of k-order partial sum time-series for
k = 1, 20, 60, 200 on the time-series of Figure 1. The reader
should notice that as k increases, the smoothed versions of
the orignal time-series become more and more similar. Our
kernel is computed as the sum of the similarities over all
possible k. We chose explicitly to give all k equal weight
since a priori there is no reason why one should pay more
attention to one particular scale. Plot best seen in color.

yields high similarity for time-series that have sim-
ilar shapes with a reasonable time complexity.

Figure 2 shows the different time-series composed
by the values of the partial sums of the X and Y
time-series for orders k ∈ {1, 20, 60, 200}. Note that
when the order is k = 1 the time-series are the
original X and Y time-series. It can be readily
observed that the greater the order of partial sums
is, the smoother the time-series become. In fact, the
partial sums are essentially unnormalized window-
average smoothing over the original series.

The MUSS kernel proposed here is obtained by
adding the inner products of partial sum time-series
over all possible orders. It is not necessary to dis-
cover the best alignment between two time-series,
in contrast to the DTW distance, as all partial sums
will be included in the kernel definition. Moreover,
as it is shown in the Section 4 the MUSS kernel can
be calculated very fast when compared to the DTW
distance since finding an optimal alignment is not
necessary.

3.3. Definition of the kernel

Let X and Y be two time-series of length N .
Let UX and UY be two upper triangular matrices
defined as:
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UX = [UX1 , ..., U
X
N ] (1)

UY = [UY1 , ..., U
Y
N ] (2)

where UXi and UYi are the i-th rows of the ma-
trices UX and UY , respectively, which are defined
by the elements uXij and uYij as follows:

uXij =

{
sXi,j if 1 ≤ j ≤ N − i+ 1
0 if j > N − i+ 1

(3)

uYij =

{
sYi,j if 1 ≤ j ≤ N − i+ 1
0 if j > N − i+ 1

(4)

Finally, the MUSS kernel is defined as the sum of
the scalar products among the rows of the UX and
UY matrices. That is,

Kernel(X,Y ) =

N∑
i=1

< UXi , U
Y
i > (5)

where UXi and UYi are defined by Equations (1)–
(4) and < ·, · > is the scalar product of two vectors
in RN . It is obvious that the function defined by
Equation (5) is indeed a kernel as it can be repre-
sented by a inner product in the high–dimensional
feature space φ(·) defined as follows:

Kernel(X,Y ) =< φ(X), φ(Y ) > (6)

where

φ : RN −→ RN2

X −→ φ(X) = (UX1 , ..., U
X
N )

Next, we show an illustrative example for the
time-series X = {3, 2, 4, 1} and Y = {1,−1, 0, 2}.
Firstly, the UX and UY matrices comprising the
partial sums of the X and Y time-series have to
be computed. It is necessary only to estimate the
partial sums for all the orders greater or equal than
2 as the 1 order partial sums are the own values
of the time-series. The 2-order partial sums for X
and Y are SX2 = {5, 6, 5} and SY2 = {0,−1, 2}, re-
spectively. Analogously, the 3 and 4 order partial
sums are SX3 = {9, 7}, SY3 = {0, 1}, SX4 = {10} and
SY4 = {2}. Therefore, the matrices are:

UX =


3 2 4 1
5 6 5 0
9 7 0 0
10 0 0 0

UY =


1 −1 0 2
0 −1 2 0
0 1 0 0
2 0 0 0



The second step consists in calculating the scalar
products of the rows of the UX matrix and the cor-
responding rows of the UY matrix. That is,

< UX1 , U
Y
1 > = 3 · 1 + 2 · (−1) + 4 · 0 + 1 · 2 = 3

< UX2 , U
Y
2 > = 5 · 0 + 6 · (−1) + 5 · 2 = 4

< UX3 , U
Y
3 > = 9 · 0 + 7 · 1 = 7

< UX4 , U
Y
4 > = 10 · 2 = 20

where UXi and UYi are the i rows of the UX and
UY matrices, respectively.

Finally, the MUSS kernel is defined as the sum of
the above-mentioned scalar products. Therefore,

Kernel(X,Y ) = (3 + 4 + 7 + 20) = 34

3.4. Speeding-up the computation

The MUSS kernel can be computed following
from the definition given above. However, an ex-
haustive analysis provides two different schemes to
compute the kernel at a far lower computational
cost. In this Subsection these two schemes are de-
scribed in detail.

3.4.1. Recursive Scheme
This scheme is based on the fact that the i-th row

of the UX matrix can be recursively obtained from
the (i − 1)-th row and the original values of the
time-series X. Continuing the previous example,
the following relationships hold:

UX2,1 = 5 = UX1,1 + x2 = 3 + 2
UX2,2 = 6 = UX1,2 + x3 = 2 + 4
UX2,3 = 5 = UX1,3 + x4 = 4 + 1
UX3,1 = 9 = UX2,1 + x3 = 5 + 4
UX3,2 = 7 = UX2,2 + x4 = 6 + 1
UX4,1 = 10 = UX3,1 + x4 = 9 + 1

In general, the (i, j)-element of the UX matrix
can be obtained from the recursive formula as fol-
lows:

UXi,j = UXi−1,j + xj+i−1

3.4.2. Matrix-based scheme
This scheme is based on the observation that each

row UXi of the matrix UX can be obtained by mul-
tiplying a matrix Mi by the row vector composed
of the values of the time-series. That is,
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UXi = (x1, .., xN ) ·Mi (7)

where Mi = [Ai|0 ] is the N × N matrix cap-
turing the partial sums of order i and the Ai =
{ailj}1≤l,j≤N matrix is defined by: ailj = 1 for all
l, j such that 1 ≤ l ≤ i and 1 ≤ j ≤ N − i+ 1, and
0 otherwise.

The matrixMi has two well-differentiated blocks,
a first block, Ai, comprising a diagonal band matrix
of width i composed of 1’s and two null triangular
matrices of dimensions (N−i)×(N−i) and a second
block, composed of a null matrix of dimensions N×
(i−1). It can be observed that the structure of the
Mi matrix is mainly due to the definition of the i-
order partial sums as the diagonal band of witdth i
represents the i-order partial sums for the different
subsequence time-series of length i. On the other
hand, the null matrix of dimension N × (i − 1) is
because of the columns of the UX matrix are equal
to 0 when j > N − i+ 1.

We define:

Kernel(X,Y ) =

N∑
i=1

< UXi , U
Y
i >

=

N∑
i=1

UXi · (UYi )t

=

N∑
i=1

(x ·Mi) · (y ·Mi)
t

=

N∑
i=1

x · (Mi ·M t
i ) · yt

= x · (
N∑
i=1

Mi ·M t
i ) · yt

where x and yt are the row and column vectors
composed by the values of the time-series X and
Y , respectively, and (·)t denotes the transpose. Let
Z the matrix defined by

Z =

N∑
i=1

Mi ·M t
i (8)

and thus Kernel(X,Y ) = x · Z · yt.
It can be easily seen that the Z matrix is sym-

metric since it is the sum of symmetric matrices.
Moreover, it is positive semidefinite because it de-
fines an inner product (cf. Eq. 6). On the other
hand, this matrix only depends on the length of

the time-series N . Thus, the matrix can be pre-
computed just once when computing the pair-wise
kernel of a whole dataset providing a reduction of
the computing time. Most of kernels for time series
proposed in the literature can not be represented by
a matrix, which is not depending on the values of
the time series [6, 10, 34]. Moreover, the structure
of the Z = {zij}1≤i,j≤N matrix can be obtained by
unwrapping Eq. 8:

zij =

{
i · (N − (j − 1)) if j ≥ i
j · (N − (i− 1)) if i > j

Continuing with the previous example, it can be
observed that, for all i = 1, · · · , 4:

UXi = (3, 2, 4, 1) ·Mi

whereM1 is the identity matrix of dimension 4×4
and the remaining matrices and the resulting Z are:

M2 =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 0

M3 =


1 0 0 0
1 1 0 0
1 1 0 0
0 1 0 0



M4 =


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

Z =


4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4


It should be noted that a distance metric can

be obtained from any positive definite kernel Ker
using the standard transformation described in the
following equation [31]:

d(u, v) = Ker(u, u) +Ker(v, v)− 2 ·Ker(u, v).

Therefore, when this work refers to the MUSS ker-
nel as a distance it really means the derived distance
from the kernel.

4. Results

This section presents the results obtained by the
application of the MUSS kernel to forty datasets
for measuring the similarity in shifted time-series.
Section 4.1 provides a detailed description of all
datasets used in the experiments. In Section 4.2 the
kernel has been applied to forty time-series to val-
idate its potential for separating classes in shifted
time series. Finally, a statistical analysis of the re-
sults is reported in Section 4.3.
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4.1. Description of datasets

The MUSS kernel has been initially tested on sev-
eral synthetic datasets from the UCR time-series
repository [20] and from data from the 2007 KDD
Challenge [19]. In particular, a synthetic dataset
derived from each available dataset in the aforemen-
tioned repositories has been created in the following
way: for each different class existing in a dataset,
a time-series belonging to this class is chosen uni-
formly at random. Then, shifted time-series copies
with varying offsets are created from the selected
chosen time-series having the same label as the orig-
inal time-series the copies were created from.

Time-series lengths in our datasets range from
60 to 637, with the average and the median being
282.1 and 272.5, respectively. Computation times
are highly sensitive to the time-series length, espe-
cially for the DTW algorithm, which is quadratic in
this parameter. Relevant information about these
datasets is summarized in Tables 1 and 2. The class
labels for the test KDD datasets are not available.

Table 1: Data sets from UCR time-series repository.

Data sets Num. Num. Length
from UCR Instances Classes
50 Words 450 50 270
Adiac 296 37 176
Beef 45 5 470
CBF 21 3 128
Coffee 18 2 286
ECG 14 2 96
Fish 63 7 463
Face (All) 112 14 131
Face (Four) 36 4 350
Gun-Point 16 2 150
Lighting-2 20 2 637
Lighting-7 63 7 319
OSU Leaf 54 6 427
Olive Oil 40 4 570
Swedish Leaf 105 15 128
Trace 36 4 275
Two Patterns 28 4 128
Synth. Control 36 6 60
Wafer 16 2 152
Yoga 18 2 426

4.2. Validation

A statistic based on pair-wise distances has been
developed to show how well the MUSS kernel is able
to separate classes in time-series. LetD be a labeled
dataset of M time-series of the same length N . Let
c(X) be the class of the time-series X ∈ D. Then,
the SM separation measure is defined as follows:

SM = (INTRA− INTER)/MAX

Table 2: Datasets derived from the 2007 KDD Challenge.

Data sets Training Test Num. Length
from KDD 2007 Size Size Classes
kdd01 80 20 3 1024
kdd02 10 20 2 24
kdd03 18 72 4 512
kdd04 18 72 3 512
kdd05 44 33 1 1639
kdd06 55 33 10 1092
kdd07 54 45 4 398
kdd08 70 56 5 99
kdd09 14 35 4 70
kdd10 14 18 2 65
kdd11 14 21 2 82
kdd12 30 60 2 1024
kdd13 36 9 2 345
kdd14 14 28 4 84
kdd15 24 184 4 166
kdd16 16 24 1 136
kdd17 18 27 2 405
kdd18 77 33 6 1882
kdd19 112 56 7 131
kdd20 225 27 5 270

where INTRA and INTER are the average pair-
wise distance of time series belonging to the same
and to different classes, respectively, and MAX is
the maximum pair-wise distance over the whole
dataset. Namely, let A = {(X,Y )|X,Y ∈
D, c(X) = c(Y )} and B = {(X,Y )|X,Y ∈
D, c(X) 6= c(Y )}. That is, A is the set of pairs
of time series that belong to the same class, and
B is the set of pairs of time-series that belong to
different classes. Then,

INTRA =
1

|A|
∑

(X,Y )∈A

d(X,Y )

INTER =
1

|B|
∑

(X,Y )∈B

d(X,Y )

MAX = max
X,Y ∈D

d(X,Y )

where d is any distance defined in RN ×RN and
N is the length of the time-series in D. Observe
that the higher value for this measure, the better
the separation among classes obtained by distance d
is. A positive value of the SM measure means that,
on average, time-series belonging to the same class
are closer than time-series of different classes. A
negative value of the SM measure means the oppo-
site, that is, pairs of series of different classes tend
to be closer than pairs of the same class. Notice
that for negative or values of the SM measure close
to 0, any distance-based classifier such as Nearest
Neighbors is doomed to fail.
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Table 3: Separation measure among classes and computing times when using several distances.

Separation Measure CPU Times (in seconds)
Data sets Euclidean MUSS DTW Euclidean MUSS DTW

distance distance distance distance distance distance
kdd01 0.004 0.010 0.129 829.8 2906.6 54550.3
kdd02 0.076 0.128 0.174 0.2 0.3 1.8
kdd03 0.499 0.637 0.718 0.7 40.2 2733.9
kdd04 0.588 0.670 0.388 0.7 41.6 2696.3
kdd05 0.193 0.389 0.869 1.5 1838.0 54971.2
kdd06 0.013 0.020 -0.014 2.1 1187.6 35261.7
kdd07 0.159 0.229 0.056 2.3 68.3 5147.5
kdd08 0.131 0.208 0.396 3.6 10.9 534.6
kdd09 -0.037 -0.041 0.096 0.3 0.7 20.4
kdd10 0.012 0.109 0.335 0.2 0.5 23.6
kdd11 0.017 0.000 0.031 0.3 0.6 25.1
kdd12 0.364 0.387 0.439 1.2 587.2 18344.6
kdd13 -0.028 0.009 -0.018 0.7 24.4 1187.5
kdd14 0.083 0.095 0.208 0.3 0.7 34.0
kdd15 -0.048 -0.007 0.134 2.1 10.2 827.4
kdd16 0.019 0.044 0.040 0.3 1.1 80.0
kdd17 -0.036 0.004 0.158 0.4 10.5 799.0
kdd18 0.157 0.058 0.015 3.7 5993.7 184957.3
kdd19 -0.009 -0.024 0.050 7.9 33.1 2016.0
kdd20 0.089 0.147 0.080 24.2 285.5 25279.4
50 Words 0.155 0.196 0.498 177.4 3653.3 176629.5
Adiac -0.042 -0.040 -0.027 83.8 387.5 32702.9
Beef 0.696 0.894 0.557 1.8 93.7 5505.9
CBF 0.150 0.311 0.557 0.5 4.9 94.2
Coffee -0.015 0.111 -0.015 0.3 5.8 316.9
ECG 0.045 0.054 0.126 0.2 3.8 22.8
FISH -0.004 -0.008 -0.018 10.3 46.4 2690.4
Face (All) 0.007 0.110 0.387 1.1 46.7 1928.6
Face (Four) -0.005 0.016 0.011 3.4 131.1 10576.4
Gun-Point 0.136 0.113 0.345 0.3 1.2 83.3
Lighting-2 0.126 0.152 0.263 0.4 29.0 1964.2
Lighting-7 0.137 0.268 0.279 3.6 67.1 4767.3
OSU Leaf 0.229 0.346 0.098 1.4 94.0 6396.3
Olive Oil -0.063 -0.041 -0.027 2.5 100.8 6459.6
Swedish Leaf 0.104 0.144 0.048 9.3 39.2 2286.0
Trace 0.300 0.303 0.091 1.2 3.1 65.1
Two Patterns 0.113 0.165 0.585 1.1 19.2 1195.1
Synth. Control 0.103 0.293 0.580 0.7 3.9 174.5
Wafer 0.126 0.172 0.015 0.3 1.0 72.9
Yoga -0.000 0.073 -0.005 0.3 11.0 724.1

Average 0.114 0.168 0.216 29.6 444.6 16103.7
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Table 3 presents a comparison of the separation
statistic and computation time of the following dis-
tances: the Euclidean distance, the one derived
from the MUSS kernel (which we call MUSS dis-
tance), and the DTW distance. The comparison
is over the synthetic 40 datasets from UCR and
KDD repositories. The computation times have
been obtained with a laptop of 8 GB of RAM and
an Intel Core i7 processor running at 2.7 GHz. The
distance that better separates the existing classes
for each dataset is marked in bold style. It can
be seen that the average of the separation mea-
sure for the MUSS kernel is better than that of
the Euclidean distance and similar to that of the
DTW distance. However, further statistical analy-
sis shows that the differences between the DTW dis-
tance and the MUSS are not significant, while the
differences between the Euclidean distance and the
MUSS distance are. When looking at the columns
for computation times, it is very clear that the Eu-
clidean distance is by far the fastest one to compute,
followed by our MUSS distance using (roughly) an
order of magnitude extra CPU time. The DTW dis-
tance is by far the slowest, needing two more orders
of magnitude than our MUSS distance.

We further analyze some of the rows of Table 3,
in particular, the rows corresponding to the FISH
and KDD-03 datasets. These two rows are repre-
sentatives of opposite behavior of the SD measure:
for FISH all distances have negative values in the
SM measure, while for KDD-03 all of them per-
form quite well. We try to explain why this should
be the case in what follows. Remember that in
order to generate the synthetic datasets, we chose
one representative of each class at random and then
created circularly shifted copies from each represen-
tative as time-series of the same class. Depending
on the chosen representatives, some of the result-
ing synthetic datasets are thus inconsistent in their
labels and therefore all distance measures perform
poorly. Figure 3 shows one example of this (poor
behavior in FISH ), and Figure 4 shows a case of
good behavior accross all distances (KDD-03 ).

Table 4 further summarizes Table 3, where the
reader can observe that the behavior of the MUSS
distance is similar than that of DTW on average
(1.75 versus 1.70), and both outperform the Eu-
clidean distance (1.75 and 1.70 versus 2.55). From
this table, it can be noticed that the MUSS kernel
reaches the highest rank in 14 datasets, the second
position and third positions in 21 and 4 datasets,
respectively, the DTW distance reaches the high-

Figure 4: The plot shows in red the copies made out of
the first representative for dataset KDD-03, and in blue the
copies made out of the second representative. In this case,
both representatives are in fact quite different and thus the
copies are more similar among themselves than with respect
to copies of other classes. Therefore, all SM measures are
positive. Plot best seen in color.

est rank in 24 datasets, the second position for 4
datasets (kdd13, kdd16, Coffee, Face (Four)) and
the third position for the 12 remaining datasets,
and finally, the euclidean distance obtains the high-
est ranking just for 2 datasets (kdd13 and FISH),
the second position for 14 datasets and the third po-
sition for the remaining 24 datasets. The average
ranking for each distance is summarized in Table 4.
It can be observed that DTW and the MUSS kernel
present similar behavior on average.

Table 4: Number of times each distance achieves the first,
second and third positions over all datasets and average rank.

Distances #1st #2nd #3rd Avg. Rank
Euclidean 2 14 24 2.55
MUSS 14 21 5 1.75
DTW 24 4 12 1.70

Table 5 shows the wins matrix for pairs of dis-
tances over the 40 datasets. That is, in how many
datasets a distance separates better than another
distance. It should be read as follows: if row i
and column j contains number m, then distance i
has beaten distance j a total of m times. It can
be noticed that the MUSS distance beats the Eu-
clidean distance in 34 datasets, and beats the DTW
distance in 16 datasets. The DTW distance wins
in 28 datasets to the Euclidean distance and in 24

9



Figure 3: The left plot shows the 7 representatives chosen for each of the 7 classes found in the FISH dataset. The right plot
shows in red the 9 copies made out of the first representative, and in blue the 9 copies made out of the second representative.
Since the representatives are, in fact, quite alike, it turns out that the copies are further apart from their representatives than
from other copies of other representatives, and therefore any reasonable distance measure is going to have low scores in the SM
measure. Plots best seen in color.

datasets to the MUSS kernel, and finally, the Eu-
clidean distance wins in 6 and 12 datasets to the
MUSS and DTW distances, respectively.

Table 5: Win matrix for pairs of distances.

Distances Euclidean MUSS DTW
Euclidean – 6 12
MUSS 34 – 16
DTW 28 24 –

4.3. Statistical analysis
A statistical analysis has been conducted to eval-

uate the significance of the MUSS kernel, follow-
ing the non-parametric procedures discussed in [13].
Non-parametric tests have to be selected because
the conditions of normality and homoscedasticity
are not met. All tests applied in this work have
been obtained by using the open-source platform
KEEL [2].

Friedman and Iman-Davenport (ID) tests have
been applied to assess whether there are global dif-
ferences in the separation measure obtained by the
three distances compared. The p–values obtained
by both tests at the level of significance α = 0.05
are: 1.12·10−4 for the Friedman test, and 4.25·10−5
for the ID test. As the p–values obtained from both
of the tests are lower than the level of significance
considered, it can be stated that there exist sig-
nificant differences among the results obtained by

three distances and a post-hoc statistical analysis
is required.

The Holm and Shaffer tests have been applied
to perform pair-wise comparisons. Table 6 shows
the sorted p–values obtained by all comparisons for
two levels of significance (α = 0.05 and α = 0.10).
Both of the tests allow concluding that the MUSS
distance is better than the Euclidean distance and
similar to DTW distance for both levels of signifi-
cance, as the two tests reject the hypotheses for the
MUSS kernel and DTW distance versus Euclidean
distance but do not reject the null hypotheses for
the MUSS kernel versus DTW distance.

5. Time-series classification

In our second experiment, we use Support Vec-
tor Machines to perform classification using three
different kernels: our MUSS kernel, the GA-DTW
kernel based on global alignments in [8], and a
linear kernel. We compare the prediction accu-
racy achieved by these three kernels over the 20
datasets of the UCR repository [20]. The results in
this section show that our kernel is able to achieve
good results for general time-series (not necessarily
shifted). We have used the implementation LIB-
SVM [5] of SVM due to its wide acceptance in the
literature. Code for the GA-DTW kernel has been
taken from 1.

1http://www.iip.ist.i.kyoto-u.ac.jp/member/
cuturi/Code/DTWkernel.cpp
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Table 6: Holm and Shaffer tests results
i Distances z p α/i α/i

(α = 0.05) (α = 0.10)
3 Euclidean vs. DTW 3.35 7.96 · 10−4 0.016 0.033
2 Euclidean vs. MUSS 3.02 2.54 · 10−3 0.025 0.05
1 MUSS vs. DTW 0.33 0.74 0.05 0.10

Table 7 shows the accuracy of the three methods.
The last row presents the average and the standard
deviation in brackets for all data sets. It can be
appreciated that the MUSS kernel is better than
the linear kernel and similar to the GA-DTW kernel
having in addition the lowest standard deviation.

On the other hand, Table 8 reports the time (in
seconds) needed for the kernel computations. The
MUSS kernel proposed here is much faster than the
GA-DTW kernel and as fast as the linear kernel.
In fact, the GA-DTW kernel is not applicable to
high-dimensional real-world problems that require
the computation of the kernel for many instances.

Table 7: Accuracy (%) obtained by the SVM classifier when
using different kernels.

Data sets GA-DTW Linear MUSS
kernel kernel kernel

50 Words 81.54 66.37 65.49
Adiac 50.38 51.66 62.92
Beef 46.67 46.67 70.00
CBF 100.00 88.00 96.00
Coffee 78.57 96.43 92.86
ECG 81.00 82.00 80.00
FISH 95.43 84.57 80.57
Face (All) 82.49 74.73 75.68
Face (Four) 96.59 86.36 88.64
Gun-Point 96.00 88.67 92.67
Lighting-2 65.57 67.21 70.49
Lighting-7 75.34 65.75 65.75
OSU Leaf 52.89 46.69 45.87
Olive Oil 40.00 40.00 63.33
Swedish Leaf 92.80 85.60 80.00
Trace 99.00 75.00 91.00
Two Patterns 97.60 81.08 83.85
Synth. Control 97.33 94.00 96.33
Wafer 80.37 94.79 88.63
Yoga 49.23 65.40 60.20

Average 77.94 (20.17) 74.05 (17.25) 77.51(14.07)

These results show that our MUSS kernel
achieves comparable accuracy to the DTW-based
kernel but at a much lower computational cost.

6. Real-world applications: ozone concen-
tration in atmosphere and electricity de-
mand classification

Finally, we present results in two real-world ap-
plications: atmospheric pollutants (ozone), and
electricity demand. The pattern recognition in

Table 8: Computing times in seconds required to classify the
datasets when using different kernels.

Data sets GA-DTW Linear MUSS
kernel kernel kernel

50 Words 3820.55 1.54 2.86
Adiac 1183.33 0.85 1.45
Beef 52.13 0.03 0.17
CBF 77.81 0.14 0.18
Coffee 16.49 0.02 0.07
ECG 23.57 0.05 0.08
FISH 1654.97 0.38 1.34
Face (All) 3297.67 2.98 4.61
Face (Four) 50.72 0.04 0.10
Gun-Point 33.37 0.05 0.08
Lighting-2 382.17 0.09 0.61
Lighting-7 132.32 0.06 0.23
OSULeaf 2127.90 0.50 1.50
Olive Oil 75.73 0.03 0.24
Swedish Leaf 1210.00 1.31 1.96
Trace 194.04 0.10 0.29
Two-Patterns 12666.86 11.64 17.76
Synth. Control 84.69 0.27 0.40
Wafer 26289.65 20.26 30.52
Yoga 28925.00 6.20 11.18

Average 4114.95 (426.96) 2.33 (0.25) 3.78 (0.38)

ozone time-series data is an important task as
it allows governments to activate alert protocols
and implement good environmental policies if high
ozone concentration levels are predicted. On the
other hand, electricity–producing companies are in-
terested in predicting spikes of demand in order to
schedule the energy production to maximize their
profit.

Ozone time-series have been retrieved from a me-
teorological station placed in the outskirts of Seville
city (Spain), providing 312 times series composed of
168 hourly records each one. The dataset is classi-
fied into two class corresponding to high and low
ozone level periods (165 and 147 time-series, re-
spectively). The time-series have been split into
a training set of 218 time-series, and a test set of
94 time-series, preserving the proportion between
two existing classes.

Electricity demand time-series from 2008 to 2012
for the Spanish electricity market have been col-
lected [24], providing 261 times series composed
of 168 hourly records each. Four datasets, called
Demand-2, Demand-3, Demand-4 and Demand-5,
have been used depending on the necessary number
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of classes that an electrical engineering can consider
useful to determine the behavior of the demand.
The time-series data have been split in training set
(182, 182, 181 and 181 time-series for each one of 4
datasets, respectively) and test set (79, 19, 80 and
80, respectively) preserving the proportion among
existing classes.

The MUSS kernel has been used to classify the
ozone time-series into weeks of high or low ozone
concentration and likewise the demand into weeks
of different behavior (valley, spikes, etc). More con-
cretely, we have used SVMs in conjunction with the
same three kernels as in the previous section.

Table 10 and Table 9 show the percentage of
time-series correctly classified in the test sets and
the time in seconds obtained by the application of
the SVM classifier for all real-world data sets when
using several kernels. The last row presents the av-
erage and the standard deviation in brackets for all
data sets. It can be observed that the MUSS ker-
nel presents the better results in accuracy for all
data sets. Moreover, the MUSS kernel is 440 times
faster than the GA-DTW kernel approximately and
it provides a mean error of classification by 3% and
5% lower than the remaining kernels.

Table 9: Percentage of time-series correctly classified.

Data sets GA-DTW Linear MUSS
kernel kernel kernel

Demand-2 94.94 96.20 98.73
Demand-3 89.87 94.94 98.73
Demand-4 93.75 95.00 97.50
Demand-5 92.59 93.83 97.53
Ozono 93.68 97.89 98.95

Average 92.97 (1.72) 95.57 (1.38) 98.29 (0.64)

Table 10: Time in seconds required to classify the test set.

Data sets GA-DTW Linear MUSS
kernel kernel kernel

Demand-2 89.83 0.17 0.22
Demand-3 90.21 0.16 0.20
Demand-4 90.04 0.17 0.22
Demand-5 91.15 0.16 0.25
Ozono 143.93 0.21 0.27

Average 101.03 (21.45) 0.18 (0.02) 0.23 (0.02)

7. Conclusions

In this paper we have presented the MUSS kernel
for time-series data and its associated distance met-
ric. Initial experiments show promise in detecting
similarity between time-series. The MUSS kernel

has been compared to the Euclidean distance as a
reference distance and the DTW distance as one of
the most competitive distances that exist in the lit-
erature. Also, the MUSS kernel has been used in
conjunction with the SVM classifier to time-series
classification and compared with the GA-DTW ker-
nel [8] and the linear kernel. The kernel has shown
to be efficient in separating different classes in time-
series from well-known repositories, and also, it has
been successfully applied to real-world time-series.
In particular, a low error for the classification of the
ozone in low and high concentrations in the atmo-
sphere and classification of the electricity demand
has been obtained.

For future work, we would like to generalize our
MUSS kernel to multivariate time-series and time-
series that differ in length. Moreover, we would
like to adapt our ideas so that they can be used
in a stream setting where time-series keep growing
unboundedly.
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