A Construction of Small ($q-1$)-Regular Graphs of Girth 8 *

M. Abreu ${ }^{\dagger}$
Dipartimento di Matematica, Informatica ed Economia
Università degli Studi della Basilicata I-85100 Potenza, Italy
marien.abreu@unibas.it
C. Balbuena ${ }^{\S}$
Departament de Matemática Aplicada III
Universitat Politècnica de Catalunya
E-08034 Barcelona, Spain
m.camino.balbuena@upc.edu

G. Araujo-Pardo \ddagger
Instituto de Matemáticas
Campus Juriquilla
Universidad Nacional Autónoma de México Juriquilla 76230, Querétaro, México
garaujo@matem.unam.mx

D. Labbate ${ }^{\dagger}$

Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata I-85100 Potenza, Italy
domenico.labbate@unibas.it

Submitted: May 24, 2014; Accepted: Apr 6, 2015; Published: Apr 21, 2015
Mathematics Subject Classifications: 05C35, 05C69

Abstract

In this note we construct a new infinite family of $(q-1)$-regular graphs of girth 8 and order $2 q(q-1)^{2}$ for all prime powers $q \geqslant 16$, which are the smallest known so far whenever $q-1$ is not a prime power or a prime power plus one itself.

Keywords: Cages, girth, Moore graphs, perfect dominating sets

1 Introduction

Throughout this note, only undirected simple graphs without loops or multiple edges are considered. Unless otherwise stated, we follow the book by Bondy and Murty [11] for terminology and notation.

[^0]Let G be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The girth of a graph G is the number $g=g(G)$ of edges in a smallest cycle. For every $v \in V$, $N_{G}(v)$ denotes the neighbourhood of v, that is, the set of all vertices adjacent to v. The degree of a vertex $v \in V$ is the cardinality of $N_{G}(v)$. Let $A \subset V(G)$, we denote by $N_{G}(A)=\cup_{a \in A} N_{G-A}(a)$ and by $N_{G}[A]=A \cup N_{G}(A)$. For $v, w \in V(G)$ denote by $d(v, w)$ the distance between v and w. Moreover, denote by $N^{m}(v)=\{w \in V(G) \mid d(v, w)=m\}$ and $N^{m}[v]=\{w \in V(G) \mid d(v, w) \leqslant m\}$ the $m^{t h}$ open and closed neighbourhood of v respectively.

A graph is called regular if all the vertices have the same degree. A (k, g)-graph is a k-regular graph with girth g. Erdős and Sachs [12] proved the existence of (k, g)-graphs for all values of k and g provided that $k \geqslant 2$. Since then most work carried out has focused on constructing a smallest one (cf. e.g. $[1,2,3,4,5,6,7,9,13,15,18,20,21]$). A (k, g)-cage is a k-regular graph with girth g having the smallest possible number of vertices. Cages have been intensively studied since they were introduced by Tutte [23] in 1947. More details about constructions of cages can be found in the survey by Exoo and Jajcay [14].

In this note we are interested in $(k, 8)$-cages. Counting the number of vertices in the distance partition with respect to an edge yields the following lower bound on the order of a ($k, 8$)-cage:

$$
\begin{equation*}
n_{0}(k, 8)=2\left(1+(k-1)+(k-1)^{2}+(k-1)^{3}\right) . \tag{1}
\end{equation*}
$$

A ($k, 8$)-cage with $n_{0}(k, 8)$ vertices is called a Moore ($k, 8$)-graph (cf. [11]). These graphs have been constructed as the incidence graphs of generalized quadrangles of order $k-1$ (cf. [9]). All these objects are known to exist for all prime power values of $k-1$ (cf. e.g. $[8,16]$), and no example is known when $k-1$ is not a prime power. Since they are incidence graphs, these cages are bipartite and have diameter 4.

A subset $U \subset V(G)$ is said to be a perfect dominating set of G if for each vertex $x \in V(G) \backslash U,\left|N_{G}(x) \cap U\right|=1$ (cf. [17]). Note that if G is a ($k, 8$)-graph and U is a perfect dominating set of G, then $G-U$ is clearly a $(k-1)$-regular graph, of girth at least 8. Using classical generalized quadrangles, Beukemann and Metsch [10] proved that the cardinality of a perfect dominating set B of a Moore $(q+1,8)$-graph, q a prime power, is at most $|B| \leqslant 2\left(2 q^{2}+2 q\right)$ and if q is even $|B| \leqslant 2\left(2 q^{2}+q+1\right)$.

For $k=q+1$ where $q \geqslant 2$ is a prime power, we find a perfect dominating set of cardinality $2\left(q^{2}+3 q+1\right)$ for all q (cf. Proposition 2). This result allows us to explicitly obtain q-regular graphs of girth 8 and order $2 q\left(q^{2}-2\right)$ for any prime power q (cf. Definition 3 and Lemma 4). Finally, we prove the existence of a perfect dominating set of these q regular graphs which allow us to construct a new infinite family of $(q-1)$-regular graphs of girth 8 and order $2 q(q-1)^{2}$ for all prime powers q (cf. Theorem 5), which are the smallest known so far for $q \geqslant 16$ whenever $q-1$ is not a prime power or a prime power plus one itself. Previously, the smallest known $(q-1,8)$-graphs, for q a prime power, were those of order $2 q\left(q^{2}-q-1\right)$ which appeared in [7]. The first ten improved values appear in the following table in which $k=q-1$ is the degree of a $(k, 8)$-graph, and the other columns contain the old and the new upper bound on its order.

k	Bound in [7]	New bound	k	Bound in [7]	New bound
15	7648	7200	52	292030	286624
22	23230	22264	58	403678	396952
36	98494	95904	63	515968	508032
40	134398	131200	66	592414	583704
46	203134	198904	70	705598	695800

2 Construction of small ($q-1$)-regular graphs of girth 8

In this section we construct ($q-1$)-regular graphs of girth 8 with $2 q(q-1)^{2}$ vertices, for every prime power $q \geqslant 4$. To this purpose we need the following coordinates for a Moore $(q+1,8)$-cage Γ_{q}.
Definition 1. [19, 22] Let \mathbb{F}_{q} be a finite field with $q \geqslant 2$ a prime power and ϱ a symbol not belonging to \mathbb{F}_{q}. Let $\Gamma_{q}=\Gamma_{q}\left[V_{0}, V_{1}\right]$ be a bipartite graph with vertex sets $V_{i}=$ $\mathbb{F}_{q}^{3} \cup\left\{(\varrho, b, c)_{i},(\varrho, \varrho, c)_{i}: b, c \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, \varrho)_{i}\right\}, i=0,1$, and edge set defined as follows:
For all $a \in \mathbb{F}_{q} \cup\{\varrho\}$ and for all $b, c \in \mathbb{F}_{q}$:

$$
\begin{aligned}
& N_{\Gamma_{q}}\left((a, b, c)_{1}\right)= \begin{cases}\left\{\left(w, a w+b, a^{2} w+2 a b+c\right)_{0}: w \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, a, c)_{0}\right\} & \text { if } a \in \mathbb{F}_{q} ; \\
\left\{(c, b, w)_{0}: w \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, c)_{0}\right\} & \text { if } a=\varrho .\end{cases} \\
& N_{\Gamma_{q}}\left((\varrho, \varrho, c)_{1}\right)=\left\{(\varrho, c, w)_{0}: w \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, \varrho)_{0}\right\} \\
& N_{\Gamma_{q}}\left((\varrho, \varrho, \varrho)_{1}\right)=\left\{(\varrho, \varrho, w)_{0}: w \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, \varrho)_{0}\right\} .
\end{aligned}
$$

Or equivalently
For all $i \in \mathbb{F}_{q} \cup\{\varrho\}$ and for all $j, k \in \mathbb{F}_{q}$:

$$
\begin{aligned}
& N_{\Gamma_{q}}\left((i, j, k)_{0}\right)= \begin{cases}\left\{\left(w, j-w i, w^{2} i-2 w j+k\right)_{1}: w \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, j, i)_{1}\right\} & \text { if } i \in \mathbb{F}_{q} ; \\
\left\{(j, w, k)_{1}: w \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, j)_{1}\right\} & \text { if } i=\varrho .\end{cases} \\
& N_{\Gamma_{q}}\left((\varrho, \varrho, k)_{0}\right)=\left\{(\varrho, w, k)_{1}: w \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, \varrho)_{1}\right\} ; \\
& N_{\Gamma_{q}}\left((\varrho, \varrho, \varrho)_{0}\right)=\left\{(\varrho, \varrho, w)_{1}: w \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, \varrho)_{1}\right\} .
\end{aligned}
$$

Note that ϱ is just a symbol not belonging to \mathbb{F}_{q} and no arithmetical operation will be performed with it. Figure 1 shows a spanning tree of Γ_{q} with the vertices labelled according to Definition 1.

Proposition 2. Let $q \geqslant 2$ be a prime power and let $\Gamma_{q}=\Gamma_{q}\left[V_{0}, V_{1}\right]$ be the Moore $(q+1,8)$ graph with the coordinates as in Definition 1. Let $A=\left\{(\varrho, 0, c)_{1}: c \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, 0)_{1}\right\}$ and let $x \in \mathbb{F}_{q} \backslash\{0\}$. Then the set

$$
N_{\Gamma_{q}}[A] \cup\left(\bigcap_{a \in A} N_{\Gamma_{q}}^{2}(a)\right) \cup N_{\Gamma_{q}}^{2}\left[(\varrho, \varrho, x)_{1}\right]
$$

is a perfect dominating set of Γ_{q} of cardinality $2\left(q^{2}+3 q+1\right)$.

Figure 1: Spanning tree of Γ_{q}.

Proof. From Definition 1, it follows that $A=\left\{(\varrho, 0, c)_{1}: c \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, 0)_{1}\right\}$ has cardinality $q+1$ and its elements are mutually at distance four. Then $\left|N_{\Gamma_{q}}[A]\right|=(q+$ $1)^{2}+q+1$. By Definition 1, $N_{\Gamma_{q}}\left((\varrho, 0, c)_{1}\right)=\left\{(c, 0, w)_{0}: w \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, c)_{0}\right\}$; and $N_{\Gamma_{q}}\left((\varrho, \varrho, 0)_{1}\right)=\left\{(\varrho, 0, w)_{0}: w \in \mathbb{F}_{q}\right\} \cup\left\{(\varrho, \varrho, \varrho)_{0}\right\}$. Then $\left.(\varrho, \varrho, \varrho)_{1} \in N_{\Gamma_{q}}^{2}\left((\varrho, 0, c)_{1}\right)\right) \cap$ $\left.N_{\Gamma_{q}}^{2}\left((\varrho, \varrho, 0)_{1}\right)\right)$ for all $c \in \mathbb{F}_{q}$. Moreover, $N_{\Gamma_{q}}\left((c, 0, w)_{0}\right)=\left\{\left(a,-a c, a^{2} c+w\right)_{1}: a \in\right.$ $\left.\mathbb{F}_{q}\right\} \cup\left\{(\varrho, 0, c)_{1}\right\}$. Thus, for all $c_{1}, c_{2}, w_{1}, w_{2} \in \mathbb{F}_{q}, c_{1} \neq c_{2}$, we have $\left(a,-c_{1} a, a^{2} c_{1}+w_{1}\right)_{1}=$ $\left(a,-c_{2} a, a^{2} c_{2}+w_{2}\right)_{1}$ if and only if $a=0$ and $w_{1}=w_{2}$. Let $I_{A}=\bigcap_{a \in A} N_{\Gamma_{q}}^{2}(a)$. We conclude that $I_{A}=\left\{(\varrho, \varrho, \varrho)_{1}\right\} \cup\left\{(0,0, w)_{1}: w \in \mathbb{F}_{q}\right\}$ which implies that $\left|N_{\Gamma_{q}}[A]\right|+\left|I_{A}\right|=$ $(q+1)^{2}+2(q+1)$.

Since $N_{\Gamma_{q}}^{2}\left[(\varrho, \varrho, x)_{1}\right]=\bigcup_{j \in \mathbb{F}_{q}} N_{\Gamma_{q}}\left[(\varrho, x, j)_{0}\right] \cup N_{\Gamma_{q}}\left[(\varrho, \varrho, \varrho)_{0}\right]$ we obtain that $\left(N_{\Gamma_{q}}[A] \cup\right.$ $\left.I_{A}\right) \cap N_{\Gamma_{q}}^{2}\left[(\varrho, \varrho, x)_{1}\right]=\left\{(\varrho, \varrho, \varrho)_{0},(\varrho, \varrho, 0)_{1},(\varrho, \varrho, \varrho)_{1}\right\}$. Let $D=N_{\Gamma_{q}}[A] \cup I_{A} \cup N_{\Gamma_{q}}^{2}\left[(\varrho, \varrho, x)_{1}\right]$, then

$$
\begin{aligned}
|D| & =\left|N_{\Gamma_{q}}[A]\right|+\left|I_{A}\right|+\left|N_{\Gamma_{q}}^{2}\left[(\varrho, \varrho, x)_{1}\right]\right|-3 \\
& =(q+1)^{2}+2(q+1)+1+(q+1)+q(q+1)-3 \\
& =2 q^{2}+6 q+2 .
\end{aligned}
$$

Let us prove that D is a perfect dominating set of Γ_{q}.
Let H denote the subgraph of Γ_{q} induced by D. Note that for $t, c \in \mathbb{F}_{q}$, the vertices $(x, t, c)_{1} \in N_{\Gamma_{q}}^{2}\left((\varrho, \varrho, x)_{1}\right)$ have degree 2 in H because they are adjacent to the vertex $(\varrho, x, t)_{0} \in N_{\Gamma_{q}}(\varrho, \varrho, x)_{1}$ and also to the vertex $\left(-x^{-1} t, 0, x t+z\right)_{0} \in N_{\Gamma_{q}}(A)$. This implies that the vertices $(i, 0, j)_{0} \in N_{\Gamma_{q}}(A), i, j \in \mathbb{F}_{q}$, have degree 3 in H and, also that the diameter of H is 5 . Moreover, for $k \in \mathbb{F}_{q}$, the vertices $(\varrho, \varrho, k)_{0},(\varrho, 0, k)_{0} \in D$ have degree 2 in H and the vertices $(\varrho, \varrho, j)_{1} \in D, j \in \mathbb{F}_{q} \backslash\{0, x\}$ have degree 1 in H. All other vertices in D have degree $q+1$ in H.

Since the diameter of H is 5 and the girth is $8,\left|N_{\Gamma_{q}}(v) \cap D\right| \leqslant 1$ for all $v \in V\left(\Gamma_{q}\right) \backslash D$, and also for all distinct $d, d^{\prime} \in D$ we have $\left(N_{\Gamma_{q}}(d) \cap N_{\Gamma_{q}}\left(d^{\prime}\right)\right) \cap\left(V\left(\Gamma_{q}\right) \backslash D\right)=\emptyset$. Then, $\left|N_{\Gamma_{q}}(D) \cap\left(V\left(\Gamma_{q}\right) \backslash D\right)\right|=q^{2}(q-2)+2 q(q-1)+(q-2) q+q^{2}(q-1)=2 q^{3}-4 q=\left|V\left(\Gamma_{q}\right) \backslash D\right|$. Hence $\left|N_{\Gamma_{q}}(v) \cap D\right|=1$ for all $v \in V\left(\Gamma_{q}\right) \backslash D$. Thus D is a perfect dominating set of Γ_{q}.

Definition 3. Let $q \geqslant 4$ be a prime power and let $x \in \mathbb{F}_{q} \backslash\{0,1\}$. Define G_{q}^{x} as the q regular graph of order $2 q\left(q^{2}-2\right)$ constructed by removing from Γ_{q} its perfect dominating set D given in Proposition 2.
Lemma 4. The q-regular graph G_{q}^{x} in Definition 3 has girth exactly 8.
Proof. The graph G_{q}^{x}, by Definition 3 is Γ_{q} minus a perfect dominating set D so it clearly has girth at least 8 , and since it is bipartite its girth must be even. However, Moore's bound on the minimum number of vertices of a q-regular graph of girth 10 is $2\left(\sum_{i=0}^{4}(q-1)^{4}\right)$. Since the order of G_{q}^{x} is $2 q\left(q^{2}-2\right)<2\left(\sum_{i=0}^{4}(q-1)^{4}\right)$, for all $q \geqslant 2$, G_{q}^{x} must have girth exactly 8.
Theorem 5. Let $q \geqslant 5$ be a prime power and let G_{q}^{x} be the graph given in Definition 3. Let $R=N_{G_{q}^{x}}\left(\left\{(\varrho, j, k)_{0}: j, k \in \mathbb{F}_{q}, j \neq 0,1, x\right\}\right) \cap N_{G_{q}^{x}}^{5}\left((\varrho, 1,0)_{0}\right)$. Then, the set

$$
S:=\bigcup_{j \in \mathbb{F}_{q}} N_{G_{q}^{x}}\left[(\varrho, 1, j)_{0}\right] \cup N_{G_{q}^{x}}[R]
$$

is a perfect dominating set in G_{q}^{x} of cardinality $4 q^{2}-6 q$. Hence, $G_{q}^{x}-S$ is a $(q-1)$-regular graph of girth 8 and order $2 q(q-1)^{2}$.
Proof. Once $x \in \mathbb{F}_{q} \backslash\{0,1\}$ has been chosen to define G_{q}^{x}, to simplify notation, we will denote G_{q}^{x} by G_{q} throughout the proof. Denote by $P=\left\{(\varrho, j, k)_{0}: j, k \in \mathbb{F}_{q}, j \neq\right.$ $0,1, x\}$, then $R=N_{G_{q}}(P) \cap N_{G_{q}}^{5}\left((\varrho, 1,0)_{0}\right)$. Note that $d_{G_{q}}\left((\varrho, 1,0)_{0},(\varrho, j, k)_{0}\right)=4$, because according to Definition $1, G_{q}$ contains the following paths of length four (see Figure 2): $(\varrho, 1,0)_{0}(1, b, 0)_{1}(w, w+b, w+2 b)_{0}(j, t, k)_{1}(\varrho, j, k)_{0}$, for all $b, j, t \in \mathbb{F}_{q}$ such that $b+w \neq 0$ due to the vertices $(j, 0, k)_{0}$ with second coordinate zero having been removed from Γ_{q} to obtain G_{q}.

By Definition 1 we have $w+b=j w+t$ and $w+2 b=j^{2} w+2 j t+k$. If $w+b=0$, then $-w=b=t j^{-1}$ and $b=j t+k$ yielding that $t=\left(1-j^{2}\right)^{-1} j k$. This implies that $\left(j,\left(1-j^{2}\right)^{-1} j k, k\right)_{1} \in R$ is the unique neighbor in R of $(\varrho, j, k)_{0} \in P$. Therefore every $(\varrho, j, k)_{0} \in P$ has a unique neighbor $(j, t, k)_{1} \in R$ leading to:

$$
\begin{equation*}
|R|=|P|=q(q-3) . \tag{2}
\end{equation*}
$$

Thus, every $v \in N_{G_{q}}(R) \backslash P$ has at most $|R| / q=q-3$ neighbors in R because for each j the vertices from the set $\left\{(\varrho, j, k)_{0}: k \in \mathbb{F}_{q}\right\} \subset P$ are mutually at distance 6 (they were the q neighbors in Γ_{q} of the removed vertex $\left.(\varrho, \varrho, j)_{1}\right)$. Furthermore, every $v \in N_{G_{q}}(R) \backslash P$ has at most one neighbor in $N_{G_{q}}^{5}\left((\varrho, 1,0)_{0}\right) \backslash R$ because the vertices $\left\{(\varrho, 1, j)_{0}: j \in \mathbb{F}_{q}, j \neq 0\right\}$ are mutually at distance 6 . Therefore every $v \in N_{G_{q}}(R) \backslash P$ has at least two neighbors in $N_{G_{q}}^{3}\left((\varrho, 1,0)_{0}\right)$. Thus denoting $\left.K=N_{G_{q}}\left(N_{G_{q}}(R) \backslash P\right) \cap N_{G_{q}}^{3}(\varrho, 1,0)_{0}\right)$ we have

$$
\begin{equation*}
|K| \geqslant 2\left|N_{G_{q}}(R) \backslash P\right| . \tag{3}
\end{equation*}
$$

Moreover, observe that $\left(N_{G_{q}}(P) \backslash R\right) \cap K=\emptyset$ because these two sets are at distance four (see Figure 2). Since the elements of P are mutually at distance at least 4 we obtain that $\left|N_{G_{q}}(P) \backslash R\right|=q|P|-|R|=(q-1)|P|$. Hence by (2)

$$
\left|N_{G_{q}}^{3}\left((\varrho, 1,0)_{0}\right)\right| \geqslant\left|N_{G_{q}}(P) \backslash R\right|+|K|=(q-1)|P|+|K|=(q-1) q(q-3)+|K| .
$$

Figure 2: Structure of the graph G_{q}. The perfect dominating set lies inside the dotted box.

Since $\left|N_{G_{q}}^{3}\left((\varrho, 1,0)_{0}\right)\right|=q(q-1)^{2}$ we obtain that $|K| \leqslant 2 q(q-1)$ yielding by (3) that $\left|N_{G_{q}}(R) \backslash P\right| \leqslant q(q-1)$. As P contains at least q elements mutually at distance $6, R$ contains at least q elements mutually at distance 4 . Thus we have $\left|N_{G_{q}}(R) \backslash P\right| \geqslant q^{2}-q$. Therefore $\left|N_{G_{q}}(R) \backslash P\right|=q^{2}-q$ and all the above inequalities are actually equalities. Thus by (2) we get

$$
\begin{equation*}
\left|N_{G_{q}}(R)\right|=q^{2}-q+|P|=2 q(q-2) \tag{4}
\end{equation*}
$$

and every $v \in N_{G_{q}}(R) \backslash P$ has exactly 1 neighbor in $N_{G_{q}}^{5}\left((\varrho, 1,0)_{0}\right) \backslash R$. Therefore we have

$$
\begin{aligned}
\left|N_{G_{q}}^{4}\left((\varrho, 1,0)_{0}\right) \backslash N_{G_{q}}(R)\right| & =\left|\bigcup_{j \in \mathbb{F}_{q} \backslash\{0\}}\left(N_{G_{q}}^{2}\left((\varrho, 1, j)_{0}\right) \cup P\right) \backslash N_{G_{q}}(R)\right| \\
& =q(q-1)^{2}+q(q-3)-2 q(q-2) \\
& =q(q-1)(q-2) .
\end{aligned}
$$

Let us denote by $E[A, B]$ the set of edges between any two sets of vertices A and B. Then $\left|E\left[N_{G_{q}}^{3}\left((\varrho, 1,0)_{0}\right), N_{G_{q}}^{4}\left((\varrho, 1,0)_{0}\right)\right]\right|=q(q-1)^{3}$ and $\mid E\left[N_{G_{q}}^{3}(\varrho, 1,0)_{0}\right), N_{G_{q}}^{4}\left((\varrho, 1,0)_{0}\right) \backslash$ $\left.N_{G_{q}}(R)\right] \mid=q(q-1)^{2}(q-2)$. Therefore,

$$
\left.\left|E\left[N_{G_{q}}^{3}\left((\varrho, 1,0)_{0}\right), N_{G_{q}}(R)\right]\right|=q(q-1)^{3}-q(q-1)^{2}(q-2)=q(q-1)^{2}=\mid N_{G_{q}}^{3}(\varrho, 1,0)_{0}\right) \mid,
$$

which implies that every $v \in N_{G_{q}}^{3}\left((\varrho, 1,0)_{0}\right)$ has exactly one neighbor in $N_{G_{q}}(R)$. It follows that $S=\bigcup_{j \in \mathbb{F}_{q}} N_{G_{q}}\left[(\varrho, 1, j)_{0}\right] \cup N_{G_{q}}[R]$ is a perfect dominating set of G_{q}. Furthermore, by (2) and (4), $|S|=q^{2}+q+q(3 q-7)=4 q^{2}-6 q$. Therefore a $(q-1)$-regular graph of girth 8 can be obtained by deleting from G_{q} the perfect dominating set S, see Figure 2. This graph has order $2 q\left(q^{2}-2\right)-2 q(2 q-3)=2 q(q-1)^{2}$.

Finally, as in the proof of Lemma 4, recall that $G_{q}-S$ must have even girth since it is bipartite, and that the minimum number of vertices of a $(q-1)$-regular graph of girth 10 is $2\left(\sum_{i=0}^{4}(q-2)^{4}\right)$. The order of $G_{q}-S$ is $2 q(q-1)^{2}<2\left(\sum_{i=0}^{4}(q-2)^{4}\right)$, for all $q \geqslant 5$, a in the hypothesis. Therefore, $G_{q}-S$ has girth 8 .

References

[1] M. Abreu, M. Funk, D. Labbate, V. Napolitano. On (minimal) regular graphs of girth 6. Australas. J. Combin., 35:119-132, 2006.
[2] M. Abreu, M. Funk, D. Labbate, V. Napolitano. A family of regular graphs of girth 5. Discrete Math., 308(10):1810-1815, 2008.
[3] M. Abreu, G. Araujo-Pardo, C. Balbuena, D. Labbate. Families of small regular graphs of girth 5. Discrete Math., 312:2832-2842, 2012.
[4] G. Araujo, C. Balbuena, T. Héger. Finding small regular graphs of girths 6,8 and 12 as subgraphs of cages. Discrete Math., 310(8):1301-1306, 2010.
[5] E. Bannai, T. Ito. On finite Moore graphs. J. Fac. Sci., Univ. Tokio, Sect. I A Math 20:191-208, 1973.
[6] C. Balbuena. Incidence matrices of projective planes and other bipartite graphs of few vertices. Siam J. Discrete Math., 22(4):1351-1363, 2008.
[7] C. Balbuena. A construction of small regular bipartite graphs of girth 8. Discrete Math. Theor. Comput. Sci., 11(2):33-46, 2009.
[8] L. M. Batten. Combinatorics of finite geometries. Cambridge University Press, Cambridge, UK, 1997.
[9] C.T. Benson. Minimal regular graphs of girth eight and twelve. Canad. J. Math., 18:1091-1094, 1966.
[10] L. Beukemann, K. Metsch. Regular Graphs Constructed from the Classical Generalized Quadrangle $Q(4, q)$. J. Combin. Designs, 19:70-83, 2010.
[11] J. A. Bondy, U. S. R. Murty. Graph Theory. Springer Series: Graduate Texts in Mathematics, Vol. 244, 2008.
[12] P. Erdős, H. Sachs. Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl. Wiss. Z. Uni. Halle (Math. Nat.), 12: 251-257, 1963.
[13] G. Exoo. A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15 and 16. Electron. J. Combin., 3(1):\#R30, 1996.
[14] G. Exoo, R. Jajcay. Dynamic cage survey. Electron. J. Combin., 15:\#DS16, 2008-2011-2013.
[15] A. Gács, T. Héger. On geometric constructions of (k, g)-graphs. Contrib. to Discrete Math., 3(1):63-80, 2008.
[16] C. Godsil, G. Royle. Algebraic Graph Theory. Springer, New York, 2000.
[17] T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Fundamentals of domination in graphs. Monogr. Textbooks Pure Appl. Math., 208, Dekker, New York, 1998.
[18] F. Lazebnik, V. A. Ustimenko, A. J. Woldar. Upper bounds on the order of cages. Electron. J. Combin., 4(2):\#R13, 1997.
[19] H. van Maldeghem. Generalized Polygons. Birkhauser, Basel 1998.
[20] M. Meringer. Fast generation of regular graphs and construction of cages. J. Graph Theory, 30:137-146, 1999.
[21] M. O'Keefe, P. K. Wong. The smallest graph of girth 6 and valency 7. J. Graph Theory, 5:79-85, 1981.
[22] S. E. Payne. Affine representation of generalized quadrangles. J. Algebra, 51:473-485, 1970.
[23] W. T. Tutte. A family of cubical graphs. Proc. Cambridge Philos. Soc., 43:459-474, 1947.

[^0]: *Research supported by CONACyT-México under project 178395.
 ${ }^{\dagger}$ Research supported by the Italian Ministry MIUR and carried out within the activity of INdAM-GNSAGA.
 ${ }^{\ddagger}$ Research supported by CONACyT-México under projects 178395, 166306, and PAPIIT-México under project IN104915.
 ${ }^{\S}$ Research supported by the Ministerio de Educación y Ciencia, Spain, the European Regional Development Fund (ERDF) under project MTM2011-28800-C02-02; and under the Catalonian Government project 1298 SGR2009.

