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Abstract. The multiresolution continuum theory (MRCT) [1] has been established to link the 
material’s macroscopic behaviour with its microstructural inhomogeneities. Additional 
kinematic variables in addition to the conventional macroscopic displacement field are added 
to account for microstructural deformations at multiple microscales. Metal plasticity is 
associated with interaction of motion of dislocations and microstructures. A Dislocation 
density based material model [2] calibrated and validated for AISI 316L at different 
temperatures and strain rates is used as the macroscopic constitutive equation of the MRCT 
element. We investigated particularly how the changing property of the microdomain with 
changing temperature affects the macroscopic behaviours of the material. 

1 INTRODUCTION 
In classical continuum description, the material’s response at a point x is solely determined 

by the deformation at this point. It can integrate and catch some aspects of the underlying 
material microstructure, but the size dependent material response cannot be accounted for, the 
scale effect is lost during the homogenization procedure.  

The multiresolution continuum theory (MRCT)  [3-5]  is a higher order continuum theory 
that enhances the macroscopic description of a material with influence from a neighborhood 
on the deformation. This neighborhood, microdomain, is associated with a length scale and 
also with constitutive models connecting higher order gradients and stresses as indicated 
below. They enrich the traditional homogenization procedure and remedy the mesh 
dependency when simulating localization problems. 

The inelastic deformation depends on the interaction between dislocations and the 
microstructure of the material. This structure is evolving during the deformation and is 
affected by the strain rate and temperature. The dislocation density model [2] is a physically 
based model that takes the varying strain, strain rate, temperature and as well the changing 
microstructures, dislocation density etc, into account. The dislocation density model used in 
the current paper is calibrated and validated for AISI 316L at different temperatures and strain 
rates and used as the macroscopic constitutive equation of the MRCT element.  

The paper also includes and evaluation of the effect of changing properties of the 
microdomain on the macroscopic behaviours of the material. 

2 MULTIRESOLUTION CONTINUUM THEORY (MRCT) 
A material point x in the higher order continuum theory is considered itself as an 

infinitesimal continuum, which has an inner structure that can be modeled as a sequence of 
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nested microdomains. Each centered at this point x and each represents a particular length 
scale l i . The velocity field in the microdomain is assumed to be linear as 

m l
i = li x( ) + gi x( ) ⋅yi ( 1 ) 

where m l
i  is the local velocity gradient in each microdomain i. yi is the local coordinate in the 

ith microdomain relative to the domain center. The term li  is the volume average of the local 
velocity gradient and gi  is the gradient of micro-velocity gradient. 

The Hill-Mandel principle is used to extend to traditional virtual internal power to account 
for both homogeneous deformation at the macroscopic scale and inhomogeneous deformation 
arising from multiple length scales. During the deformation the rotations of the microdomains 
with respect to the macroscopic domain are ignored. The total virtual internal power 
integrated over the entire body is written as: 

δ pint = δ pint
hom +δ pint

inh = σ 0 :δd0 + β i :δ di − d0( ) +mi !δgd
i( )

i=1

N

∑⎛
⎝⎜

⎞
⎠⎟Ω

∫ dΩ
( 2 ) 

where d0  is the spatial rate of deformation and 

€

σ0 is the Cauchy stress tensor at the 
macroscale. Two new stress measures have been introduced above: (1) the microstress 

€

β i
  as 

the power conjugate to the microscopic rate of deformation (di − d0 ) and (2) the microstress 
couple 

€

mi as the power conjugate to gd
i  which is the symmetric part of the quantity gi . Thus 

we have d0,(di − d0 ),gd
i  as the knematic variables and σ0,β i ,mi as the generalized stresses. 

N is total number of scales. 
For simplicity, we leave out the external virtual power as well as inertial effects. 

Integrating Eq. ( 2 ) by parts and applying the divergence therom, we have 

δ pint = − ∇ σ 0 − β i

i=1

N

∑⎛
⎝⎜

⎞
⎠⎟
⋅δv0 + ∇mi − β i( ) :δdi

i=1

N

∑⎧
⎨
⎩

⎫
⎬
⎭Ω

∫ dΩ

+ σ 0 − β i

i=1

N

∑⎛
⎝⎜

⎞
⎠⎟S

∫ ⋅n ⋅δv0dS + mi ⋅n( )
i=1

N

∑
S
∫ :δdidS = 0.

( 3 ) 

€

δv0  is the macroscale virtual velocity, which arises from integrating by parts the power 
conjugate pairs at each scale. 

€

n and 

€

S  arise from the application of Gauss’s theorem, 

€

S  is the 
surface enclosing the volume and 

€

n  is the outward pointing unit normal. 
By the application of the principle of virtual power, Eq. ( 3 ) should be valid for all 

admissible velocity fields. Thus, we obtain the multiresolution continuum equilibrium 
equations as 

∇⋅ σ 0 − β i

i=1

N

∑⎛
⎝⎜

⎞
⎠⎟
= 0

∇⋅mi − β i = 0

( 4 ) 

with boundary conditions: 
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σ 0 − β i

i=1

N

∑⎛
⎝⎜

⎞
⎠⎟
⋅n = 0

mi ⋅n = 0

( 5 ) 

3 IMPLICIT MRCT 3D ELEMENT. 

3.1 MRCT element formulations. 
A 3D implicit MRCT element [6] has been implemented in a general finite element 

program FEAP [7]. Only one subscale is considered in the current implementation.  
The generalized strain rate vector for the kinematic variables in Eq.( 2 ) is calculated as 

Δ =
d0

d1 − d0

gd
1

#
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( 6 ) 

where B0  is the strain-displacement matrix at the macroscopic scale. N1 = N0 is the shape 
function matrix. G1 is the strain-displacement matrix for the gradient terms. 

The generalized stress vector is written as 

Σ =
σ 0

β 1

m1

$

%

&
&
&

'

(

)
)
)

( 7 ) 

The MRCT internal force vector and the consistent tangent matrix is given below 

fint = QTΣdΩ
Ω
∫ =

B0( )T σ 0 − β 1( )
N1( )T β 1 + G1( )T m1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥Ω

∫ dΩ.

K =
K0 + B0( )T Cβ

al1B0 − B0( )T Cβ
al1N1

− N1( )T Cβ
al1B0 N1( )T Cβ

al1N1 + G1( )T Cm
al1G1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥Ω

∫ dΩ.

( 8 ) 

where 

 
K0 = B0T Cσ

al − !σ( )B0 +G0Tσ̂G0  ( 9 )

and Cσ
al ,Cβ

al1,Cm
al1 are algorithmic moduli at different scales. The detailed expressions of  !σ , σ̂

and G0 are listed in  [8] . 
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3.2 MRCT constitutive relations 
A hypoelastic-plastic approach is used in the stress updating algorithm and the formulation 

accommodates large strains. The multiresolution continuum elastic matrix C relates the 
objective rates of the generalized stress vector and the elastic part of the generalized strain 
rate vector 

Σ∇ = C ⋅ Δe  ( 10 ) 

C is written as 

C =

Cσ 0 0

0 Cβ
1 0

0 0 Cm
1

#

$

%
%
%
%

&

'

(
(
(
(

( 11 ) 

Cσ  is the conventional elasticity tensor (Hooke’s law), Cβ
1 andCm

1  are the elastic moduli in 
the microdomain given by  

Cβ
1 =

1
Ω1 mC

a dΩ
Ω1
∫ =Ca

Cm
1 =

1
Ω1 mC

a ⊗ y⊗ ydΩ
Ω1
∫ =Ca ⊗

l1( )
2

12
I

( 12 ) 

I is the identity matrix, 

€

Ca  is the volume average of local elasticity tensor in the 
microdomain. The elastic moduli in the microdomain used in Eq.( 12 ) is taken as 
Ca = Cσ /10  based on [9]. The length scale parameter l1  has been directly incorporated into 
the multiresolution continuum constitutive relations. 

A J2  plasticity is used to model the finitely deformed materials at the macroscopic scale. 
A dislocation density based material model [2] is used to model the macroscopic flow stress. 
A detailed description about the model will be given in the next section. The subscale is 
assumed to be pure elastic in the current study. 

4 DISLOCATION DENSITY MODEL 

4.1 Flow stress. 
The dislocation density based models are physically based models where the underlying 

physical processes during the deformation are used to construct the constitutive equations. An 
overview of the different deformation mechanisms are given in [10] . 

The flow stress in current model consists of two parts 

σ y =σ G +σ ∗ ( 13 ) 

where σ G  is an athermal stress contribution which is due to long-range interactions with the 
dislocation substructure. It is written as 
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σ G = mαGb ρi ( 14 ) 

where m is the Taylor orientation factor. α  is a proportionality factor, G  is temperature 
dependent shear modulus, b is Burger’s vector. 

σ ∗  is the short-range stress component 

σ ∗ = τ 0G 1− kT
Δf0Gb3

ln
!ε ref
!ε p

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1/q⎛

⎝
⎜

⎞

⎠
⎟

1/p ( 15 ) 

where τ 0  is the athermal flow strength that must be exceeded in order to move the dislocation 
across the barrier without aid of thermal energy. k is the Boltzmann’s constant. Δf0  is the free 
energy required to overcome the lattice resistance or obstacles without aid from external 
stress.  !ε ref  is the reference strain rate. q and p are parameters with the condition 

0 ≤ p ≤1
1≤ q ≤ 2

( 16 ) 

4.2 Evolution equations. 
The dislocation processes include generation, annihilation, immobilization and 

remobilization of dislocations. The evolution equation is written in a general form as 

 !ρi = !ρi
(+ ) − !ρi(− ) ( 17 ) 

The mobile dislocation density is assumed to be independent of stress and strain and is much 
smaller than the immobile dislocation density. Subscript i represents the immobile dislocation 
density. 

The hardening term is assumed to be proportional to the effective plastic strain rate 

!ρi(+ ) =
m
b
1
Λ
!ε p

( 18 ) 

where the mean free path Λ  is assumed to be the contribution from the grain size g and 
dislocation subcell size s in current model 

 

1
Λ
=
1
g
+
1
s
!  

( 19 ) 

and other contributions may also be included. The equation corresponds to assuming additive 
contributions to immobilization of dislocations. The grain size g is assumed to be constant 
and the evolution of the subcell size is written as 

s = Kc
1
ρi

( 20 ) 

where Kc  is a temperature dependent parameter. 
There are different processes that contribute to the reduction of the dislocation density. We 
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include a dynamic recovery contribution that is proportional to the immobile dislocation 
density 

 !ρi
−( ) = Ωρi !ε p  ( 21 )

where Ω  is a temperature dependent material parameter. A model for recovery by climb has 
also been included as 

!ρi
−( ) = 2cγDv

cv
cveq

Gb3

kT
ρi2 − ρeq2( )

( 22 ) 

where cγ  is a calibration parameter, Dv  is diffusivity, cveq  is the thermal equilibrium vacancy 
concentration and cv  is the fraction of vacancies. The diffusivity is scaled due to generation of 
excess vacancies. This is done by multiplying Dv  by the quotient of cv  divided by cveq . ρeq  is 
the equilibrium value towards which the dislocation density decreases. The diffusivity Dv  is 
written as 

Dv = Dv0e
−Qvf +Qvm

kT
⎛
⎝⎜

⎞
⎠⎟

( 23 ) 

where Qvf is the activation energy for forming a vacancy and Qvm  is the vacancy migration 
and 

Dv0 = Dvm0e
ΔSvf
k

"
#$

%
&'

( 24 ) 

where Dvm0  is a reference diffusivity and ΔSvf  is the increase in entropy when a vacancy is 
created.  

The equilibrium vacancy concentration cveq  is written as

cveq = e
ΔSvf
k

⎛
⎝⎜

⎞
⎠⎟e

−Qvf
kT

⎛
⎝⎜

⎞
⎠⎟

( 25 ) 

The evolution of the vacancy concentration (generation and recovery) is modeled with the 
following equation for mono-vacancy evolution [11]  

!cv = χ Ω0

Qvf
σ y +ς

cjΩ0

4b3
⎛
⎝⎜

⎞
⎠⎟
!ε p − Dvm

1
s2

+ 1
g2

⎛
⎝⎜

⎞
⎠⎟
cv − cveq( ) + !cveq

( 26 ) 

χ  is a material parameter, Ω0  is the atomic volume and cj  is the concentration of thermal 
jogs. The latter is written as 

cj = e
−Qfj

kT
⎛
⎝⎜

⎞
⎠⎟

( 27 ) 

where the formation energy Qfj  is 

Qfj =
Gb3

4π 1− v( )
( 28 ) 

and v is the Poissons’s ratio. 
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Parameter ς  is calculated as 

ς =
0.5 −ς 0cj

0

#
$
%

&%

if  cj ≤ 0.5 /ς 0

if  cj > 0.5 /ς 0

( 29 ) 

where ς 0 = 10 . 

Dvm  is the vacancy migration for vacancy annihilation and is calculated as 

Dvm = Dvm0e
−Qvm
kT

⎛
⎝⎜

⎞
⎠⎟

( 30 ) 

The rate of change in vacancy concentration due change in temperature  !cv
eq  is written as 

!cveq = cveq
Qvf

kT 2

⎛
⎝⎜

⎞
⎠⎟
!T

( 31 ) 

The detailed the stress updating procedure is given in [2]. 

5 EXAMPLES 
The model is calibrated with the compression test data of 316L stainless steel at 4 

temperatures 20°C, 400°C, 800°C and 1300°C respectively and at the strain rate 0.01s-1. The 
used model parameters are given in [2]. The calibration result is shown in Figure 1. The 
symbols are the experimental measurements and the solid lines are predicted by the model. 

Figure 1: Dislocation density model calibrated with the experimental data. 

A 3D plate is loaded in tension by prescribing the counter propagating motions at each 
ends, only 1/8 of the geometry is modeled due to symmetry. The length and the height of the 
plate in the x and y directions are 10 mm and 12 mm, respectively. The thickness of the plate 
is 1 mm. The mesh is show in Figure 2. 
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Figure 2: 3D plate. 

 The effect of the changing properties of the microdomain of the MRCT element on the 
macroscopic behavior has been studied. We prescribed the temperature to be 400°C for all 
cases below. The x-component of the stress along the bottom edge of the plate is shown in 
Figure 3. The different curves correspond to different properties of the microdomain with a 
fixed length scale of 1. C1=C0/100, for example, means that Ca  in Eq. ( 12 ) is  of 1/100 of 
Cσ . 

Figure 3 x-component of stress along the bottom edge of the plate predicted at the end of the elongation with 
different properties of the microdomain at 400oC with a fixed length scale. 

The same stress has been plotted in Figure 4 for different length scales and with Ca  fixed as 
1/10 of Cσ . LS=0.5, 1.0 and 5.0 simply means length scale is equal to 0.5, 1.0 and 5.0, 
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respectively. The element size for the mesh shown in Figure 2 is 1, so the length scale used in 
the simulation is smaller, equal or larger than the element size. 

Figure 4 x-component of stress along the bottom edge of the plate predicted at the end of the elongation with 
different length sclaes at 400oC with a fixed  C1. 

The previous two figures show that there is a similar influence of the properties of the 
microdomain on the macroscopic behavior. Both increasing the microscopic stiffness or the 
length scale parameter stiffens the microdomain and prevents the localization as is shown in 
the figures.  

The MRCT element can give mesh independent results  [6] . A simple damage model was 
applied at the macroscopic scale of the MRCT element. The mesh is discretized as shown in 
Figure 5 with the name m1012, m2024, m4048 and m8096 from left to right respectively, 
which indicates how much the mesh is refined. 

Figure 5 Refined mesh. 
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The mesh dependent force displacement curves predicted by the conventional continuum 
element, i.e. no microdomain, are shown in Figure 6. 

Figure 6 Mesh dependent results. 

The mesh force displacement curves predicted by MRCT element with different length 
scales are shown in Figure 7 and Figure 8. When using length scale of 1, the results given by the 
two finer meshes m4048 and m8096 are getting closer, but the discrepancy between the 
meshes can still be seen. When using length scale of 2, then we have the mesh independent 
results for all 4 meshes as opposed to the results predicted by the conventional continuum 
method as shown in Figure 6. 

Figure 7 Force displacement plot predicted by MRCT with length scale of 1. 
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Figure 8 Force displacement plot predicted by MRCT with length scale of 1. 

6 CONCLUSIONS AND DISCUSSIONS 
An implicit MRCT element has been formulated and implemented in [6] . It can give mesh 

independent results for localization problem provided an appropriate length scale is chosen.  
A dislocation density model has now been implemented in the macroscopic part of the 

MRCT element as it has been found to be better than the more common Johnson-Cook model 
in machining simulations [12, 13] . The combination of this model together with the 
capability of the element to handle localization problems makes the formulation a candidate 
for machining simulations. 

The effects of the changing length scale and that of the changing microscopic properties on 
the macroscopic behaviors are studied and demonstrated at 400oC with strain rate 0.01s-1. The 
deformation in the microdomain is triggered by the non-uniform macroscopic deformations. It 
resists these gradients and thereby stabilizes the solutions in case of localization. Increasing 
the microscopic stiffness stiffens the microdomain and thus assists in reducing the gradients 
of the macroscopic deformation giving less localization. At least the elastic properties of the 
microdomain cannot be taken the same as for the macroscopic behavior as then it will resist 
localization too much as shown in Figure 3. Thus they are part of a calibration procedure. 
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