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Abstract. Damage models, developed in the last decades, insure a continuous description of
the fracture process zone in quasi-brittle materials but fail at representing fine information of
the cracking features such as openings and spacings. Recently, the concept of displacement
discontinuities embedded into a standard finite element has been proved to be efficient in mod-
eling fracture of quasi-brittle materials. The present paper aims at capturing crack openings in
a natural way by using the Strong Discontinuity Approach (SDA). This later is coupled with
a continuous anisotropic damage model accounting for different crack orientations and crack
closure effects. A regularized version of the Dirac distribution and the hardening parameter
provides+ the establishment of an enriched model compatible with the continuous one. Numer-
ical simulations at the integration point level and a three-point bending test carried out on a
single edge notched beam show the performances of the model.

1 INTRODUCTION

The complex behaviour of quasi-brittle materials has been widely studied. Quasi-brittle fail-
ure is characterized by an induced anisotropy : microcracks orientation is dependent on the
loading path. Furthermore, different features such as cracking, crack closure effect and perma-
nent strains are observed. Different approaches and models has been developed to capture the
aforementioned features. Recent isotropic damage models, based on a continuum description
of the media, succeed in representing the complex behavior of quasi-brittle materials. Never-
theless, cracking is described in a diffuse way and it is always difficult to quantify the cracking
features such as openings and spacings without post-treatment methods [1]. Other approaches,
like smeared-crack models, developed for concrete fracture, suffer from spurious stress transfer
across an open crack (stress locking). This phenomenon is observed for fixed and rotating crack
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models. For the first one, locking is due to shear stresses. For the second model, locking is
due to the misalignment between the direction of the macroscopic crack and the finite element
side [2]. Most of three-dimentionnal anisotropic models developed, using a tensorial variable,
describe quite well global cracking, crack closure effects often by means of strain decomposition.
However, several authors [3,4] have pointed out some problems when dealing with a spectral de-
composition of the damage and strain tensors. In order to describe accurately the non-isotropic
microcracking pattern, the anisotropic model needs to be simple and robust. For seismic appli-
cations, particularly for cyclic loadings, crack opening requirements induce the development of a
numerical model which provides fine information (openings, spacings) in a natural way. The aim
of our work is the development of an anisotropic damage model which enables crack openings
explicitly and in a natural way.

Recently, embedded crack models, considering either elemental enrichment E-FEM [5] or
nodal enrichment X-FEM [6] succed in describing fracture process zones in concrete. How-
ever, nodal enrichment is more time consuming, intrusive in a finite element code and has still
to be improved in case of 3D problems. The Strong Discontinuity Approach (SDA) consists
in a kinematically enhancement with a displacement jump leading to a singular strain field.
Regularization technique of the singular strain field, performed on isotropic damage models or
plasticity models, provides a discrete model compatible with the continuum one. In this paper,
an anisotropic damage model, based on micromechanical assumptions, is used [7]. This model
allows accounting for particular crack orientations and can represent either mode-I and mode-II
cracking mechanisms which can be handled independently. The anisotropic damage model is
then enriched using the SDA and the regularization technique is performed. A discrete consti-
tutive model expressed in terms of a traction/separation law is obtained and applied to simple
tests using a plate kinematic formulation.

The paper is organized as follows: in section 2, the anisotropic damage model used to de-
scribe concrete degradation with its associated constitutive relations, is described. The E-FEM
framework and the regularization method for obtaining an enriched damage model are presented
in section 3. Numerical implementation aspects are exposed in section 4. In section 5, the per-
formance of the developed model is assessed by the analysis of a three-point bending test carried
out on a single edge notched concrete beam.

2 CONTINUUM ANISOTROPIC DAMAGE MODEL

In this section, the anisotropic damage model is described. The definition of the damage
state and the constitutive relations are exposed.

2.1 Damage definition

The model, based on micromechanical assumptions, describes the damage state (see figure 1)
as the contribution of families of parallel cracks definied by a normal ni and microcracking density
ρi [7]. Damage is written as the couple ρi, N

i
where N

i
are directionnal tensors calculated as

the tensorial product of normals to the crack ni.

N
i
= ni ⊗ ni (1)

Tensors N
i
are fixed and do not evolve along with the loading. They must fulfill these two
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Figure 1: Crack families of normal ni and density ρi

conditions :

- any tensor ni ⊗ ni is an additive combination of N
i
,

- an isotropic damage state must be described by a constant crack density ρ0 in each direction
N

i
:
∑

i ρiN i
∝ ρ01 where 1 is the second-order identity tensor.

Nine directionnal tensors are defined in order to fulfill the previous conditions. Their ori-
entation depends on the loading configuration. In the orthonormal basis (e1, e2, e3), they are
expressed as follows:

N
1
= e1 ⊗ e1 N

2
= e2 ⊗ e2 N

3
= e3 ⊗ e3

N
4
= (e1 + e2)⊗ (e1 + e2) N

5
= 1

2(e1 + e3)⊗ (e1 + e3) N
6
= 1

2(e2 + e3)⊗ (e2 + e3)

N
7
= 1

2(e1 − e2)⊗ (e1 − e2) N
8
= 1

2(e1 − e3)⊗ (e1 − e3) N
9
= 1

2(e2 − e3)⊗ (e2 − e3)

It is important to highlight that the nine crack families do not interact. Each associated
microcracking density ρi is considered as an internal variable.

2.2 Constitutive laws

This model is expressed within the framework of the irreversible processes thermodynamics.
The constitutive laws are written following the approach of Bargellini [7]. Under the hypoth-
esis of non-interacting cracks, no residual strains and neglecting friction on the crack lips, the
Helmholtz free energy expression is given by equation 2.

ψ(ρ,N, ε, z) = ψ0 +
9∑

i=1

ρi[α[tr(ε · ε)−
1

2
tr2(ε) + tr(ε)tr(ε ·N

i
)]

+ 2βtr(ε · ε ·N
i
)

− (
3

2
α+ 2β)tr2(ε ·N

i
)H(−tr(ε ·N

i
))]

+
9∑

i=1

Hi(zi) (2)

where ψ0 is the elastic free energy, Hi(zi) the consolidation function depending on the hard-
ening variable zi; tr(·) is the trace of (·); H(·) is the Heaviside function and α, β two material
parameters (α, β < 0). Crack closure effect is taken into account by means of an opening/closure
condition given by equation 3.

N
i
: ε = tr(ε ·N

i
) ≤ 0 (3)
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The stress-strain response is obtained by derivation of the free energy with respect to ε. The
state law is expressed as follows:

σ(ρ,N, ε) =
∂ψ

∂ε
= σ

0
+

9∑
i=1

ρi[α[2ε− tr(ε)1 + tr(ε)N
i
+ tr(ε ·N

i
)1]

+ 2β(ε ·N
i
+N

i
· ε)

− (3α+ 4β)tr(ε ·N
i
)N

i
H(−tr(ε ·N

i
))] (4)

where σ
0
=

∂ψ0

∂ε
. We define, for sake of simplicity, gi(x,N i

) :
def
= α[2x − tr(x)1 + tr(x)N

i
+

tr(x ·N
i
)1] + 2β(x ·N

i
+N

i
· x)− (3α+ 4β)tr(x ·N

i
)N

i
H(−tr(x ·N

i
)) linear with respect to

x which verifies the following properties gi(0, N i
) = 0 and gi(λx,N i

) = λgi(x). Derivation of
the free energy with respect to the internal variables ρi, zi gives the associated thermodynamic
forces F ρi and the hardening function Zi(zi) respectively. The threshold surface is:

φi = F ρi − (Z0 + Zi(zi)) (5)

where F ρi = −(
3

2
α + 2β)tr2(ε · N

i
)(1 −H(−tr(ε · N

i
))); Z0 is an initial threshold function

of the elastic limit σu and the Young modulus E and Zi(zi) = Z0(e
−zi/C

ρi
3 − 1) where Cρi

3 is a
material parameter (Cρi

3 > 0). The main assumption of the model is that cracks evolve only
when they are open. Furthermore, if the loading direction changes, crack densities will follow
this evolution given the fact that thermodynamic forces depend on the current strain. The flow
rule for the microcracking densities is obtained by the threshold surface and the consistency
conditions.

ρi = Cρi
3 ln

(
F ρi

Z0

)
ρi ∈ [0; ρi,max] (6)

3 EMBEDDED DISPLACEMENT DISCONTINUITY FRAMEWORK

In this section the embedded kinematics is exposed. Then, the anisotropic damage model
presented in section 2, is enriched and a regularization of the Dirac distribution is performed.
The main features of the method are highlighted.

3.1 Kinematics

Consider a Kirchhoff plate Ω of thickness h defined by a normal ez. The displacement field
is given by equation 7.

u(x, t) = ut(x, t) + z θ(x, t) ∧ ez (7)

where ut(x, t) is the displacement vector and θ(x, t) the rotation vector. Let ΓS be the
discontinuity surface which splits the body into two parts Ω− and Ω+. Let n be the normal to
the discontinuity pointing to Ω+.

In this paper, only the membrane part of the kinematics ut is enriched with a displacement
jump as given in equation 8.

ut(x, t) = u(x, t) +HΓS
(x)�u�(x, t) (8)
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Figure 2: Discontinuity surface Γs inside the plate Ω

where u(x, t) 1 stands for the regular continuous displacement field and �u�(x, t) is the dis-
continuity jump through ΓS . The classical Heaviside function is HΓS

(x) = 1 if x ∈ Ω+ and 0
otherwise. The strain field obtained from the symmetric gradient of the displacement field is
given by equation 9.

ε = ∇su+HΓS
(x)∇s�u�︸ ︷︷ ︸

continuous bounded

+ δΓS
(�u� ⊗ n)s︸ ︷︷ ︸

discontinuous unbounded

= ε+ δΓS
(�u� ⊗ n)s (9)

where (.)s is the symmetric part of (.) and δΓS
is the Dirac distribution on ΓS . The strain

field is composed of a continuous and bounded part and a singular unbounded one.
Following the approach of Oliver [8], the Dirac distribution is approximated by a regulariza-

tion function δkΓS
(x) defined as follows:

δkΓS
(x) =

1

k
µΓk

S
(x) (10)

with µΓk
S
(x) = 1 if x ∈ Γk

S and 0 otherwise, where Γk
S is a discontinuity band of bandwidth

k as small as possible such that, lim
k→0

δkΓS
(x) = δΓS

(x).

3.2 Strong discontinuity framework

In the strong discontinuity regime, the regularized version of the strain field is :

ε = ε+ δΓS
(�u� ⊗ n)s ≈ ε+

1

k
(�u� ⊗ n)s (11)

3.2.1 Discrete hardening law

The traction continuity conditions at the interface ΓS and in the domain Ω\ΓS , impose
bounded values of the traction vector components and the stress tensor even if strains are not
bounded. At the onset of the discontinuity, stresses in the rate form considering equations 11
and 4, where the non-linear part is replaced by a function g(ε,N

i
) for sake of simplicity, are

expressed as follows:

σ̇
ΓS

= C : (ε̇+
1

k
(�u̇� ⊗ n)s) +

9∑
i=1

ρ̇igi(ε+
1

k
(�u� ⊗ n)s, N

i
) +

9∑
i=1

ρigi(ε̇+
1

k
(�u̇� ⊗ n)s, N

i
)

where C is the Hooke’s tensor. Taking the limit of kσ̇
ΓS

when k tends to 0 gives:

1The notation (x, t) will be omitted for easy reading
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lim
k→0

kσ̇
ΓS

= C : (�u̇� ⊗ n)s +
9∑

i=1

ρ̇igi((�u� ⊗ n)s, N
i
) +

9∑
i=1

ρigi((�u̇� ⊗ n)s, N
i
) (12)

Equation 12 is equal to 0 because σ̇
ΓS

is bounded on ΓS . Furthermore, equation 12 trans-

lates that the evolution of the discontinuty jump rate �u̇� is a function of ρ̇i, ρi, ni. Then, the
discontinuty jump rate is bounded on ΓS if ρ̇i is bounded. The flow rules give:





ρ̇i = λ̇i
∂φi

∂F ρi
= λ̇i

żi = λ̇i
∂φi

∂Zi
= −λ̇i

⇒ ρ̇i = −żi (13)

where λ̇i are the plastic multipliers. Considering the consistency condition λφ̇i = 0 at the
interface ΓS and the flow rules given by equation 13, one obtains:

− (3α+ 4β)tr((ε+
1

k
(�u� ⊗ n)s) ·N

i
)(1−H(tr((ε+

1

k
(�u� ⊗ n)s) ·N

i
)))N

i
: (ε̇+

1

k
(�u̇� ⊗ n)s)

+Hiρ̇i = 0 (14)

where Hi =
∂Zi(zi)

∂zi
=

∂2Hi(zi)

∂2zi
is the hardening parameter. Taking the limit of kρ̇i when k

tends to 0 yields:

lim
k→0

kρ̇i =
1

Hi
(3α+ 4β)tr((�u� ⊗ n)s ·N

i
)(1−H(tr((�u� ⊗ n)s ·N

i
)))N

i
: (�u̇� ⊗ n)s :

def
= ρ̇i (15)

We can define λ̇ = lim
k→0

(kλ̇) the discrete plastic multiplier and ρ̇i = lim
k→0

(kρ̇i) (respectively żi =

lim
k→0

(kżi)) the discrete microcracking variables (respectively the discrete hardening variables).

The hardening function rate is then Żi = −Hiρ̇i = −Hi
ρ̇i
k

= −Hi

k
ρ̇i = −Hiρ̇i with Hi the

discrete hardening parameter. The discrete microcrack densities rate ρ̇i is bounded on ΓS and
so is the displacement jump rate.

3.2.2 Discrete free energy

Considering the regularized strain field, the free energy is expressed as follows:

ψΓS
= ψ0 +

9∑
i=1

ρi[α[tr((ε+
1

k
(�u� ⊗ n)s) · (ε+ 1

k
(�u� ⊗ n)s))− 1

2
tr2((ε+

1

k
(�u� ⊗ n)s))

+ tr((ε+
1

k
(�u� ⊗ n)s))tr((ε+

1

k
(�u� ⊗ n)s) ·N

i
)]

+ 2βtr((ε+
1

k
(�u� ⊗ n)s) · (ε+ 1

k
(�u� ⊗ n)s) ·N

i
)

− (
3

2
α+ 2β)tr2((ε+

1

k
(�u� ⊗ n)s) ·N

i
)H(−tr((ε+

1

k
(�u� ⊗ n)s) ·N

i
))]

+
9∑

i=1

Hi(zi) (16)
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The derivative of equation 16 with respect to the discontinuity jump gives:

∂ψΓS

∂�u� =
∂ψΓS

∂ε
:

∂ε

∂�u� = σ
ΓS

:
1

k
(1⊗ n)s =

1

k
σ
ΓS

· n =
1

k
tΓS

(17)

Taking the limit of equation 17 yields tΓS
= lim

k→0
k
∂ψΓS

∂�u� =
∂ lim

k→0
kψΓS

∂�u� =
∂ψΓS

∂�u� where ψΓS

is the discrete free energy at the discontinuity interface. Discrete thermodynamic forces F
ρi

are obtained immediately by derivation of the discrete free energy with respect to the discrete
microcrack densities variables.

3.2.3 Continuum-discrete equivalence

At the onset of localization, the threshold surface is zero so the stresses reach the elastic limit
σu, the thermodynamic forces reach the intial threshold value Z0 and the elastic free energy
is equal to a constant value depending on the elastic limit ψu. The discrete model obtained
considering the previous developments can be summarized as follows:

Free energy

ψΓS
=

9∑
i=1

ρi[α[tr((�u� ⊗ n)s · (�u� ⊗ n)s)− 1

2
tr2((�u� ⊗ n)s) + tr((�u� ⊗ n)s)tr((�u� ⊗ n)s ·N

i
)]

+ 2βtr((�u� ⊗ n)s · (�u� ⊗ n)s ·N
i
)− (

3

2
α+ 2β)tr2((�u� ⊗ n)s ·N

i
)H(−tr((�u� ⊗ n)s ·N

i
))]

+
9∑

i=9

Hi(zi) with ψΓS
∈ [ψu,∞[ (18)

Traction vector

tΓS
=

∂ψΓS

∂�u� =
9∑

i=1

ρigi((�u� ⊗ n)s, N
i
) · n with ‖tΓS

‖ ∈ [σu, 0[ (19)

Thermodynamic forces

F
ρi = −

∂ψΓS

∂ρi

= −(
3

2
α+ 2β)tr2((�u� ⊗ n)s ·N

i
)(1−H(−tr((�u� ⊗ n)s ·N

i
))) with F

ρi ∈ [0, Zi] (20)

Hardening function

Zi =
∂ψΓS

∂zi
with Zi ∈ [

σu
2E

, 0[ (21)

Microcrack densities

ρi = Cρi
3 ln

(
F

ρi

Z0

)
with ρi ∈]−∞; ρi,max] (22)

The following one to one correspondance of the continuum damage model and the induced
enriched one is given in table 1.
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Table 1: Correspondance of the continuum and the enriched model

Continuum ψ σ ε F ρi ρi Zi(zi)

Enriched ψΓS
tΓS

�u� F
ρi ρi Zi(zi)

4 NUMERICAL PROCEDURE

In this section, the numerical aspects are discussed. The enriched model has been imple-
mented in the finite element code Cast3M [9]. The local integration algorithm is also presented.

4.1 Embedded Finite Element Method

For numerical simulations the Embedded Finite Element Method is used. This method
consists in adding a degree of freedom locally in the element that is crossed by the crack (see
figure 3). The displacement field is written as:

u =
∑
i∈I

uiφi +
∑
e∈E

βeM
e
ΓS

(23)

with M e
ΓS

= HΓS
− ϕe and ϕe =

∑ne
node+

i=1 φe
i , where E is the set of elements to be enriched,

ne
node+ are the nodes of element e in Ω+, βe are the degrees of freedom accounting for the jump

and M e
ΓS

is the jump shape function such that M e
ΓS

= 1 in the discontinuity and 0 otherwise.

Ω+

Ω−

Ω
Nodes ∈ Ω+

Enriched d.o.f

Support

Figure 3: Elemental enrichment E-FEM

The inherent local character of the method reduces calculation time. Indeed, for fixed dis-
placements a local equation solving is performed and then the local information (displacement
jump) is condensed within the finite element for global resolution (global displacements). Hence,
global system size remains unchanged and the structure of the element code too.

4.2 Local integration algorithm

The local integration algorithm for the numerical procedure is given in figure 4.

5 NUMERICAL APPLICATIONS

In this section numerical simulations on the integration point level and a three-point bending
test carried out on a single edge notched specimen are emphasized.
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Time loop

k loop

Beginning of the time step t, updating strains εt+∆t = εt + ∆ε .
The known variables are:

σt,0, tt,0 = σt,0 · n, F t,0, Z
t,0
i , �u�t,0, ρt,0i , tt,0ΓS

Updating stresses, thermodynamic forces:
σt+∆t,0, tt+∆t,0, F t+∆t,0

Calculation of the residual and the threshold surface:
rt,0 = tt+∆t,0 - tt,0ΓS

φt,0 = F t+∆t,0 - (Z0 + Z
t,0
i )

Calculation of the predictive stiffness matrix Kt,0 :

Kt,0 =
∂tt+∆t,0

∂�u�t,0 −
∂tt,0ΓS

∂�u�t,0

Criterion φt,0 > 0

While ‖r
t,k

rt,0
‖ < ε

Find ∆�u�t,k such that rt,k = 0
∆�u�t,k = - (Kt,0)−1 · rt,k

Update �u�t,k = �u�t,k + ∆�u�t,k

Calculation of F
t,k
, ρt,ki , tt,kΓS

Update σt+∆t,k, tt+∆t,k, Kt,k

Update the residual rt,k

Update the hardening function Z
t,0
i

Go to the next time step

No

Yes

Figure 4: Local integration algorithm

5.1 Gauss point results

The results of a cyclic tension/compression test at the integration point level are reported in
figure 5. The material parameters used for this simulation are given in table 2.

The softening behaviour of concrete is well reproduced, as expected. The choice of a linear
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Table 2: Material parameter for the integration point level test

Parameter E ν α β Z0 Cρ1
3 C

ρ4,5,7,8
3

Value 29 GPa 0.21 -12.5 GPa -14.5 GPa 420 MPa 0.05 0.01

behaviour in compression has been made. The correspondance between the continuous model
and the enriched one is emphasized. The enriched model depicts the softening behaviour in terms
of traction vector-displacement jump. Elastic properties are totally recovered in compression.
The anisotropy of the model is emphasized by the evolution of microcracking densities. Uniaxial
traction in direction 1 enables activation of two microcracking groups : cracks normal to the
loading ρ1 and other microckracks ρ4,5,7,8 which evolve slower.
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Figure 5: Continuum model 5(a), traction-displacement jump evolution 5(b), microcrack densities evo-
lution (ρ1, ρ4,5,7,8, ρ2,3,6,9) 5(c)

5.2 Three-point bending test

A three-point bending test campaign on mortar beams, undergone in the LMT Cachan, is
used [1]. Square section specimens of dimension D = 70 cm and length 4D have been tested. A
single notch of depth D/2 and thickness 3 mm was sawed at the center of the specimen before the
test. The geometry and the boundary conditions are given in figure 6. The material parameter
used for this test are given in table 3.

Table 3: Material parameter for the three-point bending test

Parameter E ν α β Z0 Cρ1
3 C

ρ4,5,7,8
3

Value 34 GPa 0.21 -14.33 GPa -14.29 GPa 195 MPa 1.56 0.05

The global results in terms of load-deflexion given by the model are compared with the
experimental results and are reported in figure 7(a). A good agreement with the experiment is
obtained. In order to illustrate the performances of the model at capturing local information
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F,u

D/2 3D D/2

D/2

D/2

Figure 6: Geometry and boundary conditions of the three-point bending test

like crack openings, the evolution of the height of the specimen versus crack opening is reported
in figure 7(b). Results are given for different loading levels - at peak, 75% post-peak and 50%
post-peak. The model is able to capture quite well the local behaviour as well as the overall
behaviour.
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Figure 7: Numerical model compared to experiment: load deflexion response 7(a), crack openings 7(b)

6 CONCLUSIONS

In this paper, an enriched plate-formulation was presented. The developed model is based on
an anisotropic damage model for quasi-brittle materials. The damage state is expressed as the
contribution of nine crack families of normal ni and density ρ

i
. The model can represent either

mode I and mode II cracking mechanisms, accounts for different crack orientations and crack
closure effect. The strong discontinuity approach was used to capture localisation features like
crack openings. A regularized version of the Dirac distribution and the hardening parameter
allows for the establishment of an enriched model compatible with the continuous one. The E-
FEM technique is efficient, non intrusive for the finite element code and it is not time-consuming.
Simulations at the integration point level and a three-point bending test carried out on a single
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edge notched beam have shown the performance of the model. Global and local information are
well captured. Results presented in this paper constitute the first step for futher development.
Further simulations will be performed on reinforced concrete elements, like reinforced concrete
ties and shear walls, to show the performances of our work. An identification procedure for
the material parameters of the damage model is under development. Virtual testing based on
a lattice element method is used as a reference model. An optimisation method based on the
trust region effective algorithm is considered for the identification procedure. The next step of
our work is the full enrichment of the plate kinematics - the flexional part of the kinematics
will also be enriched with the same technique. Therefore, the double enhancedd model would
represent complex failure behaviour of reinforced concrete components.
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