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ABSTRACT

Neuromusculoskeletal models used to predict muscle and joint contact forces for a specific
individual require specification of muscle-tendon, skeletal geometry, and neural control model
parameter values. Though these parameter values should ideally be calibrated using in vivo data
collected from the subject, they are often taken from generic models. This study explored the
influence of three model calibration methods on predicted lower limb muscle and knee contact
forces during walking. The calibrated model from each approach was used in a static
optimization that predicted knee contact forces for six walking trials. The predictions were
evaluated using knee contact forces measured in vivo from a subject implanted with a force-
measuring knee replacement. The first calibration approach used muscle-tendon model
parameter values (i.e., optimal muscle fiber lengths and tendon slack lengths) taken directly
from the literature. The second approach calibrated muscle-tendon model parameter values such
that each muscle operated within a physiological range on the ascending region of its
normalized force-length curve. The third approach used a novel two-level optimization that
exploited knowledge of the knee contact force measurements to calibrate muscle-tendon,
moment arm, and neural control model parameter values such that the calibrated model would
predict the in vivo contact forces as closely as possible. For the third approach, three walking
trials were used to calibrate the model and the remaining three to test the calibrated model.
Overall, calibration method had a large affect on predicted knee contact forces. The first method
produced highly inaccurate contact force predictions and infeasible solutions for most time
frames. The second approach produced accurate medial contact force predictions (average R? =
0.89, average RMS error = 107 N) but inaccurate lateral predictions (average R? = -1.77,
average RMS error = 297 N). The third approach produced accurate testing predictions for both
medial (average R? = 0.91, average RMS error = 96 N) and lateral (average R* = 0.76, average
RMS error = 84 N) contact force. These results reveal that when knee contact force data are
available, a single set of model parameter values can be successfully calibrated to predict medial
and lateral knee contact force accurately over multiple walking cycles. They also reveal that
when knee contact force data are not available (the most common situation), a simple
calibration method based on muscle operating ranges on their normalized force-length curves
may be sufficient to produce accurate medial but not lateral knee contact force predictions.

Keywords: Knee contact forces, muscle force estimation, musculoskeletal model calibration,
static optimization, biomechanics

1 INTRODUCTION

The ability to determine muscle and joint contact forces accurately during human movement
could be useful for various medical applications, such evaluation of injured subjects at follow-
up or prediction of surgical outcome in advance. Experimental measurement of muscle and joint
contact forces is not practical in a clinical setting and currently would require invasive



measurement methods (e.g., placing buckle force transducers on tendons). For this reason,
numerical methods have been proposed as an alternate means for determining these forces.
However, there is indeterminacy in the muscle force calculation process, since the human
musculoskeletal system possesses many more muscles than degrees of freedom. Consequently,
optimization methods are often applied to solve the indeterminacy problem.

The most common optimization approaches found in the literature are static and dynamic
optimization [1,2]. Both are based on the idea that the central nervous system follows a strategy
that minimizes some physiological variable (cost function) subject to various constraints. When
available, in vivo hip or knee contact force measurements can be used to evaluate lower limb
muscle force predictions, although such an approach does not guarantee that the predicted
muscle forces will be accurate. Several studies have followed such an approach [3-5]. However,
no study has been able to calibrate muscle-tendon, moment arm, and neural control parameter
values in a lower limb neuromusculoskeletal model such that the model can predict medial and
lateral knee contact forces accurately for multiple walking trials not used in the calibration
process. Furthermore, most studies use neuromusculoskeletal model parameter values taken
directly from the literature rather than calibrated to the unique functional characteristics of the
subject being modeled.

To calibrate parameter values in a neuromusculoskeletal model, researchers should use as much
available experimental data as possible to constrain the calibration process. When information is
missing, model parameter values should be constrained to remain within physiologically
realistic bounds whenever possible. Muscle activations can also be constrained using
experimental muscle synergy information [6], potentially reducing the amount of indeterminacy
in the muscle force calculation process [5].

The goal of this study was to investigate how predicted leg muscle and knee contact forces
differ for three model calibration approaches. Each approach used static optimization applied to
a subject-specific musculoskeletal model to estimate muscle forces for six normal walking trials
collected from a subject implanted with a force-measuring knee replacement. The first approach
used a standard method where all muscle-tendon model parameter values were taken directly
from the literature without adjustment or scaling. The second approach pre-calibrated all
muscle-tendon model parameter values such that each muscle operated within a physiologically
reasonable range on its normalized force-length curve [7,8]. The third approach used a synergy-
based two-level optimization formulation that calibrated muscle-tendon as well as moment arm
and neural control model parameter values such that static optimization reproduced
experimental knee contact force measurements. For all three approaches, three walking trials
were used for model calibration and three for testing knee contact force predictions generated
by the calibrated model. The results highlight the significant impact that poorly calibrated
neuromusculoskeletal model parameter values can have on predicted knee contact and leg
muscle forces.

2 METHODS

2.1 Experimental data

Experimental data were taken from the Fourth Grand Challenge Data Competition to Predict In
Vivo Knee Loads [4]. Kinematics (marker trajectories and knee fluoroscopy), ground reaction
forces/torques, and electromyographic (EMG) data were used from six overground gait cycles
(self-selected speed: 1.26 + 0.03 m/s) of a subject (gender: male, age: 88 years, mass: 65 kg,
height: 166 cm) implanted with an instrumented tibial tray. In vivo knee contact force
measurements were available for the medial and lateral sides [4]. EMG data were measured for
ten lower limb muscles (Adductor Magnus - Addmag; Biceps Femoris Long Head - Bflh;
Gastrocnemius Lateralis - GasLat; Gastrocnemius Medialis - GasMed; Peroneus Longus -
PerLong; Semimembranosus - Semimem; Soleus - Sol; Tibialis Anterior - TibAnt; Tensor
Fascia Latae - TFL; Vastus Lateralis — VasLat). These data were high-pass filtered (fourth-order
zero-phase-lag Butterworth filter at 30Hz), rectified, low-pass filtered (fourth-order zero-phase-



lag Butterword filter at 6 Hz) and normalized by the maximum values of all available movement
trials. For consistency, knee contact and ground reaction forces were also low-pass filtered
(fourth-order zero-phase-lag Butterworth filter at 6 Hz).

2.2 Muscle synergy analysis

Experimental muscle activations were calculated for all six gait trials using an activation
dynamics model [9,10]. From these data, a muscle synergy analysis was performed to
decompose the activation signals into time-varying neural commands (NCs) (separate for each
trial), which represent low-dimensional activation patterns, and corresponding synergy vectors
(SVs) (common for all trials), which contain weights defining how each NC contributes to the
activation of each muscle [6,11]. A non-negative matrix factorization approach was used to
decompose the signals [12]. Muscle synergy information was used in the third calibration
approach in an attempt to decrease the amount of indeterminacy in the muscle force calculation
process (Section 2.4). To select the number of NCs and SVs (modules) used to parameterize
muscle activations for the third calibration approach, we picked the minimum number of
modules required to reconstruct activation signals with a variance accounted for higher than
90%, which was five.

2.3 Inverse kinematics and dynamics analyses

A patient-specific musculoskeletal model developed in OpenSim [13] was used to calculate
inverse kinematics and dynamics results. The bone geometry of the model was obtained from a
CT scan of the subject being modeled [4], while muscle origin and insertion points were defined
by scaling a published OpenSim model [14] and then projecting the points to the nearest
locations on the subject-specific bone models. The model consisted of the pelvis and the right
leg (femur, patella, tibia/fibula, and foot) and possessed 24 degrees of freedom (DOF): 3
rotations and 3 translations between the pelvis and ground, 3 rotations at the hip (flexion,
adduction, and rotation), 3 rotations (flexion, adduction, and rotation) and 3 translations
(superior-inferior, anterior-posterior. and medial-lateral) at the knee, and 2 rotations (flexion
and eversion) at the ankle. Five degrees of freedom (all 3 translations and adduction and internal
rotation) of the patella relative to the femur were locked and patellar flexion was constrained to
equal knee flexion.

A pose estimation optimization was used to calculate knee kinematics for each walking trial
consistent with the knee contact force measurements [15]. Each cost function evaluation
involved adjusting the pose parameters (femoral component position and orientation relative to
tibial insert) in an elastic foundation (EF) contact model of the subject’s tibiofemoral joint.
First, an inverse kinematic analysis was performed in OpenSim where all knee DOFs were
locked except for the flexion angle. Next, starting from this motion, a pose estimation
optimization was used to determine the superior-inferior translation, medial-lateral translation,
and adduction rotation in the EF contact model required to match the medial and lateral
compressive contact forces measured experimentally and a medial-lateral shear contact force of
zero. For each pose estimation optimization, the knee flexion angle was locked to the value
predicted by the OpenSim inverse kinematics analysis, while the anterior-posterior translation
and internal-external rotation were locked to values measured using fluoroscopy. The
kinematics determined from OpenSim and the pose estimation optimization were used in an
OpenSim muscle analysis to calculate muscle-tendon lengths, muscle-tendon velocities, and
muscle moment arms. Inverse dynamic loads were also calculated in OpenSim using these
kinematics plus the experimentally measured ground reactions

2.4 Optimization problem formulation

Static optimization was used to predict leg muscle and knee contact forces for each of the three
model calibration approaches evaluated. Approach A used unadjusted literature values for
muscle-tendon model parameter values (optimal muscle fiber lengths and tendon slack lengths).
Approach B calibrated muscle-tendon model parameter values such that the maximum value of



normalized muscle fiber length over one selected gait cycle was one for each muscle. In these
two approaches, moment arms were calculated using the subject-specific OpenSim model
(Section 2.3) and experimental muscle activations were not tracked. Approach C used a novel
two-level optimization formulation. In the outer level optimization, model parameter values
(muscle-tendon plus muscle moment arm and neural control) were adjusted such that the inner
level optimization reproduced the experimental knee contact force measurements without
knowledge of them. For Approach C, three normal walking trials were used for model
calibration purposes and the three remaining trials for testing the calibrated model. The static
optimization used to predict leg muscle and knee contact forces was similar for all three
approaches. Muscle-tendon units were modeled using a Hill-type musculotendon model
possessing a rigid tendon and force-length-velocity properties, where the peak isometric
strength of each muscle was set to twice literature values [8]. For each time frame of each gait
trial analyzed, six inverse dynamics loads were matched as linear equality constraints: three hip
moments (flexion, adduction, and rotation), the knee flexion moment, and two ankle moments
(flexion and eversion). These loads were considered to be unaffected by knee contact forces. To
ensure that the six inverse dynamic loads could be matched exactly, we included a reserve
actuator at each joint with a strength of 0.5 Nm. The cost function minimized the sum of
squares of muscle and reserve activations using a quadratic programming algorithm.

The static optimization for Approach C used a slightly different formulation and was the inner
level of a two-level optimization method. The Approach C static optimization included
additional linear inequality constraints that forced the predicted activations to remain “close” to
a linear combination of experimental neural commands. It did not, however, have knowledge of
the experimental knee contact force measurements. The outer-level optimization of Approach C
adjusted model parameter values such that the inner-level static optimization would predict the
correct knee contact forces without knowing them. Design variables for the outer level were the
following: scale factors for optimal muscle fiber lengths and tendon slack lengths, moment arm
offsets, scale factors for activations of sixteen muscles with associated experimental EMG data,
and synergy vector weights for twenty-eight muscles without associated experimental EMG.
The cost function for the outer level minimized four sets of terms:

e Tracking terms: Model activations tracked muscle activations reconstructed from
experimental neural commands (Section 2.2), while model medial and lateral knee contact
forces tracked corresponding experimental forces.

e Bound terms: Model activations and parameter values were constrained within the
following bounds: activations reconstructed from experimental neural commands between 0
and 0.7, moment arm offsets between -5 and 5 mm, and scale factors for optimal muscle
fiber lengths and tendon slack lengths between + 20% of literature values [14].

e Constraints: Scale factors for optimal muscle fiber lengths and tendon slack length were
constrained to have a maximum deviation of 20%, moment arm offsets and normalized fiber
lengths for muscles sharing the same insertion point and exerting a similar function were
constrained within 5 mm.

e Minimization terms: Muscle passive forces and reserve activations (from inner-level reserve
actuators) were minimized.

Calibration for Approach C involved running the two-level optimization using three walking
trials simultaneously in the inner level. At each optimization step, all model parameter values
(time invariant) were transferred to the inner level to calculate muscle activations for the three
calibration trials (Figure 1). Once all model parameter values were calibrated, testing for
Approach C involved running only the inner-level static optimization using the calibrated model
parameter values with the three walking trials held back for calibrated model testing purposes.
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Figure 1. Block diagram of the two-level optimization used in Approach C.

3 RESULTS

3.1 Optimization performance

Musculoskeletal model parameter values (optimal muscle fiber lengths, tendon slack lengths,
and moment arms) obtained directly from the literature could not produce realistic muscle
activations over all time frames for any of the trials. Therefore, no feasible solutions were
reached using Approach A due to excessively high reserve activations (ages = 1304 + 2873).
Conversely, pre-optimized muscle-tendon model parameter values (Approach B) allowed the
static optimization to find reasonable results for all trials using very low values of reserve
activations (ares = 0.000 = 0.002). Feasible solutions were also found for all trials using
Approach C (ares = 0.04 = 0.11 for calibration trials and ares = 0.11 + 1.2 for prediction trials).
For this reason, static optimization outputs were compared only for Approaches B and C in
Sections 3.3 and 3.4. The two-level optimization in Approach C required approximately 2 days
of CPU time using two 6-core processors Intel Xeon 2.39 GHz processors and 24 GB of RAM.
However, the inner-level optimization (i.e., predicting muscle activations in any approach)
required just over one second (< 1.2 s) to analyze a complete gait cycle

3.2 Knee contact forces

Without using muscle synergies or calibrated muscle-tendon model parameter values (Approach
A), the predicted knee contact forces were unrealistic. Mean medial contact force was 47.4
times larger than the mean experimental value while mean lateral contact force was 36.2 times
larger than the corresponding experimental mean. When pre-optimized muscle-tendon model
parameter values were used (Approach B), static optimization led to reasonable total contact
force magnitudes. For this approach, medial contact force was predicted with reasonable
accuracy for all six walking trials (R*>>0.79, RMSE < 115 N) (Table 1). In contrast, lateral
contact force was predicted with poor accuracy, at times (between 25 and 50% of the gait cycle)
producing infeasible results where tensile forces would need to be present in the lateral



compartment. When using knee contact force data to calibrate the model (Approach C), highly
accurate knee contact force predictions were obtained for all six gait trials (Figure 2 and Table
1). For this approach, accuracy was high not only for the calibration trials (medial RMSE <
121.7 N, lateral RMSE < 112.8 N, total RMSE < 96.7 N) but also for the prediction trials
(medial RMSE < 130.1 N, lateral RMSE < 144.3 N, total RMSE < 161.0 N).
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Figure 2. Mean knee contact force predictions. Black solid line represents the mean contact force values
of the three gait trials and the grey surface two standard deviations. Dotted blue curves represent the mean
values obtained in Approach B and the dashed red curves the mean values obtained in Approach C.
Calibration trials were the three gait trials in which the model was calibrated in Approach C and
prediction trials were the other three gait trials.

Table 1. Mean and standard deviation of R? values (and RMSE) for medial, lateral and total knee contact
force predictions for Approaches B and C. Predictions for Approach A were unrealistic.

Approach B Approach C
Medial 0.91 +£0.05 (99.5 £ 16.0) 0.97 £0.02 (57.0 £ 19.5)
Calibration | Lateral -2.30 £ 1.48 (290.2 + 67.6) 0.84+0.04 (64.2 £ 7.6)
Total 0.56 £ 0.09 (323.9 £ 63.5) 0.95+0.01 (110.4 + 12.6)
Medial 0.89 £ 0.08 (107.1 + 43.0) 0.91 +0.03 (96.4 + 16.7)
Prediction | Lateral -1.77 £ 0.43 (296.5 + 34.7) 0.76 £ 0.12 (85.4 £ 10.3)
Total 0.63 £ 0.09 (286.3 £ 9.5) 0.91+0.01 (145.1 £15.4)

3.3 Muscle contributions

Variations in muscle forces between Approaches B and C explained the differences in knee
contact force predictions. The main difference between these two approaches was that in
Approach C, knee contact forces were tracked in the outer level for the calibration trials.
Therefore, the differences in total knee varus valgus (VV) muscle moment contributions and
superior-inferior (SI) muscle force contributions were different between the two approaches
(Figure 3). Individual muscle contributions to these loads were evaluated for the three
calibration trials. Differences in VV muscle moment contributions were higher than 1 Nm for
four muscles (gaslat, sart, tfl and vaslat). Differences in SI muscle force contributions were



higher than 25 N for five muscles (gaslat, gasmed, sart, tfl and vaslat) (Figure 4). Differences in
VV moment during early stance (first 20% of the gait cycle) were primarily due to the fact that
vaslat had a much higher VV contribution in Approach B. During the rest of the stance phase,
the lower gaslat and tfl VV contributions explained the differences in the total VV moment. The
VV peak moment at 95% of the gait cycle in Approach B was due to changes in gaslat and
semiten (although the mean semiten moment contribution difference was lower than 1 Nm).
During the first 20% of the gait cycle, SI force was higher in Approach B, mainly due to the
higher vaslat contribution in Approach B compared to C. For the rest of the cycle, SI muscle
force contributions were higher for Approach C, mainly due to higher contributions from gaslat,
sart, and tfl. These observed differences between approaches likely relate to difference in
calibrated model parameter values.
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Figure 3. Total knee varus-valgus moment and superior-inferior force contributions between approaches
for the three calibration trials.

gaslat sart 1l vaslat
0 8 ] ——— 0
1
= I
5 |
=
£ 4 4 5 4
S
=]
-Approach E
,M'-d I - pproach ©
-8 0 -10 -8
o a0 100 o a0 100 o a0 a0 o a0 100
Gait cycle [%)] Gait cycle [%] Gait cycle [%] Gait cycle [%)]
gaslat gasmed sart 1l vaslat
300 800 200 300 600
=)
E 150 400 100 150 300!
(=]
5 1
A /\ M /
0 0 0 D 0 TS
0 a0 100 1] a0 100 0 a0 100 0 a0 100 0 a0 100
Gait cycle [%] Gait cycle [%] Gait cycle [%] Gait cycle [%] Gait cycle [%]

Figure 4. Varus-valgus moment and superior-inferior force contributions for muscles with the greatest
differences between approaches for the three calibration trials.

3.4 Model parameter variations

Optimal muscle fiber lengths and tendon slack lengths were higher overall in Approaches B and
C compared to Approach A and had high variability (Table 2). For optimal muscle fiber lengths,
Approach B values were statistically higher for central muscles and Approach C values higher
for medial muscles than in Approach A. For tendon slack lengths, Approach B and C values
were statistically higher for all muscles than in Approach A. These differences explain why



Approach A could not find a feasible solution for all time frames. Between Approaches B and
C, no statistical differences were observed. The optimal muscle fiber lengths and tendon slack
lengths obtained from the literature (Approach A) led to normalized muscle fiber lengths higher
than 1.5 for eleven muscles (fdl, fhl, gaslat, gasmed, gem, perbrev, perlong, pertert, piri, soleus,
tibpost), representing very high passive muscle force values. For this approach, six of the
mentioned muscles had mean passive forces higher than 1000 N, and in three (gasmed, soleus
and tibpost) passive forces were higher than 10,000 N, which is unrealistic. For Approaches B
and C, all passive forces remained below 200 N. Approach B only had one muscle (soleus) with
a mean passive force higher than 20 N, while in Approach C, a mean passive force above 20 N
occurred for nine muscles. The higher gaslat passive force would explain the differences in its
VV moment and Sl force contribution between Approaches B and C observed in Section 3.3.

Given that activation scale factors for Approach C were bounded to be between 0 and 1, these
scale factors had high variability (sa = 0.41 + 0.24 for medial muscles, sa = 0.53 + 0.64 for
central muscles, and sa = 0.38 = 0.31 for lateral muscles). In Approaches A and B, muscle
activations were not tracked, and therefore no activation scale factors were used. The
differences in sart and tfl VV moment contributions and SI force contributions between
Approaches B and C (Section 3.3) can be explained by changes in muscle activations (Figure
A.2, Appendix).

Changes in muscle contributions to inverse dynamics loads also had high variability among
muscles. Standard deviation was higher than 1 cm for medial and lateral muscles in the knee
flexion moment, for medial muscles in the subtalar moment, and for lateral muscles in the ankle
moment. However, only knee superior-inferior offsets for central muscles were statistically
different from zero. The differences in vaslat VV moment and gasmed knee SI force
contributions (Figure 4) would be explained mainly by their moment arm offsets.

Table 2. Similarity of model parameter values obtained for Approaches B and C relative to Approach A
for medial, central, and lateral muscles. Similarities are reported as percent differences for optimal muscle
fiber lengths /)" and tendon slack lengths /! . Statistically significant differences (p < 0.05) in mean
values between Approaches B and C relative to Approach A are indicated by a star (*).

Approach Medial Central Lateral
" B 50+12.0 | 10.8+4.9* 6.8+ 155
7Y (%)
C 6.0+£13.9* | 8.1+137 6.0+14.4
; B 49+12.0* | 10.7 £4.9* 6.4 + 15.4*
’1 (%)
C 57+144* | 85+6.1* 10.0 £ 12.5*

Table 3. Moment arm offsets obtained in Approach C. Values statistically different from zero are
indicated by a star (*). All offsets are reported in mm except for the knee superior-inferior force moment
arm, which is dimensionless.

Medial Central Lateral

Hip flexion -0.0+6.0 12.3" -0.0+3.6

Hip adduction | -1.3+6.5 10.14" 21+35

Hip rotation 0.4+33 -1.97 0.3+7.0

Knee flexion 3.7x£11.7 12757 3.6+124

Knee adduction | -1.3+6.9 40£53 -26x7.3
Knee sup-inf 0.01£0.03 | -0.03+0.00* | -0.00+0.01

Subtalar -1.3+11.1 54+7.9 -5.0+6.6
Ankle -8.4+5.3 -24+46 -11.1+11.1

"Only one value




4 DISCUSSION

The goals of this study were two-fold. First, we wanted to investigate how model calibration
differs when knee contact force data are not used in calibration process (the most common case,
Approaches A and B) and when they are used (Approach C). Second, we wanted to evaluate if a
set of model parameter values that led to accurate contact force predictions for some walking
trials (calibration trials) could predict knee contact forces with comparable accuracy for other
walking trials (prediction trials). Approach A used muscle-tendon model parameter values taken
directly from the literature [14], whereas in Approach B these parameter values were pre-
calibrated. In Approach C, apart from calibrating muscle-tendon model parameter values, we
modified skeletal (moment arms) and activation (muscle synergy components) parameter values
using a two-level optimization. Using the latter approach, a set of model parameter values was
obtained that led to highly accurate knee contact force predictions for the three testing trials.
Differences in the predicted knee contact forces and leg muscle forces between the three
approaches suggest that poor calibration of neuromusculoskeletal model parameter values may
be a primary contributing factor to inaccurate prediction of these internal forces.

While muscle-tendon model parameter values obtained from the literature provide an estimate
of the magnitude of these parameter values, they can lead to infeasible static optimization
results. For example, Approach A predicted excessively high passive muscle forces. An
important finding was that pre-calibrating muscle-tendon model parameter values to make
normalized muscle fiber lengths operate on the ascending region of the normalized force-length
curve (Approach B) [7], and maintaining these parameter values close to the literature ones,
improved knee contact force predictions substantially. In fact, medial contact force predictions
for Approach B were surprisingly accurate in terms of both shape and magnitude. However,
lateral contact force predictions were still poor, as has been the case in previous studies [16].
The main differences in knee contact predictions between Approach B and Approach C, where
neuromusculoskeletal parameter values were calibrated (using knee contact force information in
Approach C), can be summarized by changes in five muscles: three lateral muscles (gaslat, tfl,
and vaslat) and two medial muscles (gasmed and sart).

Muscle forces obtained in Approaches B and C were similar in magnitude and shape to those
predicted in other studies [2,17,18]. Only minor differences were observed for some muscles,
such as a lower gmed force in our study compared to in [2]. Nonetheless, overall, all predicted
muscle force magnitudes were within the ranges reported in the literature [19].

The main limitation of this study was that all optimizations were carried out using the same
movement task, which was overground walking at self-select speed. Using other types of
movements, for instance trials were the five muscles mentioned above played a more important
role, may lead to a better calibration when no knee contact force data are available (the most
usual case) and consequently to better contact force predictions. In addition, only one subject
was tested, and trying the three calibration approaches with other subjects would generalize our
conclusions. Future research will also explore new ways to introduce more constraints into the
static optimization problem formulation.

To conclude, our main recommendation for calculating muscle forces using static optimization
is to ensure that muscles operate on the ascending region of their normalized force-length
curves. However, such an approach does not ensure that the predicted muscle forces will be
correct. We also observed that it was possible to obtain a single set of neuromusculoskeletal
model parameter values that predicts accurate knee contact forces for walking trials not used in
the calibration process. Further research should be carried out to develop better model
calibration methods when no knee contact force data are available.
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Figure A.1. Muscle forces for all muscles in Approaches B and C.
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Figure A.2. Muscle activations for all muscles in Approaches B and C.



