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Abstract. There is no doubt that offshore technology has great 
relevancy. This leads to develop new techniques and methods to 
solve dynamics of devices which are placed on sea. Cable dynamics 
can be considered as special key into marine technology. Several 
structures are formed by cable. For instance, moorings allows to 
maintain floating offshore structures to be placed on a fix location 
into the ocean. Numerical methods are required to solve the 
nonlinear dynamic behaviour of cables. Mooring analysis can be 
considered as structural dynamic problem. Classical models which 
used quasi-static modelling based on catenary lines to solve 
dynamics. This work presents a strategy for solving the non-linear 
cable behaviour, based on Non-Linear Finite Element Method 
(NFEM) approach. Afterwards, formulation for first-order wave 
diffraction-radiation problem is described. A procedure for solving 
the coupled model between the wave loads and cable reaction 
forces is then described. Finally, an application on fishing cage 
simulation is performed several using fully coupled simulations. 
Some relevant conclusions will be obtained. 
 
Keywords - Onshore power supply, ports, renewable energies. 
 
1 INTRODUCTION 
 

The study of marine cables structures has reached great 
interest due to wide range of application in deep-ocean 
engineering. The range of cable application and line 
structures can be considered as wide from marine risers to 
net application. These applications include mooring line for 
marine structures, flexible risers, umbilical catenaries, 
towing hawser, subsea installations or fishing cages 
composed by suspended cables subjected to marine currents 
[1]. Cable structures are composed by a set of cables, chains 
or wire ropes, which are attached to offshore structures at 
different points with lower ends of these cables anchored at 
the seabed. The installation of subsea cables on seabed 
becomes significant importance due to communication 
technologies or floating offshore wind turbines require a 
precise study of mooring arrangements. Authors are shown 
that cables deployed in undersea conditions are susceptible 
of vibration since they interact with flow field, floating 
devices or seabed [2]. Most marine cable applications 
require to predict their dynamic behaviour and interaction 
with attached floater. Some authors are investigated mooring 
structures and their influence on behaviour of marine 
structures [2, 3, 4]. 

Other researchers have investigated marine slender 
structures as cables, umbilical and risers. For instance, Neto 
and Martins [5] have been studied the structural stability of 

flexible lines under torsion. Loops are very common in 
catenary risers in installations stages when tension is low 
and it is combined with torsion moments [5]. 

Flexible pipes and umbilical cables have importance to 
subsea production system [6]. Pipes can transport oil and gas 
from wells to marine facilities, and cable can provide 
electrical and hydraulic energy. The design of these flexible 
structures involves the operational loads, longitudinal 
strength, bending and torsional stiffness or collapse strength 
[6]. 

The coupled dynamic studies between cables, moorings 
and offshore structures become great relevance on cable and 
riser studies. For instance, Kim et al. [7] have compared two 
approach of cable treatments, linear spring method and 
Nonlinear Finite Element Method (NFEM). The first 
approach consists of adding spring constant of the mooring 
line’s stiffness to motion equation of the ship. This method 
gives unreliable solution, because of the dynamics of cable 
motion is not considered. However, Nonlinear FEM allows 
to consider new effects such as bending and torsion, which 
can become critical in special situations, giving reliable 
solutions. Yang et al. [8] have developed coupled dynamic 
analysis of marine structures combining Higher-order 
Boundary Element Methods (HOBEM) to solve second-
order wave equations and rod theory with FEM to estimate 
the dynamic behaviour of risers. In line with this, the authors 
presents in this work an application to couple NFEM cable 
model with second-order wave environment and ambient 
loads. 

 
2 PROBLEM STATEMENT OF CABLE 

DYNAMICS 
 
Nonlinear dynamic behaviour of cable can be modelled 

using Finite Element Approach. In this section the 
formulation of element kinematics is described. The 
implemented cable model uses updated Lagrangian 
formulation combined with corotational formulation. 
Joining both formulation can be achieved several advantages 
on computation of cable dynamics. 

 
2.1 Governing equations of cable dynamics 
 

In brief, the governing equations of mooring dynamic 
equilibrium was formulated by Tjavaras [9]. 
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The set of equations for two dimensions are 
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being ݉, and	݉௔, the mass and the added mass of the line 
respectively, ܫܧ, and ܣܧ௢, the flexure rigidity and the 
stiffness of the line, ܶ the tension of the line, s the spatial 
coordinate along the unstretched length of the line, ݐ the time 
variable, and ߶ the angle formed by line with coordinate 
axis. 

If bending and torsional stiffness are negligible, as 
usually occurs, the set of equations can be formulated in 
vector form as, 
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where ߩ௪ is the water density, ܥ௠ is the added mass 
coefficient, ߩ௢ is the mass per unit length of the unstretched 
cable, ݎ௟ is the position vector, ݁ is the strain, and ݂ሺݐሻ are 
the external loads applying over catenary mooring cable. 
 
2.2 Spatial discretization using FEM formulation 
 

The weak form of the equation of the motion of the 
element given by Borst et al. on [10] in current configuration 
as 

නሺݑ்ݑߜߩ ൅ ሺݑߜܮሻ்ߪሻܸ݀ ൌ නሺ்݃ݑߜߩሻܸ݀
௏

൅ නݐ்ݑߜ	݀ܵ
ௌ

,
௏

 

being ܸ  the volume, ܵ  the surface, u the vector displacement, 
L an appropriate operator, ݐ the stress vector on surface, ݃ 
the gravity acceleration vector, ߩ the cable density and ߪ the 
stress tensor. 

Introducing the vector ݎ௞ in which the components 
ሺ݅, ݆, ݇ሻ of the displacement vector at node ݇ are gathered, 
the continuous displacement field ݑ of each element can be 
approximated as, 
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where ݄௞ are the interpolation functions, H is a 
 ௞ is the vector which stores all degree ofݎ matrix and	3݊	ݔ	3
freedom of the nodes. 

The element vector ݎ௞ can be related to the global 
displacements contained in a global displacement vector a 
via the matrix Z, when the system consists of N global 
degrees of freedom Z is a 3݊ ൈ ܰ matrix. So, the last 
Equation becomes as, 
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With B = LH, the last equations arrives as balance of 
momentum. The associated matrix structure of the equations 
of dynamic equilibrium of forces at time ݐ can be written as 

݂ ൌ ሷݎܯ ൅ ሶݎܥ ൅ ܲ଴ ൅ ܴ, 

where ݂ is the external loads vector, M is the mass matrix of 
the line, considering inertia and added mass, ܲ଴ is the 
pretension vector in the initial configuration, and R is the 
internal forces vector of the cable. Damping effects of cable 
are introduced through a Rayleigh proportional damping 
matrix of C. 
 
2.3 Direct time integration 
 

To solve the dynamic equilibrium of cable an implicit 
time integration scheme based on the called Bossak-
Newmark method [11] is applied. This provides a set of 
algebraic equations that can be solved in an iterative manner. 
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where Δݐ is the time step, ݅ denotes iteration, ߙ is a 
parameter related with the Bossak-Newmark implicit 
method, and ߛ and ߚ are parameters related to the Newmark 
time integration scheme. 
 
2.4 First Order Wave problem 
 

First Order solution of wave-radiation problem can be 
obtained assuming incompressible flow and irrotational 
flow. After using the perturbed solution based on the Stokes 
perturbation and applying Taylor series expansions, and 
retaining the first-order terms, the governing equation for 
First Order wave radiation problem become as [12], 
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being ߮ the velocity potential, ߦ the wave elevation, z the 
vertical coordinate, ௙ܲ௦ the pressure on free surface, Ω the 
fluid domain, ݒ௣ the first order body velocity over point P, 
 ఝ is the first order potential velocity over the point P, andݒ
݊௣ the body surface normal vector at point P. 
 
3 APPLICATION EXAMPLES 
 

In this section, they are shown an examples of application 
of cable problem on marine structures. First, a 
semisubmersible platform is analysed. Then, an application 
on fishing cage is performed. 
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3.1 Fully coupled analysis of semisubmersible platform 
 

An application example based on fully analysis of 
semisubmersible platform GVA 4000 [13] subject to first-
order wave environment combined with NFEM mooring 
model is performed (see Fig. 1). The main particulars of the 
platform and key parameters of simulations are shown in 
Table 1. 

Table 1.  “Main particulars of semisubmersible and key parameter of 
simulations performed”. 

Ítem  Value 
Characteristic Length m 70.0 
Depth m 20.0 
Mass Kg 2.591 ൈ 107 
Centre of gravity m 0.0; 0.0; 0.85 
Ixx/mass m2 30.40 
Iyy/mass m2 31.06 
Izz/mass m2 37.54 
Wave spectrum  JONSWAP 
Peak period s 7.7 
Significant wave height m 3.0 
Number of mooring lines  8 
Stiffness N 3.84 ൈ 107 
Length m 520.0 
Weight per unit length N/m 698.1 
Number of elements per mooring line  100 

Table 2 shows a comparison between the mean, the 
amplitude and the Root Mean Square (RMS) values for first 
-order wave loads of semisubmersible platform. 

Table 2. “Mean, amplitude and RMS values of semisubmersible motions 
for first-order wave environment”. 

 
Surge 

(m) 
Sway 
(m) 

Heave 
(m) 

Roll 
(deg) 

Pitch 
(deg) 

Yaw 
(deg) 

Mean -0.01 0.00 0.00 0.00 0.00 0.00 
Amplitude 1.20 0.12 1.44 0.39 1.37 0.17 
RMS 0.17 0.02 0.21 0.07 0.22 0.03 

The mean values have similar trends in all cases 
combined with NFEM mooring model, as it can be observed. 
General values shows that mooring arrangements achieve 
good performance in operational conditions. 

 
Fig 1. “General view of semisubmersible platform”. 

Table 3. “Comparison between maximum, minimum, mean, and RMS 
values of fairlead tension of semisubmersible platform”. 

Line Max. (N) Min. (N) Mean (N) RMS (N) 
Line 1 4.309 ൈ 105 3.930 ൈ 105 4.118 ൈ 105 4.119 ൈ 105 
Line 2 4.308 ൈ 105 3.908 ൈ 105 4.117 ൈ 105 4.118 ൈ 105 
Line 3 4.305 ൈ 105 3.922 ൈ 105 4.118 ൈ 105 4.118 ൈ 105 
Line 4 4.319 ൈ 105 3.934 ൈ 105 4.118 ൈ 105 4.119 ൈ 105 
Line 5 4.309 ൈ 105 3.930 ൈ 105 4.118 ൈ 105 4.119 ൈ 105 
Line 6 4.308 ൈ 105 3.908 ൈ 105 4.117 ൈ 105 4.118 ൈ 105 
Line 7 4.305 ൈ 105 3.922 ൈ 105 4.118 ൈ 105 4.118 ൈ 105 
Line 8 4.319 ൈ 105 3.934 ൈ 105 4.118 ൈ 105 4.119 ൈ 105 

The key values of fairlead tension on semisubmersible 
platform are shown in Table 3. Similar values are recorded 
for all lines. 
 
3.2 Application on fishing cage 

 
Finally, an analysis of fishing cage subject to first-order 

wave environment combined with NFEM mooring model is 
performed.  

The fishing cage analysed has circular shape (see Fig. 2). 
The main particulars of the fishing cage are shown on Table 
3. 

 
Figure 2. “Example of circular fishing cage. (www.akavgroup.com)”. 

The main particulars of the fishing cage and key 
parameters of simulations are shown in Table 4. 

Table 4. “Main particulars of fishing cage and key parameter of simulations 
performed”. 

Items  Value 
Diameter m 30.0 
Depth m 16.0 
Mass Kg 12.85 ൈ 105 
Centre of gravity m 0.0; 0.0; -1.0 
Ixx/mass m2 112. 
Iyy/mass m2 112 
Izz/mass m2 224 
Wave spectrum  Monochromatic 
Period s 7.5 
Wave height m 0.75 
Stiffness of mooring lines N 6.04 ൈ 107 
Weight per unit length of mooring lines N/m 1.0 

Ambient conditions are chosen according to Galanis et al. 
[15]. A general view of cable arrangement used of fishing 
cage analysed can be observed on Fig 3.  

Figure 3. “General view of cable arrangement of fishing cage”. 

Table 5 shows a comparison between the mean, the 
amplitude and the RMS values of motions for first-order 
wave loads on fishing cage. As can be shown, the fishing 
cage has great amplitudes of yaw motion compared with roll 
and pitch. Heave amplitude is according to wave spectrum, 
and as can be observed the fishing cage gets good 
performance in operational conditions. 
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Figure 4. “General view of displacement of fishing cage”. 

 

Table 5. “Mean, amplitude and RMS values of fishing cage motions for 
first-order wave environment”. 

 
Surge 

(m) 
Sway 
(m) 

Heave 
(m) 

Roll 
(deg) 

Pitch 
(deg) 

Yaw 
(deg) 

Mean 0.19 0.05 0.00 0.00 0.00 0.00 
Amplitude 1.52 0.10 1.10 1.20 5.25 7.14 
RMS 0.39 0.06 0.32 0.01 1.54 0.76 

The values of fairlead tension on each mooring line have 
similar behaviour according to heave motion of fishing cage. 
The mean values are close to itself weight. This fact 
indicates that valued obtained are realistic. 

Table 6. “Comparison between maximum, minimum, mean, and RMS 
values of fairlead tension of fishing cage”. 

Line Max. (N) Min. (N) Mean (N) RMS (N) 
Line 1 1,400 ൈ 104 5,012 ൈ 102 1,382 ൈ 104 1,389 ൈ 104 
Line 2 1,996 ൈ 104 2,570 ൈ 102 1,389 ൈ 104 1,393 ൈ 104 
Line 3 1,490 ൈ 104 8,922 ൈ 101 1,386 ൈ 104 1,389 ൈ 104 
Line 4 1,400 ൈ 104 8,922 ൈ 101 1,386 ൈ 104 1,389 ൈ 104 

Finally, time evolution of fairlead tension of each 
mooring line is shown on Fig. 5. The period obtained for 
each line are similar in all case. These values are close to 
wave period, as it is expected. 

 
Figure 5. “Time evolution of each mooring line analysed”. 

 
4 CONCLUSION 

 
A FEM coupled seakeeping and mooring model for the 

analysis of offshore structures has been presented. From the 
obtained results, the following concluding remarks can be 
remarked. Seakeeping model for solving the governing 
equations for first-order wave diffraction-radiation problem 
in the time domain based on [14] has been shown. An 
introduction to cable dynamics has been described. 
Formulation based on Nonlinear FEM dynamic cable model 
to solve realistic problems has been presented. Fully coupled 
simulations to determine the dynamic behaviour of two 
representative examples of offshore structures has been 
performed: semisubmersible platform and fishing cage. The 

NFEM mooring combined with first-order waves produces 
a successful simulation of the performance of the floating 
structures. 
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