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Abstract. Harvesting energy from the ocean waves involves not 
only the design of efficient and economically feasible 
prototypes but also a characterization of the resource from 
which energy is to be extracted. The first operational wave 
farms are already putting electricty into our grids but as with 
other types of renewable energy, the electricity obtained from 
waves has the problem of intermittency, Having a knowledge of 
the energy waves will hold a few hours ahead can contribute to 
a better management of the electricity grid. In this work, three 
types of statistical models have been used to create up to 24h 
forecasts of the zonal and meridional components of the wave 
energy flux levels at three directional buoys located near the 
coast in the Bay of Biscay. Model's performance has been 
compared at a 95% confidence level with the most simple 
prediction (persistence of levels) and also with the forecasts 
provided by the physics-based WAM model at the nearest 
gridpoint. The results indicate that for forecasting horizons 
between 3 and roughly 16 hours ahead, among the statistical 
models those built on random forests outperform the rest, 
including WAM and persistence.  

Keywords. Wave Energy Flux, Forecasting, Random forest, 
Machine learning, Fluid mechanics 

1. INTRODUCTION 

In the few wave farms that currently are operating, 
the problem of intermittency in electricity production is 
an issue of major concern. In this sense, an accurate 
knowledge of current and forthcoming wave energy 
levels can contribute to address this problem by 
developing real-time effective grid management 
strategies [1]. 

Wave energy is usually expressed in terms of the 
Wave Energy Flux (WEF, kW/m) which is a vectorial 
magnitude so a complete prediction of this variable 
involves forecasting its zonal (WEFu) and meridional 
(WEFv) components. This magnitude is not measured 
directly in buoys but its module is derived by combining 
the significant wave height (Hws) and the mean wave 
period (Tz) according to the following equation: 

WEF=0.49Hws2Tz [Kw/m]             [1] 

Additionally, the zonal (WEFu) and meridional 
(WEFv) components can be obtained from the module 
(WEF, [1]) by projecting it using a third variable 
measured at directional buoys, the mean wave direction 
(Mdir). 

WEF forecasts a few hours ahead are usually 
obtained using predictions yielded by physics-based 
models [2, 3, 4, 5] like for example the WAM, run by the 
ECMWF. These types of models assimilate observations 
and then solve the equations involved following the laws 
of Physics and Fluid Mechanics. Another approach is to 
learn from the past to forecast the future. Under this 
approach the problem of forecasting is treated as a “black 
box” in which a statistically-based transfer function is 
fitted on historical records relating current and future 
values of WEF at a given location [6,7,8,9]. In this work, 
we have compared the performance of WAM, persistence 
and three statistical models in three buoys located in the 
Bay of Biscay. 

2. DATA AND METHODS 

2.1. DATA 

The area of study is the Bay of Biscay (Fig. 1). To carry 
out this study, hourly data from the following three 
sources corresponding to the 1999-2012 period were 
used: 

1. Data from 3 directional buoys, located near the 
Spanish coast.The variables used from these 
three buoys were Hws, Tz and Mdir.. 
Combining these three variables, local values of 
WEFu and WEFv were derived 

2. Retrospective simulations of the ECMWF 
atmospheric and wave models as follows:  

2.1 ECMWF (www.ecmwf.int) ERA-Interim 
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atmospheric reanalysis (Dee et al., 2011) 
data in analysis mode. The selected 
variables were mean sea level pressure 
(MSL), zonal (U10) and meridional (V10) 
components of the surface wind over the 
Bay of Biscay [10.125ºW, 43.875ºN, 
2.25ºW, 48.375ºN] 

2.2 ECMWF WAM model in analysis mode 
(every 6h) 

3. ECMWF WAM wave model (WAM) in 
forecasting model (hindcasts) at step=12 and 
step=24h ahead for the same area, variables, 
period and resolution. As in analysis mode, the 
original variables (Hws and Tz) were combined 
using [1] and Mdir to obtain WEFu and WEFv 
values. 

In Fig. 1 it can be seen a map of the area and the 
location of the gridpoints and buoys. 
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Fig. 1. Location of the buoys used for this study and 
nearest ECMWF gridpoints 

2.2. Methodology 

2.2.1. Extended  EOFs 

In this work, extended EOFs have been calculated for 
the ECMWF atmospheric and oceanic variables 
corresponding to the Bay of Biscay and with three 6 h 
steps back in time (18h). These atmospheric and oceanic 
variables involved were as follows: sea level pressure 
(MSL), zonal wind speed at 10 m above the sea (U10), 
meridional wind speed (V10), the module of the flux -
derived from [1]- and its zonal and meridional 
components. The final number of extEOFs retained was 
21, and were selected under the condition of retaining at 
least 90% of the original variance. This allowed a 
dramatical reduction in the number of variables used 

while still holding most of the information of the 
atmosphere-sea state in the Bay of Biscay. 

2.2.2. Building the models 

With the aim of predicting at time t values of WEFu 
and WEFv k (k=1,...,24) hours ahead, all the models were 
fitted according to the general structure of  [2]  and [3]. 

WEFu_buoy[t+k]=F1(extEOF1-21,WEFu_buoy[t])    [2] 

WEFv_buoy[t+k]=F2(extEOF1-21,WEFv_buoy[t])    [3] 

To that purpose, three types of statistical models were 
built to forecast zonal and meridional WEF levels at the 
three buoys analized: i) analogues, ii) analogues followed 
by a random forests regression stage and finally, iii) 
random forests. A more detailed description on the 
mathematical aspects regarding RF [11, 12] and some 
examples of its practical applications [13, 14] can be 
found in the literature. The total amount of models built 
and tested in this study has been 2366832. All the 
calculations have been carried out in the frame of R 
[15,16]. 

2.2.2. Evaluation and intercomparison of models 

The criterion adopted for model intercomparison of 
WEF forecasts, was the mean absolute error at a 95% 
confidence level. The models built compared with WAM 
forecasts and with persistence. 

3. RESULTS AND DISCUSSION 

The main results for both, the zonal and meridional 
components of the flux can be seen in Fig. 2 and 3. Since 
the overall behavior is similar at the three buoys, results 
are given in an aggregated manner.  
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Fig. 2. Mean absolute error for WEFu forecasts. 
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Fig. 3. Mean absolute error for WEFv forecasts. 

 
The results gathered in Fig. 2 and Fig. 3 can be 
summarized as follows: 
1. For WEFu prediction, between 3 and 20h ahead, RF-

based models yield the smallest errors outperforming 
the rest and also WAM and persistence 

2. In the case of WEFv  the preferential window for RF 
models ranges between 3 and 11h.   

3. These windows represent the forecasting horizons for 
which RF-based statistical models could be used. 
 
An interesting aspect is that if the error roses are 

analyzed for the statistical models and for WAM, it can 
be seen that they have a different structure. 

Buoy #1. 4432 test cases. 2006−2012. RF error 12h ahead.
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Fig. 4. Error rose for the RF model’s 12h  forecasts at 

buoy #1.  

In the case of RF model (Fig. 4) errors are equally 
distributed in all directions and with similar absolute 
values. However, WAM’s error rose (Fig. 5) clearly 
exhibits a preferential (north) westwards direction. This 
is the reason why the preferential windows for WEFu and 
WEFv are different. 

Buoy #1. 4432 test cases. 2006−2012. WAM error 12h ahead.
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Fig. 5. Error rose for the WAM model’s 12h  forecasts at 

buoy #1. 

The reasons for this different behavior of WAM in the 
zonal and meridional directions are not clear, but the 
bathymetry of the area and the small distance to the coast 
(Fig. 6) may represent a partial explanation.   

 

 
Fig. 6. Bathymetry of the area studied. 
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Considering the gridsize it uses (overimposed, Fig. 
6), WAM model makes the forecasts using the following 
depths for the [1.125º x 1.125º] cell corresponding to the 
three nearest gridpoints from the buoys: -990 m 
(buoy#1), -223 m (buoy#2), -186 m (buoy#3). However, 
the effective depths at the buoys are as follows: -386 m 
(buoy#1), -1800 m (buoy#2), -450 m (buoy#3). In Fig. 6 
it can be seen that the three buoys are located at places 
where bathymetry exhibits a strong gradient, while the 
WAM model considers a flat sea bottom for each pixel of 
the grid with constant depths as shown above. This 
means that with the resolution it uses, WAM is probably 
unable to successfully simulate the effects associated to 
the complex bathymetry below the buoys. Additionally, 
coastal effects may not be captured accurately since the 
area covered by these pixels is not homogeneous and 
actually includes both, sea and land. 

4. CONCLUSIONS AND FUTURE OUTLOOK 

For the three buoys located in NW Spain, a set of 
statistical models based on RF outperform other options. 
RF can capture from a historical database, under a black 
box approach, the major patterns regarding the evolution 
of WEF in the timescale of hours. RF also outperforms 
readily available persistence and WAM models with a 
combined preferential forecasting horizon for WEF 
would be between 3 and 16h. The buoys in this study are 
located near the coast, in the range where future wave 
farms could be installed. Due to the high number of 
models tested and cases used in this study, the 
conclusions can be considered to be solid enough. The 
overall conclusions obtained for the prediction of the 
zonal and meridional components of WEF are similar to 
those obtained for the module alone [17] and highlight 
the potential of a machine learning technique like random 
forests may have for short-term forecasting of ocean 
energy. All this can contribute to address the problem of 
intermittency and to the development of more efficient 
grid management strategies. 
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