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Abstract. CTA is a post-tabular perturbative approach for statistical disclosure control.

Its purpose is to compute the closest safe table to the original data, using some distance.

Sensitive cells are adjusted either upwards or downwards (binary decision), and the re-

sulting cells have to be accordingly (and minimally) modified to preserve marginals. For

real and large tables, CTA may result in a difficult mixed integer linear problem for some

weights in the objective function. In those situations the Block Coordinate Descent (BCD)

heuristic for CTA—which is included in the Tau-Argus CTA distribution—may be used

to quickly obtain a feasible, hopefully close to optimality, solution. We present a practical

experiment using a large and difficult real-world table from Eurostat. We will show that,

for unitary weights, while the standard CTA can not obtain a solution in about half an

hour, the BCD-CTA approach provides a solution in few seconds.

1 Introduction and motivation

The protection of confidentiality of tables published at the EU-level is a joint concern
for the National Statistical Institutes (NSIs) and Eurostat. The normal practice
is that the NSIs collect and process the information of each member state. This
includes also the confidentiality protection, when publishing the information. For
tabular data the primary unsafe cells are based on the p%-rule or the (n, k)-rule
(Hundepool et al., 2012). There is a growing number of member states that is using
the p%-rule. The second step, finding the necessary secondary cells to fully protect
the table, is a computational complex task Castro (2011) which is often done with
the software τ -Argus (Wolf et al., 2014). This is fine at the national level. After this
process the NSIs send their tables to Eurostat.

1This work has been supported by grant MTM2012-31440 of the Spanish research program, and
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It is the task of Eurostat to compile the complete European table, including the
EU-aggregates. In order to allow Eurostat to compute these EU-aggregates, each
NSI send the complete table with flags for the primary and secondary suppressed
cells. Eurostat has the obligation to guarantee the confidentiality of the national
data. It is obvious that if one country did suppress a certain cell, Eurostat cannot
publish the EU-aggregate. Even if more countries suppress a cell and there is one
dominating confidential country the EU-aggregate cannot be published as well. This
is a very unsatisfying situation. Alternatively waiting for all 27 countries to complete
their table and protecting the big European table in one big run will not work either,
because each Member State has to wait for the last one before they can publish their
own table.

The solution suggested by Giessing et al. (2009) was to compute rounded figures
for the EU-cells at risk. The rounding base for each cell should be large enough to
safeguard the national confidential cells. It is often much better to have a rounded
EU-aggregate that no figure at all. It is to be expected that more cells have to be
protected in the smaller Member States, as they often have only one or a few enter-
prises in a certain cell. While protecting the smaller national figures, the rounded
EU-aggregate can still be a reasonable informative figure.

In the process of computing the necessary uncertainty to be added to the EU-
aggregates we use the controlled tabular adjustment (CTA) procedure, as described
in Giessing et al. (2009). In this work we applied this procedure to a real-life dataset
for the EU structural business statistics (SBS). It is a three-dimensional table. The
first dimension is the EU-member state (27 plus the EU-total) without a hierarchy;
the second dimension is a NACE classification with a hierarchy and in total 120
codes; the third dimension is a size-class (5 codes plus a total). This amounts to a
total of 28 · 120 · 6 = 20160 cells. For a plain three-dimensional tables the number
of constraints would be (28 + 6) · 120 + 28 · 6 = 4248. However, due to the hierarchy
of the NACE variables, which implies extra linear cells relations, the total number
of constraints is 8280.

When running the tests it turned out that CTA took an unacceptable long run-
ning time for certain problems. This had led to the use of the Block Coordinate
Descent (BCD) heuristic for the CTA procedure (González and Castro, 2011), which
is included in the most recent τ -Argus distribution. The standard MILP-CTA and
BCD-CTA will be outlined in Sections 2 and 3 of this paper, respectively. However
also the type of cost function gave a remarkable difference in running time. These
computational experiments will be reported in Section 4 of the paper.

2 Outline of minimum distance MILP-CTA

CTA (Dandekar and Cox, 2002; Castro, 2006) is a post-tabular approach which
looks for the closest safe table to the original unsafe table. CTA achieves disclosure
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limitation by either increasing or decreasing by at least a certain amount (protection
level) the cell values of a subset of sensitive cells, and then adjusting the rest of cells
to preserve some desired constraints. CTA is formulated as a mixed integer linear
programming (MILP), whose parameters are:

• A set of cells ai, i = 1, . . . , n, that satisfy some linear relations Aa = b (a being
the vector of ai’s), and a vector w ∈ Rn of positive weights for the deviations
of cell values.

• A lower and upper bound for each cell i = 1, . . . , n, respectively lxi and uxi ,
which are considered to be known by any attacker. If no previous knowledge
is assumed for cell i lxi = 0 (lxi = −∞ if a ≥ 0 is not required) and uxi = +∞
can be used.

• A set S = {i1, i2, . . . , is} ⊆ {1, . . . , n} of indices of s confidential cells.

• A lower and upper protection level for each confidential cell i ∈ S, respectively
lpli and upli, such that the released values xi, i = 1, . . . , n, satisfy either xi ≥
ai + upli or xi ≤ ai − lpli.

CTA attempts to find the closest values xi, i = 1, . . . , n, according to some
distance `, that makes the released table safe. This involves the solution of the
following optimization problem:

min
x

||x− a||`
subject to Ax = b

lx ≤ x ≤ ux
xi ≤ ai − lpli or xi ≥ ai + upli i ∈ S.

(1)

Problem (1) can also be formulated in terms of deviations from the current cell
values. Defining z = x− a, lz = lx − a , uz = ux − a, using the `1 distance weighted
by w, and introducing variables z+, z− ∈ Rn so that z = z+− z− and |z| = z+ + z−,
the final MILP model for CTA is:

min
z+,z−,y

n∑
i=1

wi(z
+
i + z−i ) (2a)

subject to A(z+ − z−) = 0 (2b)

0 ≤ z+ ≤ uz, 0 ≤ z− ≤ −lz (2c)

y ∈ {0, 1}s (2d)

upli yi ≤ z+i ≤ uziyi
lpli(1− yi) ≤ z−i ≤ −lzi(1− yi)

}
i ∈ S (2e)
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Constraints (2b) impose feasibility of the published perturbed table. Constraints
(2c) guarantee perturbations are within allowed bounds. Constraints (2d)–(2e) force
the new table is safe. When yi = 1 the constraints mean upli ≤ z+i ≤ uzi and z−i = 0,
thus the protection sense is “upper”; when yi = 0 we get z+i = 0 and lpli ≤ z−i ≤ −lzi ,
thus the protection sense is “lower”.

3 Outline of minimum distance BCD-CTA

Coordinate descent is a family of optimization algorithms that successively optimize
along coordinate directions. They were popular in the 1980s and 1990s, but, due
to its simplicity and low computational cost, they recently gained reputation for
approximate solutions in big-data problems (see Wright (2015) for a recent survey).

When instead of optimizing over a coordinate, or single variable, they optimize
on a block of variables, they are named block coordinate descent (BCD). Therefore,
BCD solves a sequence of subproblems, each of them optimizing the objective func-
tion over a subset of variables while the remaining variables are kept fixed. This is
iteratively repeated until no improvement in the objective function is achieved, or
some other end criteria is met (like a time limit). Convergence of this algorithm
is only guaranteed for convex problems where each optimization subproblem has a
unique optimizer (Bersekas, 1999, Prop. 2.7.1). Although MILP problems are not
convex, and thus they do not guarantee convergence, BCD usually behaves well in
practical complex applications, and it can be used as a heuristic approach.

BCD was used in González and Castro (2011) to efficiently obtain approximate
solutions to CTA problems. BCD CTA may provide good approximate solutions
by optimizing at each iteration the protection direction (either “downward” or “up-
ward”) of a subset of sensitive cells, and the deviations for all the cells. The protec-
tion directions of the remaining sensitive cells are kept constant at the optimal values
of previous iterations. Note that continuous variables of the problem (the deviations
for all the cells) are never fixed; unlike the standard BCD approach, blocking and
fixing is only performed for the binary variables. Partitioning the binary variables
y of (2a)–(2e) into k blocks, and denoting yj,i as the fixed values of block j at inner
iteration i, the algorithm is roughly as follows:

Step 0 Initialization. Set outer iteration counter: t = 0. Set initial values, hope-
fully feasible, to y.

Step 1 t = t+ 1. Set inner iteration counter i = 0.
Divide y into k blocks: y = {y1,i, . . . , yk,i}, not necessarily of the same size.

Step 1.1 i := i + 1. Solve (2a)–(2e) with respect to block yi,i, taking into
account that yj,i is fixed for j 6= i.
Let yi,i+1 = (yi,i)∗ (the point at the optimum). Let yj,i+1 = yj,i for j 6= i.

4



Step 1.2 If i < k go to Step 1.1.

Step 2 Check for end conditions: if apply, stop, and return the current best solu-
tion. Otherwise, go to Step 1

The above algorithm has been recently implemented and added to τ -Argus in the
scope of the Data without Boundaries INFRA-2010-262608 EU project. Note that
the original problem (2a)–(2e) is solved if only one block of variables is considered.
Therefore, although BCD-CTA is a heuristic, it is easily switched to an optimal
approach for CTA by setting k = 1 at Step 1 for some advanced t. The subproblems
of Step 1.1 may be solved by any MILP method. The τ -Argus implementation of
BCD-CTA allows the solution of these subproblems by several free and commercial
solvers.

One of the drawbacks of BCD-CTA is that it may not obtain a feasible solution
unless the initial values of y (protection directions) are feasible. Several strategies
are available in the τ -Argus implementation of BCD-CTA to compute such an ini-
tial feasible point (see González and Castro (2011)) for details). To overcome this
drawback, BCD has been recently combined with another heuristic named fix-and-
relax (FR) for CTA: FR computes a good initial feasible point, BCD improves on it
(Baena et.al, 2015).

4 Computational results

For the computational experiments, we solved the three-dimensional Eurostat SBS
table with both MILP-CTA and BCD-CTA, considering three different weights:
wi = 1, wi = 1/ai and wi = 1/

√
ai. The runs were carried out on a PC with an I7

CPU at 3.40 GHz, using τ -Argus under Windows 8. Of the five available solvers in
the CTA τ -Argus distribution (two commercial, three free), we used CPLEX. The
results are summarized in Table 1; the meaning of its columns is provided below.

Initially, this instance was solved with wi = 1 and MILP-CTA. As shown in
Table 1, it took 7692 seconds (for a suboptimal solution, the procedure was stopped
after 2 hours of CPU). This indeed motivated using BCD-CTA in this difficult case:
BCD-CTA provided a “decent” suboptimal solution in only 19 seconds. This same
instance with the two other weights resulted to be (unexpectedly) much easier: it
took 85 and 179 seconds with MILP-CTA, and 16 seconds for the two weights with
BCD-CTA.

In order to have an idea of the results of the CTA run, we computed the average
deviation of the cells that have been modified; this information is reported in columns
“x̄ CTA” of Table 1. It is worth remarking that, in a strict sense, this measure
can only be used to compare the results between MILP-CTA and BCD-CTA with
wi = 1/ai, since the objective function minimized with those weights coincides with
the average cell deviation. However we chose that measure for its simplicity. When
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Table 1: Results for MILP-CTA and BCD-CTA with three different weights

MILP-CTA BCD-CTA
wi CPU x̄ CTA x̄ published CPU x̄ CTA x̄ published
1 7692 38933 64490 19 46443 91977

1/ai 85 46904 89451 16 45900 93617
1/
√
ai 179 40717 65297 16 42785 85098

wi = 1/ai, BCD-CTA did a good job: it provided a solution with less average
deviations in less time. For the other two weights, the solutions of MILP-CTA
provided lower values for this measure (however, we have to remind this may be just
by chance, since with wi = 1 and wi = 1/

√
ai we are not minimizing the average

deviations). To have a clearer picture on the size of the deviations, Figure 1 plots
a graphical representation of the absolute deviations after one minute of BCD-CTA
followed by two hours of MILP-CTA with weights wi = 1. The plot shows a 28 rows
times 720 columns matrix. Each entry of this matrix is associated to a cell table: the
28 rows are associated to the categories of the “member state” variable of the three-
dimensional table, while the 720 columns are associated to the Cartesian product
of the 120 NACE categories by the 6 categories of the size-class variable. Sizes of
deviations are represented by colors, as reported in the legend. Member states are
sorted by absolute deviations (the higher in the plot, the larger the deviations).
We clearly see that there is one “member state” category with significantly larger
absolute deviations than the others: this category is the total for the 27 member
states. If the plot represented relative deviations, this category would not likely be
the first one in this ranking.

Of course in this example we are not really interested in the results of the CTA
solution but the published rounded EU-table. The average deviation of the published
cells are given by columns “x̄ published” of Table 1. As it is shown wi = 1/

√
ai

performed better than the other weights in this instance. And the best combination
was wi = 1/

√
ai with MILP-CTA.

5 Conclusions and future work

There is of course a lot to be said on the choice of the objective function. A certain
deviation for a large cell high in the hierarchy can be less harmful than the same
deviation for a small cell down in the hierarchy, but on the other hand we have similar
EU-tables where the cells in the lower hierarchy are considered very important.
Therefore, a weight denoting the level in the hierarchy could be a valuable option;
indeed this was also the conclusion reached in Castro and Giessing (2006), where

weights wi = 1/a
1/γi
i (γi depending on the cell hierarchy) provided the best results.
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Figure 1: Graphical representation of the absolute cell deviations after one minute
of BCD-CTA followed by two hours of MILP-CTA with weights wi = 1. Each
entry of this matrix is associated to a cell table: the 28 rows are associated to the
categories of the “member state” variable of the three-dimensional table, while the
720 columns are associated to the Cartesian product of the 120 NACE categories
by the 6 categories of the size-class variable. Sizes of deviations are represented by
colors according to the legend.
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The conclusion is that the alternatives for the weight function have a large impli-
cation. A careful analysis is part of the future tasks to be done. BCD-CTA has an
enormous gain in computing efficiency, but it has a price. Nevertheless these options
should be included in the software for Eurostat, since it may allow the solution of
very large and intractable tables by other approaches.

From an optimization point of view, among the future task we find to understand
why the behaviour of the MILP solver changes so drastically with different objective
functions.

References
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