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Abstract. The paper is devoted to the efficient and robust implementation of a certain
finite-strain plasticity model, formulated within the popular multiplicative framework.
The model was proposed by Shutov and Kreißig (2008), and it captures the nonlinear
behavior of metallic materials, including the combined isotropic/kinematic hardening and
viscosity. A new implicit time stepping procedure is suggested here, which can be used
for the stress computation at each Gauß point of the finite element discretization.

The model of Shutov and Kreißig exhibits the so-called weak invariance of the solution
under arbitrary isochoric change of the reference configuration. The presented algorithm
benefits from this special structure of the constitutive equations: The weak invariance
property is exploited for construction of the numerical integration procedure; the result-
ing procedure preserves the weak invariance. The inelastic incompressibility is exactly
preserved as well to suppress the error accumulation; the algorithm is unconditionally
stable and first-order accurate. In terms of accuracy, the proposed algorithm is compara-
ble with the Euler Backward Method (EBM), but it is superior to EMB with respect to
efficiency and robustness.

1 INTRODUCTION

In many practical metal forming applications it is necessary to estimate the residual
stresses and the magnitude of spring back. Numerical computations accounting for these
effects should employ models of finite strain plasticity with combined isotropic/kinematic
hardening (cf., for example, [6, 2]). One of such models was constructed by Shutov and
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Kreißig within the context of multiplicative plasticity/viscoplasticity [10]. The deformation-
induced plastic anisotropy is captured by this model phenomenologically. The important
feature of this model is that it is based on the double multiplicative split of the deforma-
tion gradient proposed by [7]. A similar model was also proposed in [16]. Lion’s double
multiplicative decomposition was adopted in different areas, including applications to
shape memory alloys [3], coupled thermoplasticity [8], ratchetting [18], ductile damage
[1, 17, 14]. One application of the model to microstructural simulations was discussed in
[15].

For the FEM implementation, a numerical procedure is needed which computes the
stresses locally at each integration point (Gauß point). For the considered model of
Shutov and Kreißig, the numerical procedure is based on the integration of constitutive
equations governing the inelastic flow of the material. Unfortunately, as is typical for metal
plasticity, the underlying system of equations is stiff and implicit time stepping is needed
to obtain a stable integration procedure. The implicit time discretization yields a system
of nonlinear algebraic equations. The problem is aggravated by the fact that the general
closed form solution for this system is unknown. Therefore, a local iterative procedure was
implemented by many authors to solve a system of coupled nonlinear equations.1 In the
current study, simple closed-form solutions are found for elementary decoupled problems.
The desired time stepping procedure for the coupled system of equations is obtained by
a combination of these explicit solutions and by employing a sophisticated operator split.
As a result, only one scalar equation has to be solved numerically with respect to the
unknown inelastic strain increment. Clearly, such modification is the key to enhanced
computational efficiency and robustness of the numerical integration.

The accuracy of the stress computation by the new algorithm is tested numerically.
Concerning the accuracy, the new algorithm is comparable with the classical Euler Back-
ward Method (EBM).

2 MATERIAL MODEL

2.1 System of constitutive equations

Let us shortly recall the viscoplastic material model proposed by Shutov and Kreißig
[10]. For simplicity of the numerical implementation, we adopt here the Lagrangian
formulation of the material model. Along with the well-known right Cauchy-Green tensor
C, we introduce tensor-valued internal variables Ci, Cii. These variables are interpreted
respectively as the inelastic right Cauchy-Green tensor and the inelastic right Cauchy-
Green tensor of the substructure. By s and sd we denote the inelastic arc length (Odqvist
parameter) and its dissipative part, respectively.

The free energy per unit mass is assumed to be given by ψ = ψel(CCi
−1)+ψkin(CiCii

−1)+
ψiso(s−sd). Here, ψel is the energy storage due to elastic deformations, ψkin represents the

1In [5], a semi-implicit procedure with only one scalar equation was developed assuming that elastic
strains are small.
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storage associated with the kinematic hardening, and ψiso is the energy storage related to
the isotropic hardening. The functions ψel and ψkin are assumed to be isotropic.2 Let T̃
and X̃ denote respectively the 2nd Piola-Kirchhoff stress tensor and the total backstress
tensor, both operating on the reference configuration. The backstress describes the trans-
lation of the yield surface in the stress space. The isotropic expansion of the yield surface
is captured by the scalar quantity R. The rate-dependent overstress f is introduced to
capture the viscous effects.

A local initial value problem is considered in this paper. Thus, the local deformation
history C(t) is assumed to be given in the time interval t ∈ [0, T ]. The corresponding
stress response is governed by the following system of ordinary differential and algebraic
equations

Ċi = 2
λi

F

(
CT̃−CiX̃

)D
Ci, Ci|t=0 = C0

i , detC0
i = 1, C0

i = (C0
i )

T > 0, (1)

Ċii = 2λiκ(CiX̃
)D

Cii, Cii|t=0 = C0
ii, detC0

ii = 1, C0
ii = (C0

ii)
T > 0, (2)

ṡ =

√
2

3
λi, ṡd =

β

γ
ṡR, s|t=0 = s0, sd|t=0 = s0d, (3)

T̃ = 2ρR

∂ψel(CCi
−1)

∂C

∣∣
Ci=const

, (4)

X̃ = 2ρR

∂ψkin(CiCii
−1)

∂Ci

∣∣
Cii=const

, (5)

R = ρR

∂ψiso(s− sd)

∂s
, (6)

λi =
1

η

〈 1

f0
f
〉m

, f = F−
√

2

3

[
K +R

]
, F =

√
tr
[(
CT̃−CiX̃

)D]2
. (7)

Here, the material parameters ρR > 0, κ ≥ 0, β ≥ 0, γ ∈ R, η ≥ 0, m ≥ 1, K > 0, and
the real-valued functions ψel, ψkin, ψiso are assumed to be known; f0 = 1 MPa is used to
obtain a dimensionless term in the bracket (f0 is not a material parameter). The function
λi(t) is referred to as the inelastic multiplier; F(t) is the norm of the driving force; the
superposed dot denotes the material time derivative, (·)D stands for the deviatoric part
of a second-rank tensor; �x� := max(x, 0) is the Macaulay bracket.

Assuming for the isotropic hardening

ρRψiso(s− sd) =
γ

2
(s− sd)

2 (8)

we arrive at
R = γ(s− sd). (9)

2Some additional terms can be introduced for a more precise description of the energy storage [8].
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Next, let us assume that the remaining part of the free energy is governed by potentials
of Neo-Hookean type

ρRψel(CC−1
i ) =

k

2

(
ln
√

detCC−1
i

)2
+

µ

2

(
trCC−1

i − 3
)
, (10)

ρRψkin(CiC
−1
i1 ) =

c

4

(
trCiC

−1
1i − 3

)
, (11)

where k > 0, µ > 0, c > 0 are material constants; the overline (·) denotes the unimodular
part of a tensor such that A := (detA)−1/3A for all A. In this special case we have

T̃ = k ln
√
det(C) C−1 + µ C−1(CC−1

i )D, (12)

X̃ =
c

2
C−1

i (CiC
−1
1i )

D, (13)

and the evolution equations (1), (2) are reduced to

Ċi = 2
λi

F

(
µ (CC−1

i )D − c

2
(CiC

−1
ii )D

)
Ci, (14)

Ċii = λi κ c (CiC
−1
ii )DCii. (15)

2.2 Properties of the model

The exact solution of (1) – (7) exhibits the following geometric property

Ci,Cii ∈ M, where M :=
{
B ∈ Sym : detB = 1

}
. (16)

Thus, we are dealing with a system of differential and algebraic equations on the mani-
fold. The condition det(Ci) = 1 corresponds to the inelastic incompressibility, typically
assumed for metallic materials; the condition det(Cii) = 1 reflects the incompressibility
on the substructural level. These incompressibility conditions should be exactly fulfilled
by the numerical solution in order to suppress the error accumulation [11]. Moreover,
the tensors Ci and Cii are positive definite. From the physical standpoint, it is essential
that they remain positive-definite within the numerical method, since they represent some
metric tensors of Cauchy-Green type.

Another important aspect is the weak invariance of the considered constitutive equa-
tions. The essence of the weak invariance is as follows (cf. [9]): Let F0 be arbitrary second
rank tensor such that det(F0) = 1. If the prescribed loading programm is replaced by a
new programm Fnew(t) := F(t) F−1

0 , Cnew(t) := F−T
0 C(t) F−1

0 and the initial conditions
are transformed according to

Cnew
i |t=0 = F−T

0 Ci|t=0 F−1
0 , Cnew

ii |t=0 = F−T
0 Cii|t=0 F−1

0 , (17)
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then the same Cauchy stresses (true stresses) T will be predicted by the model

Tnew(t) = T(t) for all t ∈ [0, T ]. (18)

The proof of (18) for the model of Shutov and Kreißig can be found in [13].
Generally speaking, the weak invariance can be seen as a generalized symmetry prop-

erty of the material [9]. Like any other symmetry, it should be exactly preserved by the
numerical procedure. As will be shown in the following, the weak invariance requirement
is helpful in constructing new efficient algorithms.

3 TIME STEPPING SCHEME

Consider a typical time step tn �→ tn+1 with ∆t := tn+1 − tn > 0. Assume that
nC := C(nt) and n+1C := C(n+1t) are known and the internal variables Ci,Cii, s, sd at tn
are given by nCi,

nCii,
ns, nsd. We need to update the internal variables and to compute

the stress tensor n+1T̃. It is instructive to introduce the incremental inelastic parameter

ξ := ∆t n+1λi, (19)

which is a non-dimensional quantity. For most practical applications we may assume that
ξ ≤ 0.2. A new implicit numerical procedure will be constructed in this section, which is
based on closed-form solutions for decoupled problems. As a result, the original problem
will be reduced to a simplified problem with only one scalar unknown ξ.

3.1 Update of s and sd for known ξ

Integrating (3)1 and (3)2 within the time step, one easily obtains n+1R, n+1s and n+1sd
as functions of ξ

n+1R(ξ) =
tR +

√
2/3γξ

1 +
√

2/3βξ
, where tR := γ(ns− nsd), (20)

n+1s(ξ) = ns+
√
2/3 ξ, n+1sd(ξ) =

nsd +
β

γ

√
2/3 ξ n+1R(ξ). (21)

3.2 Update of Ci for known n+1Cii, ξ

In this subsection we assume that n+1Cii and ξ are known. We need to update Ci by
integrating the evolution equation (14). Toward that end, we rewrite (14) as follows

Ċi = 2
λi

F

(
µ C− c

2
CiC

−1
ii Ci

)
+ βCi, (22)

where

β = −2

3

λi

F

(
µ tr(CC−1

i )− c

2
tr(CiC

−1
ii )

)
∈ R. (23)
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Next, we express the norm of the driving force as a function of ξ: Combining (7)1 and
(7)2 we obtain

F = F2(ξ) := f0
( ηξ
∆t

)1/m
+
√

2/3(K + n+1R(ξ)). (24)

Applying the classical Euler backward method (EBM) to (22), and replacing F through
F2(ξ) we obtain

n+1Ci =
nCi + 2

ξ

F2

(
µ n+1C− c

2
n+1Ci

n+1C−1
ii

n+1Ci

)
+ β∆t n+1Ci, (25)

where the time-dependent scalar β is unknown.
Unfortunately, the classical EBM violates the incompressibility condition det(Ci) = 1.

In order to enforce this property, we may consider a modification of (25) as follows

n+1Ci =
nCi + 2

ξ

F2

(
µ n+1C− c

2
n+1Ci

n+1C−1
ii

n+1Ci

)
+ β∆t n+1Ci + εP, (26)

where ε is a scalar andP is a suitable second-rank tensor.3 The small scalar ε is determined
such that det(n+1Ci) = 1. In some publications, the authors put P := 1, but such choice
of P violates the weak invariance of the solution. In this study we put P := n+1Ci. This
approach is compatible with the weak invariance. Thus, we obtain from (26)

z n+1Ci =
nCi + 2

ξ

F2

(
µ n+1C− c

2
n+1Ci

n+1C−1
ii

n+1Ci

)
, (27)

where the unknown z is determined from the incompressibility condition det(n+1Ci) = 1.
Next, introducing Φ := c n+1C−1

ii we arrive at

z n+1Ci =
nCi + 2

ξ

F2

(
µ n+1C− 1

2
n+1Ci Φ

n+1Ci

)
. (28)

Further, multiplying both sides of (28) with Φ1/2 from left and right, we obtain

z Φ1/2 n+1Ci Φ
1/2 = Φ1/2

[
nCi + 2

ξ

F2
µ n+1C

]
Φ1/2 − ξ

F2
Φ1/2 n+1Ci Φ

n+1Ci Φ
1/2. (29)

For what follows we introduceY := Φ1/2 n+1Ci Φ
1/2 andA := Φ1/2

[
nCi+2

ξ
F2

µ n+1C
]
Φ1/2;

A is known; Y is unknown.
Recall that, for physical reasons, n+1Ci must be positive definite. Therefore, we expect

that Y is positive definite as well. Substituting the abbreviations into (29), we obtain the
quadratic equation with respect to Y and its physically reasonable solution as follows

z Y = A− ξ

F2
Y2, Y > 0 ⇒ Y =

F2

2ξ

[
− z1 +

√
z21+ 4

ξ

F2
A
]
. (30)

3Another modification of EBM to enforce the incompressibility was presented in [4].
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Recall that the unknown parameter z can be estimated using the incompressibility con-
dition det(n+1Ci) = 1, which is equivalent to det(Y) = det(Φ). Fortunately, we do not
have to solve this equation exactly. Introducing Y0 := Φ1/2 nCi Φ

1/2 = Y + O(ξ) and
taking the determinant of both sides of (30)1, we have

z3 det(Φ) = det(A− ξ

F2
Y2

0) +O(ξ2), z =
[
det(A− ξ

F2
Y2

0)/ det(Φ)
]1/3

+O(ξ2). (31)

Neglecting the term O(ξ2), z is estimated by

z =
[
det(A− ξ

F2
Y2

0)/ det(Φ)
]1/3

. (32)

Next, Y is computed by (30)3 and Ci is updated through

n+1C∗
i := Φ−1/2 Y Φ−1/2, n+1Ci = n+1C∗

i . (33)

The correction step (33)2 is needed to enforce the incompressibility, since z is not com-
puted exactly. This step does not violate the weak invariance of the solution. The
procedure, described in this subsection, yields n+1Ci as a function of n+1Cii and ξ:

n+1Ci = Ci(
n+1Cii, ξ). (34)

3.3 Update of Cii for known Ci and ξ

In this subsection we update Cii using the evolution equation (15). Its EBM discretiza-
tion yields

n+1C∗
ii =

nCii + ξ κ c (n+1Ci (
n+1C∗

ii)
−1)D n+1C∗

ii. (35)

Note that this equation has exactly the same structure as for the discretized finite-strain
model of Maxwell fluid (cf. equation (25) in [12]). If the EBM solution n+1C∗

ii is corrected
to obtain n+1Cii = n+1C∗

ii, then a simple explicit update formula is available (cf. equation
(29) in [12]):

n+1Cii = nCii + ξ κ c n+1Ci. (36)

Interestingly, this update formula for Cii can be derived by implementing the restriction
of the weak invariance, as it was carried out in the previous subsection for Ci.

3.4 Overall procedure with operator split

Multiplying (7)1 with ∆t, we arrive at the following incremental consistency condition
for finding ξ

ξη = ∆t
〈 1

f0
f
〉m

, where f = f̃(n+1Ci,
n+1Cii, ξ). (37)

Here, the overstress function f̃(∗Ci,
∗Cii, ξ) is determined from (7)2 and (7)3 as follows

f̃(∗Ci,
∗Cii, ξ) := F1(

∗Ci,
∗Cii)−

√
2

3

[
K + n+1R(ξ)

]
, (38)
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F1(
∗Ci,

∗Cii) :=

√
tr
[(

n+1C ∗T̃− ∗Ci
∗X̃

)D]2
, (39)

∗T̃(∗Ci) := k ln
√
det(n+1C) n+1C−1 + µ n+1C−1(n+1C ∗C−1

i )D, (40)

∗X̃(∗Ci,
∗Cii) :=

c

2
∗C−1

i (∗Ci
∗C−1

1i )
D. (41)

The following procedure is implemented in this study:

1 Elastic predictor: Evaluate trial overstress as follows

trialf := f̃(nCi,
nCii, 0). (42)

If trialf ≤ 0 then the current stress state remains in the elastic region. Put ξ = 0,
n+1Ci =

nCi,
n+1Cii =

nCii,
n+1s = ns, n+1sd = nsd. The time step is complete. If

trialf > 0 then proceed to the plastic corrector step.

2 Plastic corrector: The initial estimation for n+1Cii is obtained from nCii by the
same push-forward operation which brings nC to n+1C. More precisely:

F0 := (n+1C)−1/2 (nC)1/2, estCii := F−T
0

nCii F
−1
0 . (43)

Next, we estimate ξ by resolving the following incremental consistency condition

ξη = ∆t
〈 1

f0
f̃(Ci(

estCii, ξ),
estCii, ξ)

〉m

. (44)

In other words, we perform a time step with a fixed Cii ≡ estCii. Let
estξ be the solution

of (44), and estCi := Ci(
estCii,

estξ). Now we can update Cii using the explicit update
formula (36)

n+1Cii := nCii + estξ κ c estCi. (45)

Finally, we compute ξ by resolving the incremental consistency condition as follows

ξη = ∆t
〈 1

f0
f̃(Ci(

n+1Cii, ξ),
n+1Cii, ξ)

〉m

. (46)

This time we perform the time step with a fixed Cii ≡ n+1Cii. Let ξ be the solution of
(46). The variable Ci is updated by n+1Ci := Ci(

n+1Cii, ξ). The variables s an sd are
updated by (21). The plastic corrector step is complete.

Note that instead of solving a nonlinear system of algebraic equations with respect to
n+1Ci,

n+1Cii and ξ as it was carried out in [10], only a scalar consistency equation has to
be solved with respect to ξ: First, the consistency equations (44) has to be resolved, after
that (46) is solved. Obviously, the resulting scheme is first order accurate. Moreover,
the geometric property (16) is exactly satisfied and the positive definiteness of Ci and
Cii is guaranteed even for large time steps and strain increments. The numerical solution
exhibits the same weak invariance property as the original continuum model.
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Figure 1: Simulated stress response for the load path (47). Top: results for constant time step size
∆t = 5s. Bottom: results for ∆t = 10s.

4 NUMERICAL TEST

Let us test the accuracy of the new algorithm numerically. We will compare this algo-
rithm with the Euler backward method (EBM) with subsequent correction of incompress-
ibility. The set of material parameters used for the simulation is taken from paper [10],
which qualitatively corresponds to an aluminum alloy. The parameters are summarized
in Table 1.

Table 1: Set of material parameters

k [MPa] µ [MPa] c [MPa] γ [MPa]
73500 28200 3500 460

K [MPa] m [-] η [s] κ [MPa−1] β [-]
270 3.6 2 · 106 0.028 5

To test the accuracy of the stress computation we simulate the material response under
strain controlled loading. The local loading program in the time interval t ∈ [0, 300] is
given by

F(t) = F′(t), (47)
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where F′(t) is a piecewise linear function of time t

F′(t) :=





(1− t/100)F1 + (t/100)F2 if t ∈ [0, 100]

(2− t/100)F2 + (t/100− 1)F3 if t ∈ (100, 200]

(3− t/100)F3 + (t/100− 2)F4 if t ∈ (200, 300]

.

Here, the key points of the loading path are given by

F1 := 1, F2 :=




2 0 0

0
1√
2

0

0 0
1√
2


 , F3 :=




1 1 0
0 1 0
0 0 1


 , F4 :=




1√
2

0 0

0 2 0

0 0
1√
2


 .

Moreover, we consider the initial conditions as follows

Ci|t=0 = 1, Cii|t=0 = 1, s|t=0 = 0, sd|t=0 = 0. (48)

The numerical solution obtained with extremely small time step (∆t = 0.005s) will be seen
as the exact solution. The components of the Cauchy stress tensor T are plotted in figure
1 for different time step sizes ∆t. The numerical test reveals that the new method and the
EBM with incompressibility correction have a similar integration error even for big time
steps ∆t = 10 s. Both algorithms are first order accurate and they are are comparable

in accuracy, but the computational effort for the new algorithm is much smaller than for
the EBM.

5 CONCLUSIONS

A new highly efficient time stepping algorithm is presented. The derivation of the
algorithm is based on the property of the weak invariance of the solution. Instead of
solving 13 scalar equations with respect to 13 unknowns, a single incremental consistency
condition has to be resolved with respect to the inelastic increment ξ. In the follow-up
paper, the method will be generalized to cover a model with numerous back stress tensors
and models with distortional hardening.

Acknowledgement: The research was supported by the Russian Science Foundation
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