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E. Oñate, D.R.J. Owen, D. Peric & M. Chiumenti (Eds)

ATOMISTIC MODELING AND SIMULATION OF
LONG-TERM TRANSPORT PHENOMENA IN

NANOMATERIALS

M.P. ARIZA∗, C.S. MARTIN∗ AND M. ORTIZ†
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Universidad de Sevilla

Camino de los descubrimientos, s.n. 41092-Sevilla, Spain
e-mail: mpariza@us.es, csmartin@us.es, web page: http://personal.us.es/mpariza/

†Engineering and Applied Sciences Division
California Institute of Technology

1200 E. California Blvd. Pasadena, 91125 CA, USA
e-mail: ortiz@caltech.edu, web page: http://aero.caltech.edu/ ortiz/index.html

Key words: Meanfield theory, non-equilibrium statistical thermodynamics, slow kinetic
processes, thermal conductivity, semiconductor nanowire

Abstract. In the past two decades, extensive research has been conducted towards de-
veloping nanomaterials with superior transport properties, such as heat conductivity and
mass diffusivity, for applications in various industries including, but not limited to, en-
ergy storage and microelectronics. In terms of modeling and simulation, a long-standing
difficulty lies in the separation of temporal and spatial scales. Indeed, many transport
phenomena in nanomaterials are characterized by slow kinetic processes with time scale
of the order of seconds, hours, or even years, far beyond the time windows of existing
simulation technologies such as molecular dynamics (MD) and Monte Carlo (MC) meth-
ods. We have developed a novel deformation-diffusion coupled computational framework
that allows long-term simulation of such slow processes, while at the same time maintains
a strictly atomistic description of the material. Our non-equilibrium statistical thermo-
dynamics model includes discrete kinetic laws, which govern mass diffusion and heat
conduction at atomic scale. In this work, we explore the capabilities and performance of
this computational framework through its application to heat conduction problems.

1 INTRODUCTION

The thermal conductivity of a material (κ) is an intrinsic property which relates its
ability to conduct heat. A highly thermally conductive material might be used as a heat
exchanger cooling system, commonly required to improve the performance of high-power
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semiconductor devices. Whereas materials of low κ are used as insulators when thermal
conduction or thermal radiation needs to be reduced or reflected rather than absorbed,
respectively. This later group of materials are recently intended for energy efficient ap-
plications, in which the performance of thermoelectric energy conversion devices depends
on the thermoelectric figure of merit (ZT) of the material [1].

Many silicon-based materials have been extensively used for electronic applications.
Although the semiconductor characteristics of pure silicon are not noticeable, silicon com-
pounds and its alloys have been widely used as semiconductor devices. Among others,
Silicon Carbide (SiC) was one of the first semiconductor materials that captured the at-
tention of the electronics industry due to its excellent performance at high temperature
[2], together with high power capabilities. Its wide bandgap (five times wider at room
temperature than the one corresponding to Si) and high durability, electrical breakdown
field and thermal conductivity, led to focus much attention to the development of growth
techniques for the improvement of this silicon compound. Within the range of high power
electronic devices, high values of κ is a desirable attribute, although this is not always
the case.

The development of renewable energy technologies has created the need for novel mate-
rials with high efficient thermoelectric behavior, that is defined in terms of their ZT, which
is inversely proportional to κ. The value of this parameter has been reported [3, 1] to be
enhanced beyond unity by nanostructuring thermoelectric materials, mostly due to the
reduction of the thermal conductivity when the representative section is reduced below
the electron and/or phonon mean free path [4]. Although bulk silicon is a poor thermo-
electric material, silicon based nanostructures in the form of one-dimensional conductors
or nanowires have been investigated as potentially efficient thermoelectric materials for
more than twenty years [5]. Silicon nanowires (SiNW) have been proposed to be a crucial
component for the manufacturing of nanoelectronic devices, therefore their synthesization
process [6, 7] and measuring of thermal and electrical properties have challenged many
researchers in the past decade [8, 9, 10, 11].

It was well established that thermal conductivity of materials is temperature dependent,
however the rise in the manufacturing of nanosize electronic components has highlighted
that κ relies heavily on the size. Moreover, thermal properties of SiNWs have revealed to
be strongly dependent on surface morphology [6].

Much computational effort have been devoted to comprehend heat transport in very
thin SiNW. [12] have computed the heat conductance for ultrathin SiNWs (diameters
ranging from 1 to 5 nm) using density functional theory and Tersoff empirical potential
for thicker sections, showed that thermal behavior is heavily anisotropic. They have found
that wire orientation influences the ballistic thermal conductance of SiNWs about 50%
to 75%. More recently, atomistic simulations carried out by [13] have confirmed that the
existence of a disordered surface as thin as two atomic layers is sufficient to reduce κ by
an order of magnitude with respect to that of crystalline wires with the same radius.

The first measurement of the thermal conductivity of SiNWs was reported by [8]. They
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obtained thermal conductivities for individual nanowires with diameters ranging from 22
to 115 nm more than two orders of magnitude lower than the bulk value. More recent
works by [10] and [11] have reasserted the pioneering results for VLS-grown wires with
relatively smooth surfaces, and extended their study by focusing on the phonon-boundary
scattering for thinner nanowires.

Here, we specifically aim to ascertain the ability of models based on non-equilibrium
statistical mechanics, specifically, the approach proposed by Kulkarni et al. [14] and Ven-
turini et al. [15], to reproduce the observed anisotropy, temperature and size dependence
of the thermal conductivity of silicon nanowires.

2 COMPUTATIONAL MODEL

In this numerical study, we show that this significant size effect can be reproduced
using the discrete linear Fourier law proposed above. Following the experimental study of
[8], we consider single crystal Si nanowires oriented in the ⟨111⟩ direction, with diameters
D = 22, 37, 58, and 115 nm. We assume the Si atoms in the nanowires are fixed”
in a meanfield sense, that is, the mean atomic position {q} is constant in time, and
the mean atomic momentum {p} is zero. This assumption can be justified because in
the experiment, temperature variation is small (less than 5 K). Moreover, we assume
the particle temperature θ at each atom is also constant in time, which can be justified
because all the experimental measurements are conducted at steady state [9].

At about 3 µm long, the nanowires used in the experiment contain 30 million to 1
billion atoms. Therefore, simulating the entire nanowire in an atomistic description is
prohibitively expensive. To circumvent this difficulty, we recourse to the homogenization
theory for an inhomogeneous rigid conductor, and mirror it to the atomistic samples.

We first consider an inhomogeneous rigid conductor occupying Ω ∈ R3 with prescribed
average temperature derivative along xi-axis, denoted by T ,i. Assuming heat conduction
is governed by the linear Fourier law, the temperature field T is the solution of

(κij(x)T,j),i = 0, in Ω, (1a)

1

|Ω|

∫

Ω

T,idx = T ,i, on ∂Ω, (1b)

which can be written in variational form as

min
T

∫

Ω

1

2
κij(x)T,iT,jdx, (2a)

s.t.
1

|Ω|

∫

Ω

T,idx = T ,i, (2b)
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or equivalently,

min
T

∫

Ω

1

2
κij(x)T,iT,jdx, (3a)

s.t.
1

|Ω|

∫

∂Ω

Tni · dσ = T ,i, (3b)

With Lagrange multiplier J i, (3) can be re-written as

min
T,J̄i

∫

Ω

1

2
κij(x)T,iT,jdx− J i

( 1

|Ω|

∫

Ω

T,idx− T ,i

)
, (4)

leading to the following equilibrium conditions:

(κij(x)T,j),i = 0, in Ω, (5a)

Jini = (κij(x)T,j)ni = J ini, in Ω, (5b)

1

|Ω|

∫

Ω

T,idx = T ,i, on ∂Ω. (5c)

From the second equation, we obtain

1

|Ω|

∫

∂Ω

Jjnjxidσ =
1

|Ω|

∫

∂Ω

J injxidσ = J j
1

|Ω|

∫

∂Ω

njxidσ = J jδij = J i. (6)

By linearity, there is a linear relation between the average flux J i and the average
temperature gradient T ,i, namely,

J i = κijT ,i, (7)

which identifies the effective conductivities κij.
Now we mirror the above framework to the atomistic description of the Si nanowires.

For each nanowire, we identify Ω as a slice of it containing 20 (111) planes of atoms. We
set up a Cartesian coordinate system such that its z coordinate coincides with the axis of
the nanowire. We fix the temperature of one atom to the ambient temperature at which
heat conduction takes place (denoted by T0), and set the average temperature gradient
T ,z by

T ,z =
∆T

L
, (8)

where ∆T = 5.0 K is (roughly) the maximum temperature variation observed in the
experiment, and L = 3.0× 103 nm is (roughly) the length of the nanowires.

Then, {θ} and Jz are determined by

min
{θ},Jz ,µ

∑
i,j∈Ω,i̸=j

1

2
Aijθ

2
ijP

2
ij −

Jz

T
2

0

( ∑
i∈∂Ω

θi(ni · nz)σi − |Ω|T ,z

)
− µ(θi0 − T0) (9)
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with

θij =
θi + θj

2
, (10)

and

Pij =
1

θi
− 1

θj
. (11)

Here, ∂Ω = Γf

∪
Γl includes the first and last (111) planes of the nanowire slice, denoted

by Γf and Γl, respectively. σi is the cross-sectional area of the nanowire associated with
atom i ∈ ∂Ω, determined in the present work by

σi =
πR2

NS

, (12)

where NS denotes the total number of atoms on each (111) plane. ni and nz denote the
unit outward normal of ∂Ω at atom i ∈ ∂Ω and the direction of z-axis, respectively.

Enforcing stationarity of the objective function in Eq. 9 yields the following equilibrium
conditions:

∑
j∈Ω,j ̸=i

Aij

θ4i − θ4j
4θ3i θ

2
j

+
Jzσi

T
2

0

���
i∈Γf

− Jzσi

T
2

0

���
i∈Γl

− µ
��
i=i0

= 0, ∀i ∈ Ω, (13a)

∑
i∈Γl

θiσi −
∑
i∈Γf

θiσi − |Ω|T ,z = 0, (13b)

θi0 − T0 = 0. (13c)

In this work, we solve Eq. (13) for {θ}, Jz, and µ using the Newton-Raphson method,
and determine the effective thermal conductivity κ by

κ =
Jz

T ,z

. (14)

3 SIMULATION SETUP

The nanowires studied in the experiment carried out by [8] comprise an amorphous
surface layer with thickness around 2 nm (see Fig. 2 of the aforementioned paper). We
consider silicon nanowires with constant diameter which circular cross section consists of
a crystalline core and an amorphous shell. However, due to the discreteness character
of the silicon ⟨111⟩ layers and the random distribution of atoms within the amorphous
shell, a relatively small surface roughness is unavoidably introduced in our computational
cell although the effect of phonon surface scattering on the thermal conductivity is out
of the scope of this study. In particular, we account for the amorphous surface layer in
our computational model by perturbing the positions of atoms located near the nanowire
surface. More specifically, the mean atomic positions {q} are determined by

qi =

{
q
(0)
i + pidi, if i ∈ Ωa;

q
(0)
i , otherwise,

(15)
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where q
(0)
i = [q

(0)
ix , q

(0)
iy , q

(0)
iz ]T denotes the mean position of atom i in the perfect Si lattice

with lattice constant a = 0.543 nm, and

Ωa =
{
i ∈ Ω

���
√
q
(0)2

ix + q
(0)2

iy > R− τa

}
(16)

identifies atoms located within the amorphous surface layer. In order to build realistic
crystalline/amorphous core/shell nanowires [16, 17], we have considered an amorphous
shell with linearly varying thickness with the external diameter of the nanowire.

The thickness of the amorphous layer, denoted by τa in Eq. 16, is set to be 2 nm in all
simulations. di and pi are the randomly generated direction and magnitude of the pertur-
bation applied to atom i. In this work, we draw di from the uniform distribution in unit

sphere S2 = {x ∈ R3 | ∥x∥2 = 1}, and pi from Gaussian distribution N(
pmax

2
,
(pmax

8

)2
),

with pmax = a/10.
The discrete linear Fourier law used in Eqs. 9–13 allows heat conduction between each

pair of atoms in Ω; and the bondwise conductivity coefficient Aij can be different for each
⟨i, j⟩ pair. However, in order to achieve a computationally manageable model, here we
restrict heat conduction within a small neighborhood, and assume Aij can take only two
values. More specifically, for all i, j ∈ Ω, i ̸= j, Aij is determined by

Aij =




Aa, if i ∈ Ωa or j ∈ Ωa, ∥qi − qj∥ < rc;

Ac, if i, j ∈ Ω \ Ωa, ∥qi − qj∥ < rc;

0, if ∥qi − qj∥ ≥ rc.

(17)

The cut-off radius rc is chosen to be

rc =
a1 + a2

2
, (18)

where a1 =

√
3

4
a and a2 =

√
2

2
a are the distances between the first and second shells of

closest neighbors in the perfect Si lattice. This choice of rc particularly implies that in
the perfect lattice, only heat conduction between closest neighbors are considered.

It is notable that for i ∈ ∂Ω, its interaction with neighbors outside Ω also need to
be taken into account. Therefore, we extend the computational model at both ends by
two ⟨111⟩ planes, and determine the particle temperature therein by linear extrapolation
along z-axis from inside Ω.

4 RESULTS AND DISCUSSION

As already mentioned, our objective in this computational study is not to predict, but
rather to reproduce the size effect discovered in the experiment [8] based on the discrete
kinetic potentials defined in Section 2. [8] have shown in their study (see Fig. 3(b) of [8])
that the temperature dependence of the thermal conductivity of Si nanowires at low
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Figure 1: Comparison of numerical results (filled symbols) and experimental measure-
ments (opened symbols [8]) for thermal conductivity in Si nanowires of different radii
(the lines serve as a guide for the eye).

D a3 a2 a1 a0
22 nm 3.293 · 10−7 −1.422 · 10−4 6.993 · 10−2 2.139
37 nm 2.222 · 10−6 −1.829 · 10−3 4.753 · 10−1 −10.078
56 nm 3.672 · 10−6 −2.701 · 10−3 6.081 · 10−1 −11.182
115 nm 3.629 · 10−6 −2.595 · 10−3 5.660 · 10−1 −11.763

Table 1: Coefficients ai of the polynomial 19.
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(a) (b)

Figure 2: Solution of particle temperature ({θ}) for a nanowire slice with diameter D =
56 nm.

temperature follow a power law of exponents 3, 2 and 1, where the power exponent gets
smaller as the diameter decreases. Thus, we postulate in this work that the variation
of thermal conductivity in Si nanowires of different radii can be reproduced using the
simplified discrete Fourier law [15] with

Ac(T ) = a3T
3 + a2T

2 + a1T + a0

Aa(T ) = 0.005Ac(T ) (19)

where ai can be approximated by fitting our effective conductivity κ to the experimental
measurements obtained by [8].

The effective conductivity κ obtained from each simulation is plotted in Fig. 1, in
comparison with the experimental measurements extracted from Fig. 3(a) of [8]. The
numerical results are in good agreement with the experimental data. In all simulations,
we observe that θ is nearly uniform (∼ T0) in the perfect crystal, but clearly varies in the
amorphous surface layer. This is expected because the bondwise conductivity coefficient
within the amorphous layer (Aa) is in all cases much smaller than that in the perfect
crystalline core (Ac), one example is shown in Fig. 2.

5 SUMMARY

We have presented a validation case that illustrates the range and scope of our com-
putational framework. This validation case is characterized by the need or desirability to
account for atomic-level properties while simultaneously entailing tie scales much longer
than those accessible to direct molecular dynamics.
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