
Forms of representation for simple games: sizes, conversions and equivalences

Xavier Molinerob,1, Fabián Riquelmea,1, Maria Sernaa,1

aDepartament of Computer Science, Technical University of Catalonia, Barcelona, Spain
bDepartment of Applied Mathematics III. Technical University of Catalonia, Manresa, Spain

Abstract

Simple games are cooperative games in which the benefit that a coalition may have is always binary, i.e., a coalition
may either win or loose. This paper surveys different forms of representation of simple games, and those for some
of their subfamilies like regular games and weighted games. We analyze the forms of representations that have been
proposed in the literature based on different data structures for sets of sets. We provide bounds on the computational
resources needed to transform a game from one form of representation to another one. This includes the study of the
problem of enumerating the fundamental families of coalitions of a simple game. In particular we prove that several
changes of representation that require exponential time can be solved with polynomial-delay and highlight some open
problems.

Keywords: Simple games, Regular games, Weighted games, Forms of representation, Computational complexity

1. Introduction

Cooperative game theory constitutes a branch of Game Theory where a group of players forming a coalition can
achieve a common benefit, thus providing a setting for the analysis of cooperative behavior. In this survey we focus
on the subclass of simple games. Simple games are cooperative games in which the benefit that a coalition may have
is always binary, i.e., a coalition may be winning or losing, depending on whether the players in the coalition are able
to benefit themselves from the game by achieving together some goal.

Simple games have a huge relevance in mathematics and to some extent in computer science, being used to
solve and represent problems arising in voting theory, logic and threshold logic, circuit complexity, computational
complexity theory, artificial intelligence, geometry, linear programming, etc. [92, 30]. They are closely related with
other mathematical and computational structures, such as hypergraphs, monotone Boolean functions, Sperner families,
distributive lattices, etc. In the preface of [92] we can read:

“Few structures in mathematics arise in more contexts and lend themselves to more diverse interpreta-
tions than do hypergraphs or simple games.”

Although a lot of research in Computer Science has been devoted to cooperative game theory (see [25] and references
herein) the area of simple games has been less explored. Much of the research on simple games focuses on studying
what conditions a simple game should have in order to meet some property or set of properties. Recently, some
researchers in computer science have begun to consider the computational complexity of deciding if a simple game
meets those properties or not [5, 7, 28, 41, 102, 71]. Several of these questions have been satisfactorily answered
either by providing efficient algorithms or proving hardness for the problem. Of course, the way in which the game is
represented and given as an input to a program is crucial for this complexity analysis.

For instance, if we want to implement an algorithm to decide if a given simple game is decisive (self-dual or
zero-sum) its complexity depends largely on the way in which the input game is given. Thus, if the game is given
in extensive winning form by a listing of all winning coalitions, the decision problem is in P, i.e., it is solvable in

Email addresses: xavier.molinero@upc.edu (Xavier Molinero), farisori@cs.upc.edu (Fabián Riquelme), mjserna@cs.upc.edu
(Maria Serna)

Preprint submitted to Mathematical Social Sciences May 8, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41822975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Simple games
EWF Extensive or explicit Winning Form
ELF Extensive or explicit Losing Form

MWF Extensive or explicit Minimal Winning Form
MLF Extensive or explicit Maximal Losing Form

PCBF Partially Condensed Binary Tree Form
BDDF Binary Decision Diagram Form
VWRF Vector Weighted Representation Form

coVWRF co-vector Weighted Representation Form
Regular games

FCBF Fully Condensed Binary Tree Form
SWF Shift-minimal Winning Form

Weighted games
WRF Weighted Representation Form

Table 1: Forms of representation considered in this paper.

Output→ EWF MWF ELF MLFInput ↓
EWF – P s−EXP P

MWF s-EXP – s-EXP s-EXPPd
ELF s-EXP P – P

MLF s-EXP s-EXP
s-EXP –Pd

Table 2: Computational complexity of the conversion problem from the row form to the column form, for representations of simple games based
on explicit descriptions of set families.

polynomial time. However, if the game is given in minimal winning form by a listing of all minimal winning coalitions,
the problem is in QP, i.e., solvable in quasi-polynomial time, being still an open question if it is in P [34, 86]. At last,
if the game is a weighted game, an important subclass of simple games studied in several contexts [93, 52, 73, 90],
given in weighted representation, then the decisive problem is coNP-complete [41].

On the other hand, the size of a simple game in extensive winning form, i.e., the amount of bits needed in order
to write down the family of its winning coalitions, could easily grow exponentially as a function of the number of
players. Therefore, it is relevant to ask which forms of representation are the more appropriate when we face a
computational problem. Both the feasibility of the representation as well as the computational complexity of the
problem, are aspects that must be considered; and the first of these aspects has direct implications about the second
one. Our aim is to provide an easy way to access information on the different forms of representing a simple game
together with an analysis of their relationships from a computational point of view.

All the forms of representation described above, as well as other usual ones based on data structures for represent-
ing sets of sets, will be described and analyzed in this paper. A summary of the forms of representation considered
here is given in Table 1. Winning coalitions of a simple game can also be thought as the satisfying assignments of
a monotone Boolean function. We do not consider such implicit representation. The interested reader can find a
study of monotone Boolean functions and related representation considerations in [95, 26] . Another succinct form of
representation for regular games uses an invariant (~v,M) where ~v is a set of players’ classes andM is a matrix that
considers some special type of winning coalitions [24]. This type of representation is less usual in computer science
approaches. We leave as an open problem the study of the conversion problems for this representation form.

Besides describing the different forms of representation, we are interested in highlighting which forms of repre-

2

Output→ EWF MWF PCBF BDDFInput ↓
EWF – P P P

MWF s-EXP – P PPd

PCBF s-EXP
P – PPd

BDDF s-EXP s-EXP s-EXP –

Table 3: Computational complexity of the conversion problem for representations of simple games based on variants of binary trees and winning
coalitions.

Output→ EWF MWF PCBF BDDF FCBF SWFInput ↓

FCBF s-EXP
P P P – PPd

SWF s-EXP s-EXP s-EXP s-EXP? s-EXP –Pd

Table 4: Computational complexity of the conversion problem from the row form to the column form for representations of regular games.

sentation are equivalent, in the sense that the bounds of their sizes are polynomially related. We are also interested
in the computational complexity of the conversion problem: computing a representation of a simple game given an-
other representation. For equivalent forms of representation the objective is to determine if the conversion problem
(in both directions) can or cannot be solved in polynomial time. For non-equivalent forms we know that at least one
of the conversion problems could not be solved in polynomial time. Therefore, in these cases, we seek enumeration
algorithms with polynomial-delay. Tables 2–5 provide an overview of the results of the conversion problem for the
different forms of representation for simple games considered in this paper. Results in bold face are new and question
marks correspond to open problems. P indicates that the problems can be solved in polynomial time. s-EXP, called
“strict-exponential”, denotes the fact that the problem can be solved in exponential time, but can not be solved in
sub-exponential time. Finally, Pd indicates that the enumeration problem can be solved with polynomial-delay. For
subfamilies of simple games the results are restricted to games in the subfamily. The data structures that constitute
a representation form are those for which the problem of deciding if a simple game is in the family can be solved
in polynomial time. Observe that the conversion problem includes the problem of enumerating the minimal winning
coalitions. This family of coalitions is required to compute several power indices (see, e.g., [49, 36, 12]). Therefore,
efficient algorithms to enumerate them are of particular relevance for any form of representation. For each of the con-
version problem considered in Tables 4 and 5, the reversed conversion problem can be solved trivially in polynomial
time.

The paper is organized as follows. In Section 2 we introduce the basic definitions and concepts related to simple
games as well as the computational problems to be studied later. Section 3 reviews several usual forms of representa-
tion based on explicit representations of set families and characteristic vectors. We survey several complexity results
for the conversion and enumeration problems. Section 4 surveys forms of representations based on binary trees and
variations. Section 5 focuses in particular data structures representing regular games. Section 6 is devoted to weighted
games. Finally, in Section 7 we state some concluding remarks and open problems.

2. Simple games and representation forms

In this section we introduce the basic definitions and concepts for set families and simple games. We use standard
terminology and notation taken from [92]. For a finite set N, P(N) denotes its power set and n its cardinality. A set
family S ⊆ P(N) is monotonic if, for X ∈ S and Z ⊆ N with X ⊆ Z, Z ∈ S. A hypergraph, defined over a ground

3

Output→ EWF MWF PCBF BDDF FCBF SWFInput ↓

WRF s-EXP s-EXP s-EXP s-EXP s-EXP s-EXP
Pd Pd

Table 5: Computational complexity of the conversion problem for representations of weighted games.

finite set N, is a pair (N,S) where S ⊆ P(N). The elements X ∈ S are called hyperedges. A hypergraph is monotonic
when its set of hyperedges is monotonic.

A simple game Γ is a monotonic hypergraph (N,W). The elements in N are called players, the subsets of N are
called coalitions and the elements ofW are called winning coalitions. The complement ofW, L = P(N)\W = {X ⊆
N | X <W}, is the set of losing coalitions. We useW(Γ) and L(Γ) to denote, respectively, the sets of winning and
losing coalitions of a simple game Γ, and simplyW or L when there is no risk of ambiguity.

Simple games were first defined by von Neumann and Morgenstern [93]. However, they considered a more
restricted class of games, which nowadays are known as strong games, i.e., simple games such that, for Y ⊆ N, if
Y ∈ L, then N\Y = {i ∈ N | i < Y} ∈ W. According to Isbell [53], the current definition was given by Gillies [43]
under the name of pseudogames.

Two relevant subsets of coalitions are the minimal winning and the maximal losing coalitions. Here minimality
and maximality are defined with respect to the inclusion ordering. A coalition X ⊆ W is minimal if, there exists i ∈ X
such that X \ {i} is a losing coalition. Symmetrically, a coalition Y ⊆ L is maximal if there exists j < Y such that
Y ∪ { j} is winning. Observe that as the set of winning coalitions is monotonic,W(Γ) is defined uniquely by L(Γ), the
set of losing coalitions, or byWm(Γ), the set of minimal winning coalitions, or by LM(Γ), the set of maximal losing
coalitions.

The relationship between (minimal) winning and (maximal) losing coalitions play a fundamental role in the self-
duality problem [83] of monotone Boolean functions and hypergraphs [30]. In the seminal work on game theory
by von Neumann and Morgenstern [93] this problem corresponds to decide whether a simple game is constant-sum,
zero-sum or decisive. Now we introduce the duality of simple games.

Let Γ = (N,W) be a simple game, X ⊆ N is a blocking coalition if N\X ∈ L(Γ). The dual of Γ is the simple
game Γd such thatW(Γd) = {X ⊆ N | X is a blocking coalition of Γ}. It is clear that L(Γd) = {Y ⊆ N | N\Y ∈ W(Γ)}.
Hence, the dual of a dual game is the original game, i.e., (Γd)d = Γ.

Duality provides an additional way to define games in a unique way, because the set of blocking coalitions of the
dual game determines uniquely the set of winning coalitions. Observe that this subfamily of coalitions has the same
size as the set of losing coalitions of the original game.

Now we turn our attention to the ways in which a simple game can be represented as the input to a problem.

Definition 1. Let G be a class of simple games, a form of representation of G is a finite data structure which allows
to represent each simple game Γ ∈ G, as well as verifying in polynomial time if a given instance of the data structure
represents a simple game Γ in G or not.

We use the notation F(Γ) to denote a representation of simple game Γ in form F. As usual, |F(Γ)| denotes the size
of F(Γ), that is the amount of bits needed to write down the data structure representing Γ.

Definition 2. Let F1 and F2 be two forms of representation for a class of simple games G, the conversion problem
from F1 to F2, denoted by F1 F2, is the following: Given a simple game Γ in F1 form, computing a representation
of Γ in F2 form, i.e., given F1(Γ) compute F2(Γ).

In general, the relative sizes of the different representations of a simple game show the impossibility of having
polynomial time algorithms for the conversion problem between some forms of representation. Nevertheless, gen-
erating explicitly a given form of representation from another one is an interesting problem in combinatorics and
computer science [56]. Several representation forms presented in this survey are associated with set families. In those
cases where the conversion problem requires exponential time, we turn our attention to enumeration algorithms and
provide, when possible, polynomial-delay algorithms.

4

We state now some relevant definitions about the complexity of enumeration algorithms taken from [56]. Let us
consider that we have an input I and we want to obtain the output O = {o1, o2, . . . , o|O|}. An algorithm A runs in
polynomial total time if the time required by A to print O is upper bounded by a polynomial in |I| and |O|. A runs
in incremental polynomial time if, given I and Oi = {o1, o2, . . . , oi}, computing oi+1 or determining that such element
does not exists can be done in polynomial time in the combined sizes of I and Oi. Finally, A runs with polynomial-
delay if, given Oi, finding oi+1 or deciding that such element does not exists can be done in time polynomial in |I|.
The third condition implies the second one, and the second one implies the first one. In the context of this paper our
input will be a simple game, given in some form of representation, and the output will be some of the fundamental set
families defining the game.

It is well known that simple games can be described by monotone Boolean functions [92], and therefore by several
kinds of logical formulas [30]. A monotone Boolean function or positive Boolean function [64] is a binary function
f : {0, 1}n → {0, 1} such that, for v,w ∈ {0, 1}n with v ≤ w, f (v) ≤ f (w). Therefore, vectors x with f (x) = 1 represent
the winning coalitions of the simple game, while vectors x with f (x) = 0 represent the losing coalitions. As mentioned
before, we do not consider the succinct implicit representation provided by monotone Boolean functions and refer the
reader to any of the references on Boolean formulas [95, 26].

3. Simple games represented by explicit set families and incidence vectors

In this section, we describe several usual forms of representation for simple games corresponding to standard
explicit forms of representation of set families [93]. We use matrix notation as an explicit representation of sets. This
form of representation is mostly used in the context of hypergraphs and monotone Boolean functions [60, 30, 82].
Recall that a set X ∈ P(N) can be represented by an incidence vector x(X) ∈ {0, 1}n, where x(X) = (x1, . . . xn) with
xi = 1 if and only if i ∈ X, for 1 ≤ i ≤ n. For an incidence vector x we use xi or x(i) to denote the i-th component of x.
For comparing incidence vector we use the usual lexicographic order: for x, y ∈ {0, 1}n, x ≤ y if and only if, for each
i ∈ N, xi ≤ yi.

We start presenting the earliest forms of representation defined by von Neumann and Morgenstern [93].

Definition 3. A simple game Γ is represented in:

• (Extensive or explicit) winning form (EWF) by a pair (N,W). N is its set of players andW is the set of winning
coalitions of Γ.

• (Extensive or explicit) minimal winning form (MWF) by a pair (N,Wm). N is its set of players andWm is the
set of minimal winning coalitions of Γ.

Observe that both forms of representations are valid since, given a set family, we can check in polynomial time
whether it is monotonic or whether it is minimal. Indeed, to check minimality, we just have to test whether no set is a
proper subset of another.

We can represent a simple game by an incidence matrix with a column for each player and rows formed by the
incidence vectors of the winning (or minimal winning) coalitions.

Example 1. The game Γ = (N,W), with N = {a, b, c, d, e} andW = {{a, b, c, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e},
{a, b, e}, {a, c, d, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {c, e}, {d, e}} can be repre-
sented in MWF as the pair (N,Wm) with Wm = {{a, b, e}, {a, c, d}, {b, c, d}, {c, e}, {d, e}}. The incidence matrix of
(N,Wm) is the following:

N abcde
00011
00101

Wm 01110
10110
11001

5

Assuming an incidence matrix representation, we have that |EWF(Γ)| = n · |W| and |MWF(Γ)| = n · |Wm|. Since
Wm(Γ) ⊆ W(Γ), |EWF(Γ)| ≤ |MWF(Γ)|. The following example provides a simple game for which |MWF(Γ)| is
exponentially smaller than |EWF(Γ)|.

Example 2. Let Γ be a simple game which contains the empty coalition as winning coalition, i.e., such that all players
are dummies [93]. Hence, ∅ is the unique minimal winning coalition, thus |Wm| = 1. However, the number of winning
coalitions is |W| = 2n.

From the previous example, we have the following result (see also [41]).

Lemma 1. The problem MWF EWF can be solved in exponential time but it can not be solved in sub-exponential
time. The problem EWF MWF can be solved in polynomial time.

Besides EWF and MWF, there are other two classical forms of extensive representations, based on losing coali-
tions. Those representation forms were also defined by von Neumann and Morgenstern [93].

Definition 4. A simple game Γ is represented in:

• (Extensive or explicit) losing form (ELF) by a pair (N,L). N is its set of players and L is the set of losing
coalitions of Γ.

• (Extensive or explicit) maximal losing form (MLF) by a pair (N,LM). N is its set of players and LM is the set
of maximal losing coalitions of Γ.

Observe that both forms of representations are valid since, given a set family, we can check in polynomial time
whether its complement is monotonic or whether it is maximal. Indeed, to check maximality, we just have to test
whether no set is a proper superset of another. Note that the respective sizes of a simple game Γ are |ELF(Γ)| = n · |L|
and |MLF(Γ)| = n · |LM |.

The conversion problem among representations based on losing coalitions and those based on winning coalitions
was studied in [41]. There it was shown that EWF MLF, ELF MWF and ELF MLF can be solved in polynomial
time. The remaining cases considered here can be solved in exponential time, but can not be solved in sub-exponential
time [41]. The polynomial time algorithms come from the monotonicity of simple games. The exponential time
requirement is related to the respective size of the representations, as in Lemma 1.

Lemma 2 ([41]). The problems EWF MLF, ELF MLF and ELF MWF can be solved in polynomial time. The
problems EWF ELF, MWF ELF, MWF MLF, ELF EWF, MLF EWF, MLF MWF and MLF ELF can be
solved in exponential time but they can not be solved in sub-exponential time.

Moreover, based on a result of reliability functions from [10], Aziz proved that the conversion problem MWF
EWF is #P-complete [3].

Note that asW∪L = P(N), there are three possibilities for a given simple game which belongs to a subclass:

1. Both |W| and |L| grow exponentially in terms of n.
2. |W| is polynomially bounded and |L| grows exponentially.
3. |W| grows exponentially and |L| is polynomially bounded.

When the first possibility happens, we need a more accurate study to understand the differences between the two
forms of representation. When the second possibility happens, it is most succinct to represent the game in EWF than
in ELF. Finally, when the third condition succeeds, the dual game verifies the second condition, so the dual game
can be represented more succinctly in EWF. Note that, according to the definition of duality, |EWF(Γ)| = |ELF(Γd)|.
Although duality allows us to consider other forms of representation for Γ, as any of the representations of Γd represent
uniquely Γ, we will not deal with them in this paper.

We analyze now the computational complexity of the enumeration problem, for some of the conversion problems
that require exponential time.

Lemma 3. MWF EWF can be solved with polynomial-delay.

6

{ }

{1}

{1, 2}

{1, 2, 4}

{1, 4}

{2}

{2, 4}

{4}

00101

10101

11101

11111

10111

01101

01111

00111

Figure 1: Backtrack tree for {1, 2, 4} and backtrack tree for the enumeration without repetitions of all the winning coalitions that contain 00101.

Algorithm 1 GenerateEWFfromMWF
Input: A simple game Γ in MWF withWm = {X1, . . . , Xm} sorted in lexicographic order.
Output: Γ in EWF.

1: Generate(X,R, i)
2: for all j ∈ R in increasing order
3: X = X ∪ { j};
4: if for all k > i, Xk 1 X
5: print X;
6: R = N j \ X;
7: Generate(X,R, i);
8: X = X \ { j};
9: {main}

10: for i = 1, . . . ,m do
11: print Xi;
12: R = N \ Xi;
13: Generate(Xi,R, i);

Proof. First note that every minimal winning coalition is a winning coalition, so they have to be printed. Let (N,Wm)
be a simple game, we assume that N = {1, . . . , n} and Wm = {X1, . . . , Xm} according to increasing lexicographical
order.

In order to enumerate all the winning coalitions without repetitions, our algorithm enumerates only a subset of the
2n−|X| − 1 winning coalitions that contain X ∈ Wm (see Algorithm 1).

The algorithm is a branch and cut algorithm that uses the usual backtrack tree providing an enumeration of the
subsets of a set without repetitions. Recall that in such a tree a node has as children the superset obtained by adding
one candidate element. The set of candidates is formed by those elements that are not in the current subset and that
are posterior to all the elements in the current subset. An example of the backtracking tree for a set with four elements
is given in Figure 1. We consider such a tree for every given winning coalition.

We first sort the set of minimal winning coalitions in increasing lexicographical order. Then, for each minimal
winning coalition Xi, we perform a traversal of the backtrack tree corresponding to all the subsets of N\Xi as described
before. On the traversal our algorithm backtracks whenever it reaches a set X that is a superset of X j, for j > i. Thus
our algorithm prints, for any minimal winning coalition Xi, all the coalition that are supersets of Xi but not supersets
of any minimal winning coalition X j with i < j. The first property guarantees that the winning coalitions are printed
without repetitions. Furthermore, monotonicity guarantees that the algorithm prints all the winning coalitions.

Finally, take into account that in any of the backtracking trees constructed in an execution of Algorithm 1, the
height is at most n. Therefore, any backtrack path has length bounded by n. In consequence, the number of steps
performed by the algorithm between the printing of a winning coalition and the next one is O(n) and the claim
follows.

Example 3. Consider the simple game (N,Wm) of Example 1. Figure 2 shows the enumeration without repetition
of the winning coalitions of the game. They are printed in the following order: 00011, 10011, 01011, 00101, 10101,

7

00011

10011

11011 10111

01011

01111

00111

00101

10101

11101 10111

01101

01111

00111

01110

11110 01111

10110

11110

11111

10111

11001

11101

11111

11011

Figure 2: Computation of MWF EWF for the simple game of Example 1.

Algorithm 2 GenerateELFfromMLF
Input: A simple game Γ in MLF with LM = {X1, . . . , Xm} sorted in lexicographic order.
Output: Γ in ELF.

1: Generate(X,R, i)
2: for all j ∈ R
3: X = X \ { j};
4: if for all k > i, Xk 2 X
5: print X;
6: R = X ∩ N j+1;
7: Generate(X,R, i);
8: X = X ∪ { j};
9: {main}

10: for i = 1, . . . ,m do
11: print Xi;
12: R = Xi;
13: Generate(Xi,R).

01101, 00111, 01110, 01111, 10110, 11110, 10111, 11001, 11101, 11111, 11011.

For representations forms based on sets of losing coalitions, we get an equivalent result.

Lemma 4. MLF ELF can be solved with polynomial-delay.

Proof. The proof is similar to that of Lemma 3 and corresponds to Algorithm 2. Analogously, our algorithm starts
by sorting in lexicographic order the set of maximal losing coalitions. Algorithm 2 backtracks over the subsets of
each maximal losing coalition. As before, to avoid repetitions, when dealing with a maximal losing coalition Xi, we
backtrack when the algorithm reaches a set that is also a subset of X j, for j > i. Again, all the backtracking trees have
height at most n and thus Algorithm 2 works with polynomial-delay.

It remains open to determine whether the conversions MWF ELF, MWF MLF, MLF EWF, and MLF MWF
can be solved with polynomial-delay.

4. Binary tree representations

In this section, we review several usual forms of representation for simple games using different families of
(extended) binary trees [64]. There are several forms of representation based on directed binary trees [75]. Recall
that a (rooted) binary tree is a data structure in which each node has at most two child nodes, usually distinguished
as “left” and “right” or by labels 0/1 on the corresponding arc. Nodes with children are called inner nodes. Nodes
without children are called terminal nodes, also known as leaf nodes, outer nodes or external nodes. The root node
is the ancestor of all nodes. Any node in the data structure can be reached by starting at the root node and repeatedly
following pointers to either the left or right child. A tree which does not have any node other than the root node is
called a null tree. In a binary tree, the degree of every node is at most two. In some cases the terminal nodes are
labeled. Recall that a tree with n nodes has n − 1 edges. The size of a binary tree is its number of nodes.

8

1

1
1

1

1 1

0

1

1 1

1

1 1

0

0

1

1 1

1

1 1

0

1

1 0

1

0 0

0

0

0

1

1 1

1

1 0

0

1

0 0

1

0 0

0

0

1

0 0

1

0 0

0

1

0 0

1

0 0

0

0

0

0

0 x5

x4

x3

x2

x1

Figure 3: Complete binary tree Bc(W) representing the winning coalitions for the simple game Γ of Example 1. The missing labels in the last level
of edges can be deduced from the other levels.

1

1

1

0

1

1

1

1

0

0

1

1

1

1

0

1

1

1

1

0

0

0

1

1

1

1

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

0

1

1

1

1

1

0

1

1

0 x5

x4

x3

x2

x1

Figure 4: Binary tree B(W) representing the winning coalitions for the simple game Γ of Example 1.

As usual, we assume a lexicographic order on the set of players. Any set family F can be represented by a binary
tree in different ways. The simplest (and the most costly) such form of representation uses a complete binary tree Bc

with height n. In such a tree Bc, for any node t ∈ Bc at depth j, the left edge (respectively, right edge) from t represents
that xn− j = 1 (respectively, xn− j = 0). Terminal nodes are labeled with either 0 or 1. Thus, a terminal node t ∈ Bc at
depth n represents a vector with n components corresponding to the edge labels found in the path from the root to t.
Those sets corresponding to paths ending in a terminal node with label 1 belong to the represented family.

Example 4. Figure 3 illustrates the complete binary tree for the set of winning coalitions of the simple game given in
Example 1.

Note that every complete binary tree representing a set family has 2n terminal nodes and 2n − 1 inner nodes,
including the root node. Thus, its size depends on the number of players n and not on the number of sets in the
represented family. Therefore, complete binary trees are not the best form of representation based on trees. However,
we include them here in order to introduce other variants of binary trees.

A first variation removes the vector components represented by the terminal nodes with label 0. Figure 4 represents
a non-complete binary tree for the set of winning coalitions of the simple game of Example 1. We keep the edge labels,
with the same meaning, i.e., an edge from a node at depth j to a node at depth j + 1 labeled by l ∈ {0, 1} represents
the fact that xn− j = l. Terminal nodes do not have assigned labels but remain at depth n. As before, a terminal node
t ∈ B represents a vector with components resulting by the edge labels in the path from the root to t. Those sets
corresponding to paths ending in a terminal node belong to the set family represented by the tree. Observe that now

9

0

0

0

1

0

0

1

1

1

0

0

1

0

1

1

0

1

1

0

1

1

1

1

0

0

1

1

1

0

1

1

0 x5

x4

x3

x2

x1

Figure 5: B(Γ) (left) and PCB(Γ) (right) representing the simple game Γ of Example 1. PCB(Γ) is obtained from B(Γ), by removing the marked
nodes.

the size of the tree is polynomially related to the number of sets in the family. This binary tree data structure has
been used in relation with simple games in the context of monotone Boolean functions as a representation of the set
of minimal winning coalitions [64].

From the computational point of view, any binary tree representation of one of the fundamental sets describing a
simple game is related to the corresponding representation form in the same way. In what follows, as it has been done
in the literature, we only consider binary tree representations of the subset of minimal winning coalitions.

Definition 5. A simple game Γ is given in binary tree form (BF) by a binary tree representing the setWm(Γ).

We use the notation B(Γ) to denote a simple game Γ given in binary tree form. Observe that we can check in
polynomial time whether a set belongs or not to the set represented by a binary tree. We can check in polynomial time
the minimality of the represented set. Thus, the binary tree form is a valid representation for simple games. Figure 5
at left depictes the binary tree B(Γ) for the game Γ = (N,Wm) given in Example 1.

In the following we introduce two other forms of representation based on binary trees. Whereas the first one
reduces the size of the binary trees, the second one, based on binary decision diagrams, reduces the size of a complete
binary tree representation. In both cases the data structure allows to check in polynomial time if a given set belongs
to the represented family. Therefore, both data structure are valid representation forms for simple games.

Makino [64] uses a more succinct data structure based on binary trees: A partially condensed binary tree (PCB)
for a set family F is the subgraph of B(F) which is obtained after removing recursively all the leaves whose parent
has no edge labeled 1, i.e., whose parent has no left-child.

Definition 6. A simple game Γ is given in partially condensed binary tree form (PCBF) by the PCB obtained from
B(Γ).

We denote by PCB(Γ) the partially condensed binary tree representation of Γ. Recall that the tree provides a
representation ofWm(Γ).

Example 5. The right tree in Figure 5 represents PCB(Γ) for the simple game given in Example 1. This tree is
obtained from B(Γ), the left tree in the same figure.

Our last representation form is based on binary decision diagrams, also called branching programs [96, 69].
Binary decision diagrams were introduced in the context of monotonic functions by Lee [62]. They were studied in
depth by Akers [1] and Boute [18]. The representation form considered in this paper provides a representation of a set
family, in a similar way as complete binary trees, but more succinctly. Thus representing minimal winning coalitions
by paths leading to a 1 value.

A binary decision diagram (BDD) is a directed, acyclic and labeled graph with decision nodes and two terminal
nodes called 0-terminal and 1-terminal. A BDD is ordered (OBDD) if the players appear in the same order on all paths
from the root; and is reduced (RBDD) if all its isomorphic subgraphs are merged and it does not have any node with

10

Algorithm 3 GeneratingBDDfromBT
Input: A binary tree representing a subset set S .
Output: A BDD representing S .

1: Merging duplicate terminal nodes that share the same label (0 or 1).
2: For each level from the bottom to the top:
3: loop
4: Merging duplicate inner nodes whose left-child and right-child are connected with the same node.
5: Removing inner nodes with the same left-child and right-child.
6: end loop

two isomorphic children. A binary decision diagram represents the set family formed by all the vectors extracted from
paths ending in the 1-terminal. For each given ordering on N, there is a unique reduced and ordered BDD (ROBDD)
representing a set family [21, 22]. That is why a BDD is usually the ROBDD corresponding to the lexicographic
order.

Definition 7. A simple game Γ is given in binary decision diagram form (BDDF) by a BDD representingWm(Γ).

Given a simple game Γ, we can compute BDD(Γ) from B(Γ). This can be done through Algorithm 3 [22]. After
each step of the procedure, it is necessary to redirect all incoming arcs to the corresponding new nodes. Steps 4 and 5
must be repeated as many times as necessary. In general, starting with the level of the first component x1, and ending
with the level of the n-th component xn. Usually left-children are denoted by a solid edge, whereas the right-children
are denoted by a dashed edge. In what follows, we use a double edge to represent a node in which the left-child and
the right-child are the same.

We can also consider the OBDD obtained by a procedure in which the rule implemented in step 5 of Algorithm 3
is not used. In such a BDD every path from the root to a terminal node has length n+1. The so obtained BDD is called
a quasi-reduced binary decision diagram (QOBDD) [11, 16]. Note that for a fixed variable ordering, both QOBDD
and ROBDD are canonical representations. If we consider a QOBDD and its corresponding ROBDD (sharing inner
nodes), checking whether both BDDs are equivalent is trivial in the sense of computational complexity [48]. On the
other hand, let Γ1 and Γ2 be two simple games, such that the sizes of their respective BDDs are r and s, according
to [17], determining wheter both BDDs are equal requires O(min{r, s}) steps.

Example 6. We continue with the simple game of Example 1. Figure 6 illustrates the BDD obtained from the com-
plete binary tree of Figure 3, after applying Algorithm 3.

As we have mention before, for a simple game Γ, we could construct, instead of BDD(W(Γ)), any of the BDDs
associated to the other fundamental set families, BDD(L(Γ)), BDD(Wm(Γ)), or BDD(LM(Γ)). However, the differ-
ences between them and their corresponding forms of representation are similar to those for BDD(W(Γ)) and MWF.
For the particular case of regular games, as we shall see in Section 5, some of those forms of representation are of
equivalent size.

4.1. Representation sizes and the conversion problem

Now we summarize several known results related to the size of the forms of representation defined before. We
introduce some new results and we use them to analyze the computational complexity of the corresponding conversion
problems. As the representation based on binary trees and variants are based on the winning coalitions, we consider
only the conversion problems with respect to EWF and MWF.

First of all, it is necessary to remark that both the size of the PCBs and BDDs (ROBDDs) depend on the ordering
of players. While a specific ordering could lead, in terms of the number of players, to a very small size, another
ordering might lead to exponential size. It is known that the problem of finding the best variable ordering for a BDD
is NP-hard [14]. There exist simple games Γ for which |BDD(Γ)| grows exponentially in terms of n, independently
of the order of the variables. For instance, consider the Theorem 4 of [50], which shows a subclass of simple games
called weighted games, for which |BDD(Γ)| ∈ Ω(2

√
n/2). Additionally, there exists a known result by Wegener which

11

1 0

1 0 1 0

1 0 1 0 1 0

Figure 6: BDD(Γ) obtained from the given binary tree B(Γ) for the game Γ of Example 1. Marked nodes are merged or removed in the next step.

says that almost all QOBDDs for general Boolean functions, not only the monotone ones, have size 2n/(2n) [97].
The same author proved that QOBDDs are at most a factor n + 1 larger than their corresponding ROBDDs [98].
The relevance of polynomial size BDDs has motivated Ishiura and Yajima to define the PolyBDD family [54]. This
class, however, has no explicit characterization, so it will not be discussed here. An interesting open question is to
characterize the simple games that can be represented by BDDs with polynomial size. In this paper, we use always a
given order of variables and do not care about the best ordering.

It is easy to see that a simple game in MWF, PCBF or BDDF might require smaller size than in EWF. To see this,
just consider the simple game Γ of Example 2, whereWm = {∅}. In this case, |Wm| = |PCB(Γ)| = |BDD(Γ)| = 1, but
|W| = 2n is an exponential amount in terms of n.

There are simple games whose representation in BDDF requires less space than in MWF. For instance, the simple
game given in Example 12 in Section 6.2. For a simple game with n > 1, to represent a minimal winning coalition in
PCB(Γ) it is always required to have at least two nodes. Therefore, the game defined in Example 12 also shows that
there exist simple games for which their representation in BDDF grows exponentially in terms of their representation
in PCBF.

For a simple gample Γ with n players, |BDD(Γ)| ≤ |PCB(Γ)| ≤ n|Wm| ≤ n|W|, for sufficiently large n. Those
inequalities imply the following results.

12

Lemma 5. PCBF EWF, BDDF EWF, BDDF MWF and BDDF PCBF can be solved in exponential time but
they can not be solved in sub-exponential time.

The following result establishes those conversion problems that can be solved in polynomial time.

Lemma 6. EWF PCBF, EWF BDDF, MWF PCBF, MWF BDDF, PCBF MWF and PCBF BDDF can be
solved in polynomial time.

Proof. Polynomiality of MWF PCBF comes from [64]: Since the number of nodes of PCB(Γ) is at most O(n|Wm|),
then MWF PCBF can be computed in O(n|Wm|) time.

For PCBF MWF, observe that the number of paths from the root to each terminal node is |Wm|. We can perform
a breadth-first traversal of PCB(Γ) in O(|PCB(Γ)|) time. We need at most n steps per path to add the ending zeros
when needed. Thus, we can compute PCBF MWF in O(n · |PCB(Γ)|) time.

Polynomiality of EWF PCBF and EWF BDDF follow from the above.
For MWF BDDF, we have |BDD(Γ)| ≤ |PCB(Γ)| ≤ n|Wm|. We can construct B(Γ) in O(n|Wm|) time. Then

BDD(Γ) can be constructed using a breadth-first traversal on B(Γ) to join each node without right-child to the 0-
terminal and each leaf with the 1-terminal. Hence, as |V(B(Γ))| ≤ n|Wm|, MWF BDDF can be computed in
O(n|Wm|) time.

For PCBF BDDF, since all the leaves of PCB(Γ) have label 1, they can be removed and replaced by a 1-terminal
node, keeping the corresponding edges. Finally, we have to connect each node without right-child to the 0-terminal
merging duplicate inner nodes as in step 4 of Algorithm 3. All these steps can be computed in polynomial time.

Note that, as MWF PCBF and PCBF MWF can be solved in polynomial time, the computational complexity
of any problem on simple games is the same, for games given in any of these two forms. Furthermore, using the
conversion PCBF MWF and the Algorithm 1 we have the following result.

Lemma 7. PCBF EWF can be solved with polynomial-delay.

Note that Algorithm 1 cannot be applied for BDDs because we do not have explicitly all the minimal winning
coalitions, and by Lemma 5, BDDF EWF cannot be computed in polynomial time. The existence of an algorithm
with polynomial-delay for the conversion problems BDDF EWF, BDDF MWF and BDDF PCBF remains open.

5. Regular games

An important subclass of simple games is the subfamily of regular games, also known as directed games [60].
Regular games have been studied without a particular name at least since 1966 by Maschler and Peleg [65] in the
study of the kernel of a game. In the context of Boolean functions, they are known as regular functions at least since
1969 by Sheng [87]. They have also been used to solve other problems, such as the regular set-covering problem [80]
or the problem of separating hyperplanes [29].

In this section, we assume that N = {1, . . . , n} is ordered and we denote this ordering by ≤. Let Γ = (N,W) be a
simple game and i, j ∈ N be two players. Player j is at least as desirable or influent as player i, which is denoted by
i � j, if, for X ∈ W with i ∈ X and j < X, X\{i} ∪ { j} ∈ W.

The desirability relation � was firstly introduced for simple games in 1958 by Isbell [53]. It is also known under
other names: desirability order [92], dominance relation [32], or Winder order [100] in threshold logic. The operation
X\{i} ∪ { j} is called a right-shift of X [77, 60, 24], which has been studied in other contexts, such as non-cooperative
games [19], fair division [20] or Boolean functions [47]. In [65], the notion of desirability relation was generalized to
cooperative games. The desirability relation can be generalized to coalitions [92]: given Y,Z ∈ W, Y � Z if and only
if there exists a finite sequence of right-shifts on Y which produces a Y ′ ⊆ Z. This relation is not linear (total).

A simple game with a set of players N is regular [81, 64] if the desirability relation is a total linear order and
compatible with the order on N, i.e., for i, j ∈ N, i ≤ j implies i � j. Observe that the required property is equivalent
to say that, for any winning coalition, every right-shift is a winning coalition.

When in a simple game the desirability relation is a total linear order, the set of players can be sorted in such a
way that the game becomes regular. Such games are called linear or swap-robust [92], complete [23] or ordered [60].
We prefer to use the term linear instead of complete to avoid confusion with the games corresponding to complete

13

hypergraphs [82]. Complete hypergraphs, according to [86], corresponds to strong games [93], a kind of simple game
which we do not consider in this paper. Linear games can be represented by 2-monotone Boolean functions [101], and
they have been studied in various contexts since long ago [53, 73].

It is known that given a simple game in MWF, it can be decided whether the game is regular (linear) or not in
polynomial time. In fact, regularity can be decided in linear time and linearity in O(n2 + n|Wm|) time [64].

5.1. Regular games represented by sets and incidence vectors
The following definition, based on [92], is important because, unlike there exist other versions more similar to

MWF (see, for instance, [39]), it produces a more succinct form of representation.
A winning coalition X is shift-minimal if, for Z ∈ W, Z ⊀ X. Shift-minimal winning coalitions are relevant to

regular games. Given a simple game Γ,Ws(Γ) denotes the set of all shift-minimal winning coalitions of Γ. According
to Krohn and Sudhölter each regular game Γ is completely determined byWs(Γ) [60] (which is based on the unpub-
lished result of [78]). Shift-minimal winning coalitions in the context of monotone Boolean functions are related with
the shelters [81]. Observe that, once the desirability ordering is known, checking shift-minimality can be implemented
in polynomial time. Thus, the family of shift-minimal winning coalitions is a valid form of representation for regular
games.

Definition 8. A regular game Γ is represented in shift-minimal winning form (SWF) by a pair (N,Ws). N is its set of
players andWs is the set of shift-minimal winning coalitions of Γ.

As before, a matrix notation is useful to represent regular games in a computational context. We use an injective
function f : {0, 1}n → Nn associating a winning coalition x to a unique integer vector x̄. For a ∈ N, define f (x)(a) =

x̄(a) = Σ{x(b) | b ∈ N, a � b}. Observe that, X � Y if and only if x̄ ≤ ȳ.

Example 7. It is easy to see that the simple game Γ = (N,Wm) of Example 1 is regular. Let beW
m

= {x̄ ∈ Nn | x ∈
Wm}, then:

N abcde
22221 : x̄1
22211 : x̄2

W
m

33210 : x̄3
32210 : x̄4
32111 : x̄5

Therefore, as x̄2 ≤ x̄1 and x̄4 ≤ x̄3, it holds that:

N abcde
00101

Ws 10110
11001

It is clear that for every regular game, its set of shift-minimal winning coalitions is a subset of all its minimal
winning coalitions.

5.2. Fully Condensed Binary Trees
We present here a representation based on trees that is more succinct than PCBF for regular games. It does not

represent the set of shift-minimal winning coalitions but uses the desirability ordering to represent the set of minimal
winning coalitions.

Given a simple game Γ and some total order over N, a fully condensed binary tree FCB(Wm(Γ)) is a binary tree
obtained from PCB(Wm(Γ)) by recursively removing all edges (ti, ti+1) such that ti has no right-child, and for each
removed edge, merging both nodes ti and ti+1. It is clear that this can be carried out in polynomial time.

FCBs were defined by Makino [64] to decide in linear time whether a monotone Boolean function, i.e., a simple
game, is regular or not. In a non-binary, but alphanumeric context, they were simultaneously defined in 1968 as
Patricia tries [72] and without name [46], being nowadays also known as radix trees. Like in PCBs, each minimal
winning coalition is represented by a leaf and its path from the root. Analogously to previous data structures we have
that determining whether a coalition belongs to the represented set can be done in polynomial time.

14

1

1

1

1

0

0

1

1

1

0

1

1

0 x5

x4

x3

x2

x1

2

2

1

Figure 7: FCB(Γ) obtained from PCB(Γ) for the game Γ of Example 1. Nodes between dashed edges on the first tree are merged in the second one.

Definition 9. A regular game Γ is given in fully condensed binary tree form (FCBF) by a FCB representingWm(Γ).

For any regular game Γ, FCB(Γ) is always complete, in the sense that it has no inner nodes having only one child.
For non-regular simple games this may be not true [64].

Example 8. Starting with PCB(Γ) for the game given in Example 1 (see Figure 5) we can construct the FCB(Γ)
illustrated in Figure 7. The nodes have been labeled with integers representing the number of left-children merged
with the current node. Each node is labeled by a number representing the merged components 1. All the missing
endings are formed with the adequate number of 0′s.

5.3. Representation sizes and the conversion problem
For a simple game Γ, |FCB(Γ)| ≤ |PCB(Γ)|. Moreover, the number of leaves in FCB and PCB is equal to |Wm|.

However, the total number of nodes is lower than n |Wm|. Thus, we can conclude that the difference between |FCB(Γ)|
and |PCB(Γ)| is always polynomial in terms of n. As we shown before, Ws(Γ) ⊆ Wm(Γ), so |Ws(Γ)| ≤ |Wm(Γ)|.
However, we can find regular games in which the difference between |Ws| and |Wm| grows exponentially in terms of
n.

Example 9. Consider the simple game Γ constructed by Sperner [88], see also [42]. The game hasWm(Γ) = {X ⊆
N | |X| = b n

2 c}. Observe that, |Wm(Γ)| =
(

n
bn/2c

)
, but |Ws(Γ)| = 1, becauseWs(Γ) = {1n/20n/2}.

Note that |PCB(Γ)| ≥
(

n
bn/2c

)
and |FCB(Γ)| ≥

(
n
bn/2c

)
, so the difference between |Ws(Γ)| and |PCB(Γ)|, as well as

between |Ws(Γ)| and |FCB(Γ)|, can also grow exponentially in terms of n.

Example 10. For n = 8, the regular game Γ given in Figure 8 has |Ws(Γ)| = 14 and this is the maximum number
of shift-minimal winning coalitions for a regular game of size 8. Note that the number of shift-minimal winning
coalitions almost doubles the number of players. Obviously, the number of minimal winning coalitions is even bigger.

Actually, as proved by Krohn and Sudhölter [60] (see also [61]), there are subclasses of regular games for which
the number of shift-minimal winning coalitions grows exponentially in terms of n. This number grows more slowly
than the number of minimal winning coalitions.

From the previous considerations and Lemmas 5 and 6, we have the following results.

Lemma 8. For regular games, SWF EWF, SWF MWF, SWF PCBF, SWF FCBF, BDDF FCBF and FCBF
EWF can be solved in exponential time but they can not be solved in sub-exponential time.

15

N abcde f gh
00001110
00010101
00100011
00111100
01011010
01100110

Ws 01101001
10010110
10011001
10100101
11000011
11011100
11101010
11110001

Figure 8: The regular game with the maximum number of shift-minimal winning coalitions, for n = 8.

Our next results establishes the polynomially solvable conversion problems.

Lemma 9. For regular games, EWF SWF, MWF SWF, PCBF SWF, PCBF FCBF, FCBF PCBF, EWF FCBF,
MWF FCBF, FCBF MWF, FCBF SWF and FCBF BDDF can be solved in polynomial time.

Proof. The polynomial time algorithm for the first two problems follows the same steps as Algorithm 1 solving
EWF MWF. Just compare all (minimal) winning coalitions to each other, but deleting those whose respective vectors
x̄ are bigger in the lexicographic order. x̄ can be computed when the comparison with a (minimal) winning coalition
is performed. Thus, the procedure takes O(n · |W|2) time, for EWF SWF, and O(n · |Wm|2), for MWF SWF.

As PCBF MWF and MWF SWF can be solved in polynomial time, then PCBF SWF can also be solved in
polynomial time.

From the definition of FCBF, it is straightforward to see that PCBF FCBF and FCBF PCBF are polynomial
time solvable. The remaining results follow from this fact and Lemma 6.

In addition observe that it is known that, for regular games, MWF MLF can be solved in polynomial time [81].
Recall that this conversion problem requires exponential time for simple games.

The size relationship between SWF and BDDF is less clear. As we mentioned in Section 4.1, Theorem 4 of [50]
defines a subclass of regular games for which the size of a BDD representation grows exponentially as a function
of n. However, it does not seems that, for this subclass, |Ws(Γ)| grows much slower than |BDD(Γ)|. In Example 9
we provide a game Γ with |Ws(Γ)| = 1, however |BDD(Γ)| does not seems to increase too much in terms of n. For
instance, with n = 8 and n = 9 we obtain respectively |BDD(Γ)| = 27 and |BDD(Γ)| = 32, in contrast to the sizes of
each game in MWF, which are n · |Wm| = 560 and 1134, respectively. Note that, even if it were shown that both |Ws|

and |BDD(Γ)| have an exponential growth, we could not deduced that SWF BDDF is polynomial time solvable.
To compute SWF BDDF (or BDDF SWF), we can always compute first SWF MWF (resp. BDDF MWF)

and then MWF BDDF (resp. MWF SWF). But note that those processes require exponential time. The absence of
known algorithms that are able to skip this intermediate step, leads us to state the following conjecture.

Conjecture 1. For regular games, BDDF SWF and SWF BDDF can be solved in exponential time but they can
not be solved in sub-exponential time.

It is interesting to note that there are some efficient algorithms that benefit themselves from working with a smaller
class of simple games such as regular games. For instance, given a regular game Γ, computing either BDD(Wm(Γ))
or BDD(LM(Γ)) from BDD(W(Γ)) can be done in linear time [13]. Further, there exists an algorithm to compute
BDD(Ws(Γ)) from BDD(Wm(Γ)) [13].

16

Algorithm 4 GenerateMWFfromSWF
Input: A simple game Γ in SWF withWs = {X1, . . . , Xm} sorted in card-lexicographic order.
Output: Γ in MWF.

1: Generate(X,R, i)
2: for all j ∈ R in increasing order
3: X = X ∪ { j + 1} \ { j};
4: if (for all k > i, Xk � X) ∧ (for all k < i, Xk 1 X)
5: print X;
6: R = R \ { j};
7: if (j > 1) ∧ (j − 1 < X)
8: R = R ∪ { j − 1};
9: if j + 2 < X

10: R = R ∪ { j + 1};
11: Generate(X,R, i);
12: X = X ∪ { j} \ { j + 1};
13: {main}
14: for i = 1, . . . ,m do
15: print Xi;
16: R = {i ∈ Xi | i + 1 < Xi};
17: Generate(Xi,R, i);

We finish this section with some results on the enumeration problems.

Lemma 10. For regular games, SWF MWF and FCBF EWF can be solved with polynomial-delay.

Proof. The algorithm for SWF MWF is given in Algorithm 4 having as input the setWs = {x1, . . . , xm}. Observe
that it follows similar ideas to those in Algorithm 1.

Given X ∈ Ws, let R = {i ∈ X | i + 1 < X}. This means that for any j ∈ R we can do a 1-right-shift applied to j,
i.e., to replace player j by player j + 1. Note that given a winning coalition, to do a 1-right-shift implies that the new
coalition is still winning. Steps 7-10 update the set R. Steps 7-8 consider the case where, being j > 1, j− 1 ∈ X, j ∈ X
and j + 1 < X, then a 1-right-shift applied to j implies that j < R but j − 1 ∈ R. Steps 9-10 consider the case where
j ∈ X, j + 1 < X and j + 2 < X, then a 1-right-shift applied to j implies that j < R but j + 1 ∈ R.

Again, the algorithm is a branch and cut algorithm that uses the usual backtrack tree providing an enumeration
of all possible 1-right-shifts of a minimal winning coalition without repetitions. Now, for each new minimal winning
coalition X, we perform a traversal of the backtrack tree, unless we reach a set Xk such that:

i) Xk � X, for any k > i, thus it will be generated later, or
ii) Xk ⊂ X, for any k < i, so the coalition is not minimal.
These properties and the monotonicity guarantee that we generate all minimal winning coalitions without repeti-

tions. Following the same reasoning as for Algorithm 1 of Lemma 3, the number of steps between the printing of one
minimal winning coalition and the next one is polynomial.

For FCBF EWF, just compute FCBF MWF in polynomial time by Lemma 9 and then apply Algorithm 1.

Example 11. Consider the simple game (N,Ws) given in Example 7. Figure 9 shows the enumeration without
repetition of all the minimal winning coalitions of the game. They are printed in the following order: 00101, 00011,
10110, 01110, 11001.

Whether the conversion problem SWF EWF can be solved with polynomial-delay is left as an open problem.
Similar to what happens for BDDs (see Conjecture 1) Algorithm 4 cannot be used with BDDs. Therefore, whether
for regular games BDDF SWF can be solved with polynomial-delay remains as an open problem.

17

00101

00011

10110

01110

01101

10101

11001

10101

Figure 9: Computation of SWF MWF, for the simple game given in Example 1.

6. Weighted games

Weighted games, also called weighted voting games or weighted majority games, are an interesting subclass of
simple games in which the players have an assigned weight. For a weight assignment w : N → R, we use the notation
w(U) = Σ{w(i) | i ∈ U} to denote the sum of the weights of the elements in U ⊆ N. A simple game Γ = (N,W) is
a weighted game if there exists a weight function w : N → R and a quota q ∈ R such that, for X ⊆ N, X ∈ W if
w(X) ≥ q.

Probably the first use of weighted games was the modeling of the first artificial neuron, the so called Threshold
Logic Unit (TLU) [67]. In game theory, they were defined by von Neumann and Morgenstern [93] and deeply studied
by Isbell [52]. Since then, they have been studied under different names in many applications: linearly separated truth
functions [68] or linearly separable switching functions [51] to contact and to rectify nets; trade robustness [92] in vot-
ing theory and trade exchanges; linearly separable switching functions or threshold Boolean functions [51] to separate
circuits in switching circuit theory and to analyse the threshold synthesis problem; or threshold hypergraphs [44, 84]
to synchronize parallel processes, just to name a few.

All weighted games are linear games [74], but the opposite is not true [65, 84]. As in regular games, we assume
that the set N is ordered but here players are sorted in decreasing order of weights. Thus if N = {1, . . . , n} we assume
wi ≥ wi+1, for 1 ≤ i < n.

6.1. Weighted representation

According to Hu [51] (see also [35, 39]) the weight function can be restricted to be a natural weight function
w : N → N, where N includes the zero. This leads to the following form of representation for weighted games.

Definition 10. A weighted game Γ is given in weighted representation form (WRF) by a tuple [q; w1, . . . ,wn], where
q ∈ N is the quota and w1, . . . ,wn ∈ N are the weights of its players.

Observe that any tuple [q; w1, . . . ,wn] represents a weighted game and thus the WRF is a valid representation for
weighted games.

Given a simple game in MWF, it can be decided in polynomial time whether the game is weighted or not. This
problem is known in the context of Boolean functions as threshold synthesis problem and was solved by Peled and
Simeone [80]. One common way to do this is solving the following system of linear inequalities:

w(X) > w(Y) ∀X ∈ Wm,Y ∈ LM (1)

where w = (w1, . . . ,wn) are the unknowns. The game will be weighted if and only if the linear system has so-
lution. The weighted realization [q; w1, . . . ,wn] can be obtained from a solution w1, . . . ,wn of the system taking
q = minX∈Wm w(X). Hence each solution of this linear system defines a representation of the weighted game.

Considering that N is an ordered set, each simple (or regular) game can be univocally represented in EWF, MWF,
PCBF or BDDF (SWF or FCBF). However, a weighted game may be represented in infinite ways in WRF respecting
the given order. This is true even for our restriction over natural numbers. Actually, given a weighted game with
realization [q; w1, . . . ,wn], the realizations [cq; cw1, . . . , cwn], for c ∈ N+, are equivalent. Nevertheless, there may be
further equivalent realizations, as for instance [2; 2, 1, 1] and [3; 3, 2, 1] define the same weighted game. In fact the
relationship might be complex as it is known that, given two realizations, determine whether both represent the same
weighted game is an NP-hard problem [66].

18

Despite the fact that weighted games are a strict subclass of simple games, a well known result says that every
simple game can be expressed as the intersection of a finite number of weighted games. Given k weighted games
Γt = [q(t); w(t)

1 , . . . ,w
(t)
n], 1 ≤ t ≤ k, X is a winning coalition in Γ = Γ1 ∩ · · · ∩ Γk, if w(t)(X) ≥ q(t) for 1 ≤ t ≤ k. This

leads to another form of representation for simple games.

Definition 11. A simple game Γ is given in vector-weighted representation form (VWRF) by a set of k weighted games
Γ1, . . . ,Γk in WRF, that is, {[q(t); w(t)

1 , . . . ,w
(t)
n] | 1 ≤ t ≤ k}. Such a representation defines the game Γ = Γ1 ∩ · · · ∩ Γk.

The equivalence between simple games and vector-weighted games was firstly shown in [55] for hypergraphs, and
then expressed for simple games in [91, 92]. Therefore, as the intersection of weighted games is well defined, the
VWRF is a valid form of representation for simple games.

Vector-weighted games are also known as vector-weighted systems [91], weighted multiple majority games [2],
multiple weighted voting games [4] or by some other combination of these words; in the context of hypergraphs, the
VWRF is known as threshold intersection [99, 63] and in switching functions as canonical conjunctive form [73].
Given a simple game, the minimal integer k for which is possible to express the game as an intersection of k weighted
games is known as the dimension of the game. It is known that given k weighted games, to decide whether the
dimension of their intersection exactly equals k is NP-hard [28].

In a similar way, we can consider another game represented by a set {[q(t); w(t)
1 , . . . ,w

(t)
n] | 1 ≤ t ≤ k}, using the

union of games instead of intersection. We refer to such representation as co-vector-weighted representation form
(co-VWRF). It is known that any simple game can be expressed as the union of a finite family of weighted games [38].
Therefore, co-VWRF is a valid representation form for simple games.

Given a simple game, the minimal integer k for which is possible to express the game as a union of k weighted
games is known as the codimension of the game [38]. Given k weighted games, it remains open to show whether the
problem of deciding if the codimension of their union exactly equals k is NP-hard.

Observe that, for any representation of weighted games that is closed under intersection or union, i.e., a represen-
tation of the intersection or union of two games that can be obtained in polynomial time, the conversion problem for
simple games given in VWRF or co-VWRF has the same complexity than for weighted games given in WRF.

We have considered only the operations of intersection and union. For a generalization to representations of
games including more involved combinations of boolean operations on weighted games, we refer the reader to [31].
To the best of our knowledge, the conversion problem from other forms of representation to those based on boolean
operations has not been explored.

6.2. Representation sizes and the conversion problem

Ishiura and Yajima [54] proved that, for WRF in which weights are bounded by a polynomial of n, the sizes of
their respectives BDDs grow polynomially in terms of n. That is the case of the following example. Observe that in
the example the number of minimal winning coalitions grows exponentially in terms of n.

Example 12. Consider the family of weighted games Γ = [q; n, . . . , 1]. The number of minimal winning coalitions
for Γ is specified by the following recurrence s(q, n):

s(q, n) =

0 if q = 0 or n = 0 or q >

n∑
i=1

i (weights are not enough to get q)

n − q + s(q, q) if q > n ({n}, {n − 1}, . . . , {q + 1} ∈ Wm)
1 + s(q, n − 1) if q = n (take n or not)
s(q − n, n − 1) + s(q, n − 1) if q < n (take n or not)

Observe that taking q̄ = d(
∑n

i=1 i)/ 2e, s(q̄, n) grows exponentially in n as we can see in Table 6. The reported values
can be checked with the code provided in [15].

There are subclasses of weighted games whose BDDF grows exponentially in terms of n [50]. This behavior is
independently of the ordering of the players and the weights in a WRF. Nevertheless, there are exponential algorithms
to solve WRF BDDF [11, 16].

19

n 10 11 12 13 14 15 16 17 18 19 20
|BDD(Γ)| 74 91 117 150 184 223 274 331 388 459 545
|Wm| 77 133 240 429 772 1414 2588 4742 8761 16273 30255

Table 6: Growth of BDDF and MWF for the class of weighted games considered in Example 12.

As there are weighted games with a WRF of polynomial size in n and with other representations of exponential
size in n (see Sections 4.1 and 5.3), the first part of the following lemma holds trivially. For the

As there are weighted games with a WRF of size polynomial in n and an exponential size in other representations
(see Sections 4.1 and 5.3), the first part of the following lemma holds trivially. For the second part, just note that every
weighted game is a simple game with dimension 1.

Lemma 11. For weighted games, WRF EWF, WRF MWF, WRF PCBF, WRF BDDF, WRF FCBF and also
WRF SWF can be solved in exponential time but they can not be solved in sub-exponential time. For simple games,
the same occurs replacing WRF by VWRF or co-VWRF.

Despite of this result, there exist some subclasses of weighted games for which WRF BDDF turns out to be
polynomial. Such is the case of homogeneous games, i.e., weighted games [q; w1, . . . ,wn] such that, for X ∈ Wm,
q = w(X). Homogeneus games were defined for the first time by von Neumann and Morgenstern [93], being one of
the most studied subclasses of weighted games [89].

Example 13. The regular game Γ of Example 9 is both weighted and homogeneous, and it can be represented in WRF
by the vector [n

2 ; 1, 1, . . . , 1].

It is known that every homogeneous game can be represented by a QOBDD with size O(n2), and that from its
weighted representations, this QOBDD can be computed in O(n2 · log n) time [17]. Therefore, applying Algorithm 3
to the QOBDD, we obtain a BDD representation. Therefore, WRF BDDF for homogeneous games can be solved in
polynomial time.

Lemma 12. For weighted games, EWF WRF, MWF WRF, FCBF WRF and PCBF WRF can be solved in poly-
nomial time.

Proof. Fredman and Khachiyan [34] shown that, given a simple game Γ in MWF, LM(Γ) can be computed in sub-
exponential time, but it is still an open problem to show whether it can be computed in polynomial time. However, if
Γ is regular or weighted, the problem turns out to be polynomial time solvable [81]. Therefore, we can obtain LM(Γ)
from MWF in polynomial time. Recall that the solutions of the system (1) allow us to compute a WRF for the game.
When the game is given in EWF or MWF, we can compute LM(Γ) and write down the system (1) in polynomial
time. Thus, using the fact that linear programming is polynomial time solvable [58], we have that MWF WRF and
EWF WRF are polynomial time solvable.

Recall that FCBF PCBF can be solved in polynomial time. To compute PCBF WRF, we use an intermediate
representation by means of a QOBDD. We construct the corresponding QOBDD from PCBF in polynomial time using
Algorithm 3, without step 5. Once we have the QOBDD representation, we compute a WRF using the polynomial
time algorithm provided in [17], which consists in solving a linear programming problem associated to the QOBDD.
Putting all together FCBF WRF and PCBF WRF can be solved in polynomial time.

We finish this section with some enumeration results. The proof of the following Lemma 13 is based on an
algorithm of [66], that the authors used to compute the Deegan-Packel index, a power index defined in 1978 [27], for
weighted games in MWF.

Lemma 13. For weighted games, WRF EWF and WRF MWF can be solved with polynomial-delay.

Proof. The second part of the lemma, WRF MWF, was proved by [66] using Algorithm 5. Analogously to Algo-
rithms 1 and 4, steps 1-8 form the recursive procedure started by the main routine of step 11. Each step, excluding step
10, involves a constant number of operations. The whole algorithm requires O(n|Wm|) steps and uses O(n) memory.

20

Algorithm 5 GenerateMWFfromWRF
Input: A weighted game Γ = [q; w1, . . . ,wn], with

∑n
i=1 wi ≥ q and w1 ≥ . . . ≥ wn.

Output: Γ in MWF.
1: WRFtoMWF(X, i, q′, S)
2: if i = n
3: print X ∪ {n}; return;
4: else
5: if (S − wi ≥ q) WRFtoMWF(X, i + 1, q′, S − wi);
6: if (wi ≥ q′) print X ∪ {i};
7: else WRFtoMWF(X ∪ {i}, i + 1, q′ − wi, S − wi);
8: return;
9: {main}

10: S =
∑n

j=1 w j

11: WRFtoMWF(∅, 1, q, S);

Algorithm 6 GenerateEWFfromWRF
Input: A weighted game Γ = [q; w1, . . . ,wn], with

∑n
i=1 wi ≥ q and w1 ≥ . . . ≥ wn.

Output: Γ in EWF.
1: WRFtoEWF(X, i)
2: if i ≤ n
3: if w(X ∪ {i}) ≥ q
4: print X ∪ {i};
5: WRFtoEWF(X ∪ {i}, i + 1);
6: WRFtoEWF(X, i + 1);
7: {main}
8: WRFtoEWF(∅, 1);

For WRF EWF, we use Algorithm 6. The algorithm requires O(n|W|) time and O(n) memory. The recursive
calls in steps 5 and 6 generate the winning coalitions in order, so as to insure that none is repeated.

We believe that a similar procedure to Algorithms 5 and 6 could be derived to postulate the following.

Conjecture 2. For weighted games, WRF SWF can be solved with polynomial-delay.

7. Conclusions

This paper focused on the most usual forms of representation for simple games summarized in Table 1. Fur-
thermore, we review some classic forms to represent regular games and weighted games, probably the most studied
subclasses of simple games. We analyzed the sizes of those forms of representation. We surveyed and obtained
results about the complexity of the conversion problem, how to obtain one representation form from another one.
Additionally, we have considered the design of algorithms to solve the conversion problem with polynomial-delay in
those cases in which the conversion problem is not solvable in polynomial time. Tables 2-5 summarize the complexity
results presented in this paper. Through these tables, we can realize that MWF, PCBF and FCBF seem to behave
similarly. However, we must not forget that FCBF, only valid for regular games, is the most succinct of the three.

On the other hand, BDDF seems to have a behavior similar to SWF. Indeed, both BDDF and SWF can be useful
because of their succinctness. However, as discussed in Sections 4.1 and 5.3, games in SWF and BDDF may also
have an exponential size in terms of n.

Finally, weighted games have a more succinct form of representation, based on a (n + 1)-vector of integers.
However, it is known that there are weighted games whose weighted representation requires that maxi∈N{wi} to be
(n+1)(n+1)/2/2 [79]. Converting any of the forms of representation that we consider to WRF turns out to be polynomial,
but converting WRF to any other requires exponential time and can not be done in polynomial time. We provided

21

enumeration algorithms with polynomial-delay for several cases. We conjecture that WRF SWF can also be solved
with polynomial-delay.

To conclude, the results presented in this article can be useful for having at hand a comparative of the different usual
forms of representation. When we want to solve some decision problem on simple games, if we know how the problem
behaves for some particular form of representation, then we can know under which other forms of representation the
problem has similar complexity. For instance, if we consider the decisive problem mentioned in Section 1, which we
know is in QP for simple games in MWF [34, 86], from Tables 2 and 4 we can deduce immediately that it is also in
QP for simple games in PCBF and for regular games in FCBF.

Besides the classical subfamilies of simple games considered in this paper, any cooperative game can be used to
derive a subfamily of simple games using the so-called threshold version. A cooperative game is a pair (N, v) where
N is a set of players and v : P(N) → R is a valuation function providing the benefit of the coalitions. The threshold
version of a cooperative game (N, v) is the simple game (q; N, v) were a coalition X is winning if and only if v(X) ≥ q.
Observe that weighted games can be considered threshold games associated to a cooperative game where the valuation
function is the sum of the weights of the participating players. There has been a lot of attention devoted to families
of cooperative games defined on graphs and graph parameters. In this setting the set of players is usually formed by
either the vertices or the edges of the graph. The valuation function measures some combinatorial parameter of the
subgraph induced by the coalition. We refer the interested reader to [25, 76] for a more exhaustive survey.

Many such cooperative games defined on graphs have lead to the definition of subfamilies of simple games,
addressing different contexts as trading, management or flow interactions among many others. We mention here a
few. Vertex connectivity games [8] were motivated in the context of network reliability. Given a graph in which the
set of vertices V is partitioned on three subsets (Vp,Vb,Vs), the set of players of the game is Vs, and a coalition S ⊆ Vs

is winning if and only if S ∪ Vb ∪ Vp fully connects Vp, i.e., for u, v ∈ Vp, there exists a path from u to v. Flow games
constitute a model of cooperative games based on flow networks, which are directed graphs with positive labels on the
edges [57]. A simplification of flow games called connectivity games was defined in [9]. In this model every edge has
the same unit capacity, and the flow also has a unit value. Winning coalitions correspond to paths from the source to
the sink and losing coalitions are those subsets of edges that do not induce a source-sink path. Spanning connectivity
games were introduced in [6]. There the players are the edges of an undirected weighted multigraph so that a coalition
is winning when the edges in the coalition form a connected spanning subgraph. Furthermore, a threshold variant of
network flow games called shortest path games was defined in [76]. Here, given a flow network with multiple sources
and sinks, every shortest path P = (v1, . . . , vm) through the edges (e1, . . . , em−1) is a coalition with value

∑m−1
i=1 wi − m,

if v1 is a source and vm is a sink; or value 0, otherwise [33, 94]. Considering a threshold T , a coalition is winning
when

∑m−1
i=1 wi − m ≥ T .

Recently, influence games were defined as simple games based on a model of spread of influence in a social
network, where influence spreads according to the linear threshold model [45, 59]. Here we have a tuple (G,w, f , q,N),
where (G,w, f) is a both vertex and edge-labeled directed graph, N ⊆ V(G) and for any X ⊆ N, X represents a
winning coalition if and only if it can spread its influence to at least q vertices in the graph [70] (see also [85]). It is
also known that influence games capture the complete class of simple games and that some simple games require a
representation as unweighted influence games with exponential number of vertices. It would be of interest to determine
the complexity of the conversion problem for those families of simple games defined through graphs.

Acknowledgments

The authors thank the editors and the anonymous referees for carefully reading a preliminary version of this article
and giving useful comments and suggestions that helped us to improve the contents and the presentation of the paper.

Xavier Molinero has been partially supported by grant MTM2012–34426/FEDER from the Spanish Ministry for
Economy and Competitiveness. Fabián Riquelme was supported by grant BecasChile of the “National Commission
for Scientific and Technological Research of Chile” (CONICYT). Maria Serna has been partially supported by funds
from the Spanish Ministry for Economy and Competitiveness (MINECO) and the European Union (FEDER funds)
under grant COMMAS (ref. TIN2013-46181-C2-1-R), and SGR 2014 1137 (ALBCOM) of the Catalan government.

22

References

[1] S. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-27(6):509–516, 1978.
[2] E. Algaba, J. M. Bilbao, J. R. Fernández-Garcı́a, and J. J. López. Computing power indices in weighted multiple majority games. Mathe-

matical Social Sciences, 46(1):63–80, 2003.
[3] H. Aziz. Complexity of comparison of influence of players in simple games. In U. Endriss and P. W. Goldberg, editors, Proceedings of the

2nd International Workshop on Computational Social Choice, (COMSOC 2008), pages 61–72, 2008.
[4] H. Aziz. Algorithmic and complexity aspects of simple coalitional games. PhD thesis, Department of Computer Science, University of

Warwick, 2009.
[5] H. Aziz, F. Brandt, and P. Harrenstein. Monotone cooperative games and their threshold versions. In W. van der Hoek, G. A. Kaminka,

Y. Lespérance, M. Luck, and S. Sen, editors, 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),
Toronto, Canada, May 10-14, 2010, Volume 1-3, pages 1107–1114, 2010.

[6] H. Aziz, O. Lachish, M. Paterson, and R. Savani. Power indices in spanning connectivity games. In A. V. Goldberg and Y. Zhou, editors,
Algorithmic Aspects in Information and Management, 5th International Conference, AAIM 2009, San Francisco, CA, USA, June 15-17,
2009. Proceedings, volume 5564 of Lecture Notes in Computer Science, pages 55–67, 2009.

[7] Y. Bachrach, E. Elkind, and P. Faliszewski. Coalitional voting manipulation: A game-theoretic perspective. In T. Walsh, editor, IJCAI 2011,
Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages
49–54, 2011.

[8] Y. Bachrach, E. Porat, and J. S. Rosenschein. Sharing rewards in cooperative connectivity games. Journal of Artificial Intelligence Research,
47:281–311, 2008.

[9] Y. Bachrach and J. S. Rosenschein. Power in threshold network flow games. Autonomous Agents and Multi-Agent Systems, 18(1):106–132,
2009.

[10] M. O. Ball and J. S. Provan. Disjoint products and efficient computation of reliability. Operations Research, 36(5):703–715, 1988.
[11] M. Behle. On threshold BDDs and the optimal variable ordering problem. Journal of Combinatorial Optimization, 16(2):107–118, 2008.
[12] C. Bertini, J. Freixas, G. Gambarelli, and I. Stach Comparing power indices. International Game Theory Review, 15(2):1–19, 2013.
[13] R. Berghammer and S. Bolus. On the use of binary decision diagrams for solving problems on simple games. European Journal of Operation

Research, 222(3):529–541, 2012.
[14] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-complete. IEEE Transactions on Computers, 45(9):993–1002,

1996.
[15] S. Bolus. SimpleGame Lab. http://www.informatik.uni-kiel.de/~progsys/simple_games/lab. February 2015.
[16] S. Bolus. Power indices of simple games and vector-weighted majority games by means of binary decision diagrams. European Journal of

Operation Research, 210(2):258–272, 2011.
[17] S. Bolus. A QOBDD-based approach to simple games. PhD thesis, Department of Computer Science, University of Kiel, 2012.
[18] R. Boute. The binary decision machine as a programmable controller. EUROMICRO Newsletter, 1(2):16–22, 1976.
[19] S. Brams and P. Straffin Jr. Prisoners’ dilemma and the professional sports drafts. American Mathematical Monthly, 86(2):80–88, 1979.
[20] S. Brams and A. Taylor. The win-win solution: Guaranteeing fair shares to everybody. W. W. Norton & Company, New York, NY, 1999.
[21] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers, C-35(8):677–691, 1986.
[22] R. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.
[23] F. Carreras. A characterization of the Shapley-Shubik index of power via automorphisms. Stochastica, 8(2):171–179, 1984.
[24] F. Carreras and J. Freixas. Complete simple games. Mathematical Social Sciences, 32(2):139–155, 1996.
[25] G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational aspects of cooperative game theory. Synthesis Lectures on Artificial

Intelligence and Machine Learning. Morgan & Claypool Publishers, 2011.
[26] Y. Crama and P. L. Hammer. Boolean functions: Theory, algorithms, and applications, volume 142 of Encyclopedia of Mathematics and its

Applications. Cambridge University Press, New York, NY, 2011.
[27] J. Deegan and E. W. Packel. A new index of power for simple n-person games. International Journal of Game Theory, 7(2):113–123, 1978.
[28] V. G. Deı̆neko and G. J. Woeginger. On the dimension of simple monotonic games. European Journal of Operational Research, 170(1):315–

318, 2006.
[29] E. Einy and E. Lehrer. Regular simple games. International Journal of Game Theory, 18(2):195–207, 1989.
[30] T. Eiter, K. Makino, and G. Gottlob. Computational aspects of monotone dualization: A brief survey. Discrete Applied Mathematics,

156(11):2035–2049, 2008.
[31] E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. On the dimensionality of voting games. In D. Fox and C. P. Gomes, editors,

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages
69–74, 2008.

[32] P. Fishburn. Preference, summation, and social welfare functions. Management Science, 16(3):179–186, 1969.
[33] V. Fragnelli, I. Garcia-Jurado, and L. Mendez-Naya. On shortest path games. Mathematical methods of operations research, 52(2):251–264,

2000.
[34] M. Fredman and L.G. Khachiyan. On the complexity of dualization of monotone disjunctive normal forms. Journal of Algorithms,

21(3):618–628, 1996.
[35] J. Freixas. Estructura de los juegos simples. PhD thesis, Doctorate Program in Applied Mathematics, Technical University of Catalonia,

1994. In spanish.
[36] J. Freixas. Power indices. In J. J. Cochran, L. A. Cox, P. Keskinocak, J. P. Kharoufeh, and J. C. Smith, editors, volume 8 of Wiley

Encyclopedia of Operations Research and Management Science. John Wiley & Sons, 2011.
[37] J. Freixas and S. Kurz. On minimal integer representations of weighted games. Mathematical Social Sciences, 67:9–22, 2014.
[38] J. Freixas and D. Marciniak. A minimum dimensional class of simple games. TOP: An Official Journal of the Spanish Society of Statistics

and Operations Research, 17(2):407–414, 2009.

23

[39] J. Freixas and X. Molinero. On the existence of a minimum integer representation for weighted voting systems. Annals of Operation
Research, 166(1):243–260, 2009.

[40] J. Freixas and X. Molinero. Weighted games without a unique minimal representation in integers. Optimization Methods and Software,
25(2):203–215, 2010.

[41] J. Freixas, X. Molinero, M. Olsen, and M. Serna. On the complexity of problems on simple games. RAIRO-Operations Research, 45(4):295–
314, 2011.

[42] E. Gilbert. Lattice theoretic properties of frontal switching functions. Journal of Mathematical Physics, 33:57–67, 1954.
[43] D. B. Gillies. Some theorems on n-person games. PhD thesis, Department of Mathematics, Princeton University, 1953.
[44] M. Golumbic. Algorithmic graph theory and perfect graphs. Computer science and applied mathematics. Academic Press, New York, NY,

1980.
[45] M. Granovetter. Threshold models of collective behavior. American Journal of Sociology, 83(6):1420–1443, 1978.
[46] G. Gwehenberger. Anwendung einer binären verweiskettenmethode beim aufbau von listen (use of a binary tree structure for processing

files). Elektronische Rechenanlagen, 10(5):223–226, 1968. In German.
[47] P. Hammer, A. Kogan, and U. Rothblum. Evaluation, strength, and relevance of variables of Boolean functions. SIAM Journal on Discrete

Mathematics, 13(3):302–312, 2000.
[48] K. Hayase, K. Sadakane, and S. Tani. Output-size sensitiveness of OBDD construction through maximal independent set problem. Lecture

Notes in Computer Science, 959:229–234, 1995.
[49] M. J. Holler. Forming coalitions and measuring voting power. Political Studies, 30(2):262–271, 1982.
[50] K. Hosaka, Y. Takenaga, T. Kaneda, and S. Yajima. Size of ordered binary decision diagrams representing threshold functions. Theoretical

Computer Science, 180(1–2):47–60, 1997.
[51] S. Hu. Threshold logic. University of California Press, Berkeley and Los Angeles, CA, 1965.
[52] J. Isbell. A class of majority games. Quarterly Journal of Mathematics. Oxford Scr., 7(1):183–187, 1956.
[53] J. Isbell. A class of simple games. Duke Mathematical Journal, 25(3):423–439, 1958.
[54] N. Ishiura and S. Yajima. A class of logic functions expressible by polynomial-size binary decision diagrams. RIMS Kokyuroku, 754:65–71,

1991.
[55] R. G. Jeroslow. On defining sets of vertices of the hypercube by linear inequalities. Discrete Mathematics, 11(2):119–124, 1975.
[56] D. Johnson, M. Yannakakis, and C. Papadimitriou. On generating all maximal independent sets. Information Processing Letters, 27(3):119–

123, 1988.
[57] E. Kalai and E. Zemel. Totally balanced games and games of flow. Mathematics of Operations Research, 7(3):476–478, 1982.
[58] L.G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics Doklady, 20:191–194, 1979.
[59] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In L. Getoor, T. E. Senator, P.

Domingos, and C. Faloutsos, editors, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, August 24 - 27, 2003, pages 137–146, 2003.

[60] I. Krohn and P. Sudhölter. Directed and weighted majority games. Mathematical Methods of Operations Research, 42(2):189–216, 1995.
[61] S. Kurz and N. Tautenhahn. On Dedekind’s problem for complete simple games. International Journal of Game Theory, 42(2):411–437,

2013.
[62] C. Lee. Representation of switching circuits by binary-decision programs. Bell Systems Technical Journal, 38(4):985–999, 1959.
[63] M. V. R. Mahadev and U. N. Peled. Threshold graphs and related topics, volume 56 of Annals of Discrete Mathematics. Elsevier, Amster-

dam, 1995.
[64] K. Makino. A linear time algorithm for recognizing regular Boolean functions. Journal of Algorithms, 43(2):155–176, 2002.
[65] M. Maschler and B. Peleg. A characterization, existence proof and dimension bounds for the kernel of a game. Pacific Journal of Mathe-

matics, 18(2):289–328, 1966.
[66] T. Matsui and Y. Matsui. A survey of algorithms for calculating power indices of weighted majority games. Journal of the Operations

Research Society of Japan, 43(1):71–86, 2000.
[67] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4):115–133,

1943.
[68] R. McNaughton. Unate truth functions. IRE Transactions on Electronic Computers, EC-10(1):1–6, 1961.
[69] C. Meinel. Modified branching programs and their computational power, volume 370 of Lecture Notes in Computer Science. Springer-

Verlag, New York, NY, 1989.
[70] X. Molinero, F. Riquelme, and M. Serna. Cooperation through social influence. European Journal of Operational Research, 242(3):960–

974, 2015.
[71] X. Molinero, M. Olsen, and M. Serna. On the Complexity of Exchanging. http://arxiv.org/abs/1503.06052v2. March 2015.
[72] D. Morrison. Patricia – practical algorithm to retrieve information coded in alphanumeric. Journal of the ACM, 15(4):514–534, 1968.
[73] S. I. Muroga. Threshold logic and its applications. Wiley-Interscience. John Wiley & Sons, New York, NY, 1971.
[74] S. I. Muroga, I. Toda, and S. Takasu. Theory of majority decision elements. Journal of the Franklin Institute, 271(5):376–418, 1961.
[75] National Institute of Standards and Technology. Dictionary of algorithms and data structures. http://xlinux.nist.gov/dads. February

2015.
[76] F. Nebel. Shortest path games: computational complexity of solution concepts. Master’s thesis, Institute for Logic, Language and Compu-

tation, University of Amsterdam, 2010.
[77] A. Ostmann. Decisions by players of comparable strength. Journal of Economic, 45(3):267–284, 1985.
[78] A. Ostmann. Life-length of a process with elements of decreasing importance. Working Paper 156. Institut für Mathematische Wirtschafts-

forschung, Universität Bielefeld, 1987.
[79] I. Parberry. Circuit complexity and neural networks. Foundations of Computers. MIT Press, Cambridge, MA, 1994.
[80] U. Peled and B. Simeone. Polynomial-time algorithms for regular set-covering and threshold synthesis. Discrete Applied Mathematics,

12(1):57–69, 1985.

24

[81] U. Peled and B. Simeone. An O(nm)-time algorithm for computing the dual of a regular Boolean function. Discrete Applied Mathematics,
49(1–3):309–323, 1994.

[82] A. Polyméris. Stability of two player game structures. Discrete applied mathematics, 156(14):2636–2646, 2008.
[83] E. Post. Introduction to a general theory of elementary propositions. American Journal of Mathematics, 43(3):163–185, 1921.
[84] J. Reiterman, V. Rodl, E. Sinajova, and M. Tuma. Threshold hypergraphs. Discrete Mathematics, 54(2):193–200, 1985.
[85] F. Riquelme. Structural and computational aspects of simple and influence games. PhD thesis, Department of Computer Science, Universitat

Politècnica de Catalunya, 2014.
[86] F. Riquelme and A. Polyméris. On the complexity of the decisive problem in simple and weighted games. Electronic Notes in Discrete

Mathematics, 37:21–26, 2011.
[87] C. L. Sheng. Threshold logic. Electrical Science: A Series of Monographs and Texts. The Ryerson Press; Academic Press, Toronto; London

and New York, 1969.
[88] E. Sperner. Ein satz über untermengen einer endlichen menge. Mathematische Zeitschrift, 27(1):544–548, 1928. In German.
[89] P. Sudhölter. Star-shapedness of the kernel for homogeneous games and some applications to weighted majority games. Mathematical

Social Sciences, 32(3):179–214, 1996.
[90] A. Taylor and W. Zwicker. A characterization of weighted voting. Proceedings of the American Mathematical Society, 115(4):1089–1094,

1992.
[91] A. Taylor and W. Zwicker. Weighted voting, multicameral representation, and power. Games and Economic Behavior, 5(1):170–181, 1993.
[92] A. Taylor and W. Zwicker. Simple games: Desirability relations, trading, pseudoweightings. Princeton University Press, Princeton, NJ,

1999.
[93] J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton University Press, Princeton, NJ, 1944.
[94] M. Voorneveld and S. Grahn. Cost allocation in shortest path games. Mathematical methods of operations research, 56(2):323–340, 2002.
[95] I. Wegener. The complexity of Boolean functions. Wiley-Teubner series in computer science. John Wiley & Sons, New York, NY, 1987.
[96] I. Wegener. On the complexity of branching programs and decision trees for clique functions. Journal of the ACM, 35(2):461–471, 1988.
[97] I. Wegener. The size of reduced OBDD’s and optimal read-once branching programs for almost all boolean functions. IEEE Transactions

on Computers, 43(11):1262–1269, 1994.
[98] I. Wegener. Branching programs and binary decision diagrams: Theory and applications. SIAM Monographs on Discrete Mathematics and

Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2000.
[99] D. B. West. Parameters of partial orders and graphs: packing, covering, and representation. In I. Rival, editor, Graphs and order, volume

147 of NATO ASI Series, pages 267–350. D. Reidel Publishing, 1985.
[100] R. Winder. Threshold logic. PhD thesis, Mathematics Department, Princeton University, 1962.
[101] R. O. Winder. Single stage threshold logic. In 1st Annual Symposium on Switching Circuit Theory and Logical Design, Chicago, Illinois,

USA, October 9-14, 1960, pages 321–332. IEEE Computer Society, 1960.
[102] M. Zuckerman, P. Faliszewski, Y. Bachrach, and E. Elkind. Manipulating the quota in weighted voting games. Artificial Intelligence,

180–181:1–19, 2012.

25

