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Abstract—In this paper, we consider a communication scenario
where multiple EH sensor nodes collect correlated measurements
of an underlying random field. The nodes operate in an energy-
neutral manner (i.e. energy is used as soon as it is harvested) and,
hence, the energy-harvesting and sampling processes at the sensor
nodes become inter-twined, random and spatially correlated.
Under some mild assumptions, we derive the multidimensional
linear filter which minimizes the mean square error in the
reconstructed measurements at the Fusion Center (FC). We also
analyze the impact of correlated and random sampling processes
in the resulting distortion and, in order to gain some insight, we
particularize the analysis to the case of fully correlated spatial
fields and with an asymptotically large number of sensor nodes.

I. INTRODUCTION

Sensor nodes are usually powered by batteries which can
be costly, difficult or even impossible to replace (e.g. when
nodes are deployed in remote locations). In recent years,
energy harvesting (EH) has emerged as a technology capable
of overcoming (or, at least, alleviating) the limitations imposed
by non-rechargeable batteries. Specifically, nodes equipped
with an energy harvesting device are capable of scavenging
e.g., solar, wind, thermal, kinetic energy from the environment
[1] and, by doing so, extend their lifetime. Upon being
harvested, energy can either be stored in a rechargeable battery
or, alternatively, be immediately used for sensing and data
transmission.

Energy harvesting has received considerable attention by the
wireless communications and information theory communities.
For point-to-point scenarios, and under the assumption of
known energy and data arrivals (offline optimization), the
main focus has been on the derivation of optimal transmission
strategies at the sensor node. In [2], the authors study the
problem of minimizing the time by which all data packets are
transmitted to the destination. A number of authors go one
step beyond and investigate the impact of finite energy storage
capacity [3] or battery leakage [4]; generalize the analysis
to fading channels [5]; or explicitly take into consideration
the energy needed for data processing (in addition to data
transmission) [6].
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In this paper, we consider a communication scenario where
multiple EH sensor nodes collect spatially correlated measure-
ments of an underlying random field, and wirelessly transmit
them to a remote Fusion Center (FC). In addition, we consider
that sensors operate in a strict energy-neutral manner, that
is, the nodes will harvest energy and immediately use it for
sensing the field and transmitting the measurement to the FC.
Under this approach, the sensor node can conduct its expected
duties for an infinite amount of time (unless its hardware fails)
and possibly be bateryless (e.g., simply equipped with a su-
percapacitor). Moreover, the energy-harvesting and sampling
processes are inter-twined. Specifically, the sampling processes
at the sensor nodes become (i) random and, to some extent, (ii)
correlated due to the spatial correlation exhibited by the EH
process (think e.g., of a number of sensors deployed along a
roadside collecting vibrational energy from passing vehicles).
In order to properly reconstruct the measurements at the FC,
we adopt a multidimensional linear filter which minimizes
the quadratic error. Our goal is two-fold, namely, to design
such a multi-dimensional filter and to analyze the impact of
such correlated and random (EH and) sampling processes in
the reconstruction distortion. To that aim, we derive closed-
form expressions of power spectral density (PSD) of the
reconstructed signal. To the best of the authors’ knowledge,
such an analysis is conducted for the first time in this paper.
In order to gain some insight, we particularize the analysis
to the case of fully correlated spatial fields and with an
asymptotically large number of sensor nodes.

This paper is organized as follows. In Section II the system
model is presented. In Section III, the optimal (in mean square
error sense) multidimensional linear filter is derived under
some mild assumptions. The impact of energy harvesting in the
sampling process is evaluated in Section IV and particularized
for fully correlated fields in Section V. In Section VI numerical
results are provided. And finally, Section VII draws some
conclusions of this work.

II. SYSTEM MODEL

Consider a sensor network composed of N sensor nodes
and one Fusion Center (FC). Each node samples a random
field Xi(t) i = 1, . . . , N , that we model as a jointly Wide
Sense Stationary (WSS) zero-mean random processes with
individual correlation function given by {RXi (τ)}Ni=1. Each
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Figure 1. Signal and communication model for a network comprising N
energy-harvesting sensors and one fusion center.

sensor nodes is equipped with an energy harvesting device and
operates in an energy-neutral manner. That is, upon an energy
arrival, the sensor wakes up, samples the field, and reliably
transmits the sample to the FC. Accordingly, the sampled
signal reads:

Xsi(t) = (Xi(t) + Zi(t))Pi(t)

= (Xi(t) + Zi(t))

∞∑
k=−∞

δ(t− t(i)k ) (1)

where Pi(t) stands for the sampling process at the ith sen-
sor with random sampling times {t(i)k }; and Zi(t) denotes
band-limited and zero-mean WSS (observation) noise with
autocorrelation function Rzi(τ). Due to nodes’ energy-neutral
operation, the sampling times coincide with energy arrivals. In
vector notation, the received signal at the fusion center reads

xs(t) = (x(t) + z(t))� p(t), (2)

where � stands for the Hadamard product, p(t) =
[P1(t), . . . , PN (t)]

T stands for the sampling processes, and
z(t) = [Z1(t), . . . , ZN (t)]

T for the observation noise pro-
cesses. Vectors x(t) = [X1(t), . . . , XN (t)]

T and xs(t) =
[Xs1(t), . . . , XsN (t)]

T , gather the underlying and received
sampled signal; with known correlation matrices Rxx (τ) =
E
[
x (t)xT (t+ τ)

]
and Rxsxs

(τ) = E
[
xs (t)xT

s (t+ τ)
]

whose elements are given by

[Rxsxs
(τ)]i,j =

{
RPi(τ) (RXi(τ) +RZi(τ)) if i = j
RPiPj

(τ)RXiXj
(τ) if i 6= j.

(3)

III. COMPUTATION OF THE OPTIMAL
MULTI-DIMENSIONAL FILTER

In order to estimate x(t), we resort to a multidimensional
linear filter defined by the N ×N matrix H (t),

H (t) =


h11(t) . . . . . . h1N(t)

... h22(t) . . .
...

...
...

. . .
...

hN1(t) . . . . . . hNN (t)

 .

with hi,j(t) denoting a time-invariant filter. Such a multi-
dimensional approach allows as to leverage on the spatial
correlation exhibited by the set of random fields. The N × 1
output of this multidimensional filter reads1

x̂(t) =

∫
H (t− u)xs(u)du (4)

where, with some abuse of notation, the integrals are com-
puted component-wise. The goal is to find the optimal linear
multidimensional filter H (t) such that the average distortion
is minimized. To that end, H (t) is designed according to the
orthogonality principle2, namely

E
[
(x(t)− x̂(t))xT

s (v)
]

= 0, (5)

where 0 stands for an all-zero N × N matrix. From (5), the
following must be satisfied:

E
[
x(t)xT

s (v)
]
− E

[
x̂(t)xT

s (v)
]

= 0.

Note that the first term can be expressed as

E
[
x(t)xT

s (v)
]

= Rxxs (t− v) = Rxxs (τ) ,

where we have used the change of variables τ = t − v. The
second term is given by

E
[
x̂(t)xT

s (u)
]

= E
[∫

H (t− u)xs(u)duxT
s (v)

]
=

∫
H (t− u)Rxsxs (u− v) du.

=

∫
H (w)Rxsxs (τ − w) dw

where, we have applied the change of variables w = t − u
and, again, τ = t − v. The individual matrix entries of the
equation above are given by[∫

H (w)Rxsxs
(τ − w) dw

]
k,l

=

N∑
i=1

hkl(τ) ∗Rxsk
xsl

(τ) .

where ∗ denotes convolution. Hence, from (5), we have

Rxxs (τ) =

∫
H (w)Rxsxs (τ − w) dw. (6)

By defining Sxxs (f) = F {Rxxs (τ)}, SH (f) = F {H (τ)}
and Sxsxs (f) = F {Rxsxs (τ)}, with F {·} standing for the
component-wise Fourier transform, equation (6) becomes

Sxxs
(f) = SH (f)Sxsxs

(f) .

Therefore, the spectral matrix of the best linear multidimen-
sional filter can be computed as follows:

SH (f) = Sxxs
(f)S−1xsxs

(f)

and, finally, the optimal linear multidimensional filter yields:

H (t) = F−1 {SH (f)}

with F−1 {·} standing for the component-wise inverse Fourier
transform.

1Integration intervals are −∞ to ∞, unless otherwise stated.
2In other words, the error in the estimate w(t) = x(t)−x̂(t) is forced to be

orthogonal to all sensor samples xs(u). For more information the interested
reader is referred to [7]



A. Distortion

First, from the orthogonality principle (5), we have that

x(t) = x̂(t) + w(t) (7)

with w(t) being orthogonal to x̂(t). Hence, by considering
the Mean Square Error (MSE) as the distortion metric, the
distortion in the estimate of Xi(t) can be readily computed as
follows:

MSE = E
[(
Xi(t)− X̂i(t)

)2]
(8)

= RXi
(0)−RX̂i

(0) (9)

=

∫
SXi(f)− SX̂i

(f)df (10)

where SX̂i
(f) denotes the Power Spectral Density (PSD) of

X̂i(f) and is the i-th diagonal element of the following PSD
matrix:

Sx̂(f) = Sxxs
(f)S−1xsxs

(f)SH
xxs

(f) (11)

IV. INTERPLAY OF ENERGY HARVESTING AND SAMPLING
PROCESSES

As in [2]–[5], [8], the energy harvesting processes are
modeled as counting processes, namely

Ei(t) =

∞∑
k=1

ε
(i)
k u(t− t(i)k ), (12)

where u(·) stands for the Heaviside function, {t(i)k } denotes
the set of random energy arrival times and {εk} their corre-
sponding energy amounts. As in [9], we realistically consider
identical amounts of harvested energy that is, εk = ε ∀k. And,
further, that ε Joules suffices to acquire, process and reliably
transmit a sensor sample to the FC. As a result, the sampling
times coincide with the energy arrival times (see Figure 2).
Thus, the point (sampling) process Pi(t) can be expressed as
follows:

Pi(t) =
d

dt
Ei(t) (13)

where, without loss of generality, we have considered ε = 1.
The aim of this section is to assess the impact of the

correlation in the energy harvesting processes on the PSD of
the sampling processes, which are needed to compute H(t).
For mathematical tractability and motivated by the recent
literature on energy harvesting [10]–[12], we model {Ei(t)}
as a set of Poisson counting processes of intensity rates {λ̌i}.
Further, we assume that the energy harvesting processes are
spatially correlated 3 and model such spatial correlation as
follows:

Ei(t) = Ec(t) + Si(t), (14)

where both processes Ec(t) and Si(t) stand for Poisson
counting processes of intensity rates λc and λi, respectively.

3This models situations where sensors are located close to the same energy
harvesting source.

Essentially, Ec(t) models the common part of the energy
arrivals and Si(t) accounts for the sensor-specific (i.e. innova-
tion) part. As shown in Figure 3, this entails some correaltion
in the resulting sampling patterns.

The autocorrelation function of Ei(t) reads

REi(t1, t2) = E [Ei(t1)Ei(t2)] (15)

= (λc + λi) min(t1, t2) + (λc + λi)
2
t1t2. (16)

Now, since the processes are mean square differentiable, the
derivative and expectation operators can be exchanged [7], thus
yielding

RPi
(t1, t2) =

∂

∂t1∂t2
REi

(t1, t2) (17)

= (λc + λi) δ (τ) + (λc + λi)
2 (18)

with τ = t2 − t1. The cross-correlation function is given by

REiEj
(t1, t2) = E [Ei(t1)Ej(t2)] (19)

= E [Ec(t1)Ec(t2)] + E [Ec(t1)Sj(t2)]

+ E [Si(t1)Ec(t2)] + E [Si(t1)Sj(t2)] ,
(20)

where

E [Ec(t1)Ec(t2)] = λc min(t1, t2) + λ2ct1t2, (21)
E [Ec(t1)Sj(t2)] = λcλjt1t2, (22)
E [Si(t1)Ec(t2)] = λiλct1t2, (23)
E [Si(t1)Sj(t2)] = λiλjt1t2. (24)

Again, by exchanging the derivative and expectation operators,
it yields

RPiPj (t1, t2) =
∂

∂t1∂t2
REiEj (t1, t2) (25)

= λcδ (τ) + λ2c + λc (λj + λi) + λiλj . (26)

Therefore, the power spectral density of the sampling pro-
cesses reads:

SPiPj (f) =

{
(λc + λi) + (λc + λi)

2
δ (f) if i = j

λc +
(
λ2c + λc (λj + λi) + λiλj

)
δ(f) if i 6= j

(27)

Finally, from (3), the PSD of the sampled signal yields:

[Sxsxs
]i,j =


(λc + λi) (RXi(0) +RZi(0))

+ (λc + λi)
2

(SXi
(f) + SZi

(f)) if i = j

λcRXiXj
(0) +

(
λ2c + λc (λj + λi)

+ λiλj
)
SXiXj

(f) if i 6= j
(28)

and

[Sxxs ]i,j = (λc + λj)SXiXj (f). (29)
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Figure 2. Sampled random field (top) and relation between the energy
harvesting and sampling processes (bottom).
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Figure 3. Graphical representation of the correlated sampling processes at
the sensor nodes.

V. PARTICULAR CASE: FULLY CORRELATED FIELDS

To analyze the impact of correlated sampling processes on
the distortion, we consider a scenario where sensor nodes ob-
serve the same underlying phenomenon, namely Xi(t) = X(t)
for i = 1, . . . , N . Particularing (4), the estimate of the (single)

spatial field is given by:

X̂(t) =

∫
hT (t− u)xs(u)du

where h(t) = [h1(t), . . . , hN (t)]
T . Along the lines of Section

III, we have that

sh(f)T = F
{
hT (t)

}
(30)

= sTXxs
(f)S−1xsxs

(f) (31)

and

sXxs
(f) = F {E [X(t)xs(t+ τ)]} (32)

= (λc + λi)SX(f)1N , (33)

with 1N standing for the ones vector of length N . In order
to obtain a simple yet informative expression of the MSE, we
assume that the sensor-specific parts of the energy harvesting
processes are statistically identical, that is, λi = λ and, further,
RZi

(τ) = RZ (τ). After some algebra, one concludes that:

MSE = RX(0)−
∫
SX̂(f)df (34)

= RX(0)−
∫

NG1(f)

G2(f) +NG3(f)
df (35)

with

G1(f) = (λc + λ)2|SX(f)|2, (36)
G2(f) = λ (RX(0) +RZ(0)) + λcRZ(0)

+ (λ+ λc)
2
SZ(f), (37)

G3(f) = λcRX(0) + (λ+ λc)
2
SX(f). (38)

Interestingly, the second term in (35) is a monotonically
increasing function in N and, thus, the MSE will decrease
monotonically in N . This means that the impact of the network
size is twofold. First, for an increasing number of sensors,
the FC can smooth the noise better, this yielding a lower
MSE. Second, increasing the number of sensors also increases
the effective sampling rate of the phenomenon as long as the
harvesting processes have independent components (see next
subsection).

A. Asymptotic Regime

Taking the limit of the MSE in (38) with respect to N , we
have that

lim
N→∞

MSE = RX(0)− lim
N→∞

∫
NG1(f)

G2(f) +NG3(f)
df (39)

= RX(0)−
∫

lim
N→∞

NG1(f)

G2(f) +NG3(f)
df (40)

= RX(0)−
∫
G1(f)

G3(f)
df (41)

= RX(0)−
∫

(λ+ λc)
2|SX(f)|2

λcRX(0) + (λ+ λc)
2
SX(f)

df,

(42)

where (40) follows from the Lebesgue’s dominated conver-
gence theorem. First, from (42), one observes that the estimate



is consistent since the noise term vanishes for large N .
Besides, for independent harvesting processes, i.e. λc = 0,
the distortion turns out to be zero. This follows from the fact
that the sum of N independent Poisson counting processes of
average arrival rate λ is equivalent to have a single Poisson
counting processes of average rate given by Nλ. Hence, for
large N , the equivalent average sampling rate tends to infinity.
For correlated sampling processes (λc > 0) there exists some
sampling noise (with power λcRX(0)) that has a negative
impact on the resulting MSE. From (42), note that this effect
can only be alleviated by letting λc grow to infinity (since the
rest of the terms in the integral grow with λ2c).

VI. NUMERICAL RESULTS

For a numerical comparison, we consider the scenario of
Section V where sensors observe the same random field. In
particular, we consider the estimation of a Markov Gaussian
process with spectral density given by

SX(f) =
2σ2

xβ

4π2f2 + β2
, (43)

where σ2
x and β are the parameters modeling the energy

and variability of the phenomenon. Regarding the observation
noise, we consider band-limitted Gaussian noise with spectral
density given by:

SZ(f) =

{
εz if |f | < fmax

0 otherwise. (44)

Figure 4 reveals that distortion is a decreasing function in
the number of sensor nodes. As discussed in Section V-A,
for independent harvesting processes the MSE tends to 0 for
large N . This is illustrated in Figure 5, where the PSD of the
underlying process X(t), given by (43), is compared with the
PSDs of the resulting reconstructions. In this example, with
N = 1000 and independent harvesting processes (λc = 0),
the PSDs of the actual and the reconstructed processes are
virtually identical. For correlated harvesting processes, on the
contrary and as shown in Figure 4, the MSE saturates beyond.

More interestingly, as shown in Figure 4, the required
average rate of harvested energy, given by N · (λ + λc), to
attain a prescribed value of MSE, can be substantially different
depending on the statistical properties of the energy harvesting
processes. For instance, for independent harvesting processes
(λi = 0.1 and λc = 0), the required energy rate to achieve a
MSE ≈ 0.04 is 5 , whereas it turns out to be 30 for correlated
energy harvesting processes (λi = 0.5 and λc = 0.1).

VII. CONCLUSIONS

In this paper, we have considered the reconstruction of
correlated random fields with wireless sensor networks that
operate in an energy-neutral manner. First, under the assump-
tion of WSS random sampling processes, we have proposed
a multidimensional linear filter that exploits the correlation
between the sensor observations. Next, we have computed
the power spectral density of the sampling processes due to
the energy neutral operation of the nodes. For this case, we
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have further considered that the energy harvesting processes
are spatially correlated. Subsequently, in the scenario where
sensors observe the same underlying phenomenon, we have
analytically assessed the impact of correlated energy harvest-
ing on the distortion. Interestingly, we have found that, for a
large number of sensor nodes, the distortion tends to zero if
the energy harvesting processes are independent, whereas it
saturates otherwise.
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