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Abstract. The transport industry, especially aviation, pays special attention to vehicle weight 
because lower weight means lower fuel consumption and in turn lower environmental 
pollution. Not only light metals like aluminium and magnesium alloys or titanium and its 
alloys are of interest in the transport industry but also new production technologies are taken 
into consideration as factors decreasing structure weight. Sheet metal forming offers light and 
strong components, therefore monolithic e.g. casting components are often replaced by drawn 
parts made of sheet metals. Forming large panels of thin sheets, especially hard-to-deform 
sheets with a high susceptibility to spring back, is a huge challenge. Forming both aluminium 
and titanium alloy sheets as well as nickel based steel sheets, which are the main structural 
materials in aviation, is difficult. Titanium, particularly titanium alloys, in comparison to steel 
and aluminium has a much more beneficial specific strength (strength-to-weight ratio)  
therefore it is used where high mechanical strength and low weight of the construction are 
especially essential. However, there are many technological problems, such as: poor 
drawability, high spring back and low tribological properties that have to be overcome in cold 
sheet-titanium forming. In the paper, numerical analysis of forming a part of a large sheet 
panel will be presented. The numerical simulation will be performed using the PamStamp 
program specially dedicated to sheet-metal forming. The program is based on the finite 
element method (FEM). The stress and strain distributions in the analysed part will be 
presented. The effect of the blank-holder force and frictional coefficient on the forming 
process will be studied. The quality of the obtained drawn part will be assessed based  on the 
correctness of its shape and dimensions with reference ones, as well as on the thinning of the 
drawn part material. 

1 INTRODUCTION 
The transport industry, especially aviation needs strong and light materials for their 

construction because lighter aircraft means lower fuel consumption, and consequently  lower 
levels of exhaust emissions and environmental pollution [1-4]. When selecting materials for 
aircraft structural parts, specific gravity in particular is taken into account, and in this respect 
magnesium and aluminium alloys as well as titanium materials are the most favourable. 
However, considering material strength, both aluminium and magnesium alloys  are inferior 
to titanium alloys, which have the highest specific strength among all structural materials, i.e. 
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the highest strength-to-density ratio up to 600oC. Above this temperature only steel-nickel
alloys can work, unfortunately their specific weight is nearly two times higher than titanium 
alloys. Therefore, in order to reduce construction weight there is a tendency to replace 
massive cast parts with lighter ones made of sheet-metals. Among many producing 
technologies, such as casting, machining, metal forming or powder metallurgy, sheet-metal 
forming seems to be the most appropriate concerning the strength and lightness of thin-wall 
products [5-7]. Sheet-metal forming processes give the possibility to manufacture drawn parts 
in different sizes - from small to huge components, with different geometry - from simple to 
complex geometry, and very often near-net-shape parts, which do not need extra machining.  
A further decrease in construction weight is possible using tailor welded blank (TWB) 
technology [8-12] as well as honeycomb structures [13,14] but the  development of these 
technologies would not be possible if not for the progress in welding technologies, including 
electron and laser beam welding [15-20] as well as friction stir welding [21,22]. Modern 
welding technologies allow not only for the creation of new aviation designs but also the 
modification of existing ones. Because the design criteria, especially in aviation are 
complicated and require  expertise and experience, all improvements require computational 
support in modelling and simulation of both material and process design [23-26].  

Apart from theoretical problems, the implementation of new advanced technologies as well 
as high strength materials requires solving numerous technological problems. Sheets made of 
such materials, e.g. titanium alloy, are characterised by low drawability at ambient 
temperature and high spring back. In order to improve their drawability and eliminate spring 
back phenomena, forming at a higher temperature is usually applied [27,28]. However, it 
involves, especially during titanium forming, the use of protective atmosphere or vacuum to 
avoid gas absorption and hence material embrittlement. 

Titanium in addition to favourable specific strength has  good corrosion resistance to many 
technological environments and because of its high melting point (1,668°C), it is considered 
as a fireproof material suitable for firewalls. Even though sheet-metal forming has been 
known for many years, forming titanium sheets still poses many  problems [29-32]. Titanium, 
especially titanium alloy sheets have poor drawability [7,29], a tendency to fracture [33], high 
springback [34,35] and unfavourable tribological properties, particularly an inclination to 
galling [29,36].  

Forming large panels like enclosures or firewalls from thin sheets is a real challenge. 
Generally, all panels made of sheets tend to buckle and vibrate. In order to stiffen huge panels 
and reduce sheet flex, it is necessary to emboss some ribs (stiffeners), which can also be used 
to create decorative elements in a product that would otherwise be cost prohibitive. Embossed 
stiffeners allow constructors to reduce sheet-metal thickness, which is essential concerning 
structure weight reduction without decreasing its strength or rigidity. Although these 
embossed stiffeners are usually shallow, it is very difficult to avoid the deformation of flat 
panel areas, especially if it is made of hard-to-deform materials like titanium and in addition 
to a very thin sheet. Even slight panel deformation poses problems during component 
assembly. Therefore, in the work springback phenomenon during forming a part of a titanium 
sheet panel with embossed stiffeners is studied. 
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2 GOAL AND SCOPE OF WORK
The work aims at elaborating some guidelines on how to form large thin titanium sheet-

panels having enough stiffness to avoid bending or twisting and losing the original shape 
during exploitation.  

In order to increase the titanium panel stiffness, some embossed stiffeners, which are 
shown in Figure 1, were designed on the panel surface. Embossing is usually used to form a 
pattern or design on ductile metals because of aesthetic or functional reasons. In the work the 
functional application is considered. Generally, such stiffeners should be formed by 
stretching, however, some part of the deformed material can be drawn from the sides of the 
sheet panel into a shallow depression. The clue  to this process is how to ensure pure stretch 
forming, in which the metal sheet is completely clamped round its circumstance and the shape 
is achieved at the expense of sheet thickness. Stretching the metal causes it to become thinner. 

Figure 1: Geometry and position of embossed stiffeners 

To optimise the process parameters, such as blank-holder force and frictional conditions, 
a virtual embossing process was designed using PamStamp 2G v. 2011 [37], which provides 
solutions for sheet-metal forming processes especially in the automotive and aerospace 
industry. The system is based  on the finite element method (FEM).  

In the work, a part of a large panel with embossed stiffeners is analysed. The panel is made 
of a commercially pure Gr 2 titanium sheet with a thickness of 0.4 mm, which  poses a basic 
difficulty due to the low ductility and high spring-back of such a thin Gr 2 titanium sheet.   
The effect of the blank-holder force and frictional conditions on the stress and strain 
distribution in the analysed part are studied. 

3 NUMERICAL CALCULATIONS

3.1 Numerical model 
The surface model of the tool was prepared using Catia v. 5, and then the model was put 

into PamStamp 2G. 4-node shell elements were used for generation mashes on both the blank 
and the stamping tool, which consists of a die, punch and blank-holder. Boundary conditions 
were assigned to each part of the tool to specify their position in the coordinate system. All 

embossed 
stiffeners
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degrees of freedom were moved away from the die while the punch and the blank-holder have 
the possibility to move on the Z axis. It was possible thanks to the applied velocity vector to 
the punch as well as force to the blank-holder. The blank had all degrees of freedom. The 
numerical model of the tool is shown in Figure 2 while the material data for the Gr 2 sheet, 
which were assumed in the calculations are given in Table 1. 

Figure 2: Numerical model of tool 

Table 1: Material properties assumed in numerical calculations 

Material Young’s 
modulus 
E [GPa]

Offset yield 
point 

Rp0.2 [GPa]

Poisson’s 
ratio 
ν [-]

Density 
ρ [kg/m3]

Strength 
coefficient 
K [GPa]

Strain 
hardening exp. 

n [-]
Gr 2 105 0.236 0.37 4,500 0.465 0.125

The material anisotropy was described using Hill'48 yield criterion. The strain-stress curve, 
which is presented in Figure 3, is defined based on Hollomon’s law: 

σ = Κ · εn       (1)

where: K - strength coefficient, n - strain hardening exponent. 

Figure 3: Stress-strain curve for Gr 2 sheet 
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In the calculations, different variants of frictional conditions and load were analysed, i.e. 
six values of blank-holder force were assumed: 200, 400, 600, 800, 1000 and 1200 kN, and 
two values of friction coefficients were assumed: =0.1 and = 0.4. 

3.2 Numerical calculation results 
Some calculation results for the analysed process parameters are compiled in Table 2. 

Table 2: Basic process parameters and some calculation results 

Friction 
coefficient 

 [-]

Holding-down
force

Fh-d [kN]

Plastic 
strain 
 [-]

Difference in initial 
and final panel width 

[mm]

Max. difference between position 
nominal and drawn-part after 

spring-back [mm]

0.1

200 0.055 1.99 3.65
400 0.059 1.69 2.54
600 0.061 1.55 1.91
800 0.064 1.44 1.28
1000 0.061 1.23 1.95
1200 0.068 0.96 1.99

0.4

200 0.078 1.00 2.18
400 0.079 0.78 1.31
600 0.080 0.15 0.85
800 0.081 0.11 0.87
1000 0.082 0.11 0.84
1200 0.083 0.10 0.79

The plastic strain distribution is presented in Figures 4 and 5, respectively for the friction 
coefficient =0.1 and =0.4. The results are presented for three values of  blank-holder 
forces, i.e.: Fh-d=200kN, Fh-d=600kN  and Fh-d=1200kN are shown.  

Analysing the data given in Table 1 and the plastic strain distribution presented in Figures 
4 and 5, it can be seen that for the smaller value of friction coefficient =0.1 and the smallest 
blank-holder force Fh-d= 200kN, the ribs are created by drawing the sheet material into the die 
cavities. As a result, the panel width decreases by nearly 2 mm. It means that in the case of 
larger parts with several stiffening ribs, large sheet deformation arises therefore the sheet 
panel will bend, warp and change shape. The subsequent numerical simulations showed that 
the greater the frictional coefficient and the greater the blank-holder force, the less sheet that 
is drawn into the die cavity. 

For the higher friction coefficient =0.4 and the greatest blank-holder force Fh-d= 1200kN, 
the ribs are formed only by material stretching and the plastic strains are distributed 
symmetrically (Fig. 5 c). It suggests that the whole part will not undergo a large degree of 
springback. 

Thickness distributions are presented in Figures 6 and 7, respectively for the friction 
coefficient =0.1 and =0.4. The results are presented for three values of blank-holder forces, 
i.e.: Fh-d=200kN, Fh-d=600kN and Fh-d=1200kN are shown.
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Figure 4: Plastic strain distribution   for frictional coefficient 0.1 and blank-holder force: 
a) 200 kN, b) 600 kN, c) 1200 kN
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Figure 4: Plastic strain distribution   for frictional coefficient 0.4 and blank-holder force: 
a) 200 kN b) 600 kN, c) 1200 kN
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Figure 6: Thickness distribution [mm] for frictional coefficient 0.1 and blank-holder force: 
a) 200 kN, b) 600 kN, c) 1200 kN
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Figure 7: Thickness distribution [mm] for frictional coefficient 0.4 and blank-holder force: 
a) 200 kN, b) 600 kN, c) 1200 kN
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By analysing the thickness distributions, it can be seen that the greater the frictional 
coefficient and the greater the blank-holder force, the fewer changes in the thickness of the 
flat part of the sheet. It also suggests that the whole part will not undergo a large degree of 
springback. Thus, if we want to avoid bending or twisting and losing the original part shape, it 
is necessary to create such forming conditions that the stiffening ribs are shaped only by 
material stretching. It is necessary to avoid drawing the material from the flat part of the sheet 
into the die cavity. 

4 CONCLUSIONS 
According to the numerical calculation results it can be stated that both holding down force 

and friction coefficient value, which are assumed on the contact surfaces, are very important 
for the forming process. These process parameters affect plastic strain distribution as well as 
thinning of the deformed sheet essentially. It is observed that the greater the frictional 
coefficient and the greater the blank-holder force, the fewer changes in thickness of the flat 
part of the sheet. Therefore, it is advised to increase surface roughness by e.g. sand blasting to 
increase the friction coefficient. The higher the frictional coefficient, the lower the blank 
holder force needed, hence a smaller stamping press is required. 
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