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Abstract— A competitive analysis for the online and offline
optimization problems for a slotted energy harvesting (EH)
wireless communication system is studied. The objective is to
design online strategies that minimize the competitive rate gap
that is defined as the maximum gap between the optimal rates
that can be achieved by the offline and online policies over all
possible energy arrival profiles. It is shown that the competitive
rate gap is upper-bounded by the logarithm of the number of
slots, and a myopic online transmission policy is proposed that
achieves a lower rate gap.

I. INTRODUCTION

Energy harvesting (EH) technology is considered as a major

component of future wireless networks and devices in order

to reduce frequent battery replacements for exponentially

increasing number of connected devices, to limit the growing

carbon footprint of the wireless industry, and also to obliterate

the dependence of wireless terminals on the power grid.

Harvesting energy from the environment extends the lifetime

of wireless devices, and provides them untethered mobility, as

batteries can be charged without connecting to the power grid

infrastructure. However, despite such advantages, designing

EH communication systems bring its own challenges. Due

to the stochastic nature of the energy arrivals, sources may

eventually run out of energy, degrading the communication

performances; or, being overly frugal for energy consumption

might lead to battery overflows, and waste of harvested energy.

For many energy sources, such as solar, vibration or elec-

tromagnetic, the characteristics of the EH profile change

over time. The time-varying nature of the available energy

motivates the need for designing transmission polices that take

into account the stochastic nature of the energy arrival process,

while optimizing a desired performance criteria. The perfor-

mance measure considered here is the average throughput. We

model the EH process as a slotted packet arrival process, in

which the energy arrives in packets at each time slot, and

we study the problem of maximizing the achievable average

throughput over a fixed number of time slots. We assume that

the energy harvested during the course of the communication

is used only in the power amplifier of the transmitter.
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Previous work addressing the design of transmission po-

lices for EH devices are typically classified based on the

assumptions made on the transmitter’s knowledge about the

EH process [1]. In the offline optimization framework the

transmitter is assumed to have access to all the future energy

packet arrival instants and packet sizes. The optimal offline

transmission policy maximizing the throughput for an EH

point-to-point additive white Gaussian noise (AWGN) channel

is first studied in [2], and later extended to battery capacity

constraints and imperfections in [3] and [4]. Throughput

maximizing offline strategies have also been extended to multi-

terminal communication channels. The broadcast channel was

studied in [5], the multiple-access channel in [6], the inter-

ference channel in [7], while the two-hop relay channel is

considered in [8] and [9]. In addition to serving as theoretical

upper bounds, offline designs have also been proven useful

in inspiring online policies [10]. However, practical interest

in offline polices is limited to scenarios for which the EH

process is more or less deterministic, or is random, but can

be accurately predicted. For example, solar based systems and

shoe-mounted piezoelectric devices.

The online optimization framework, instead, assumes that

the transmitter has only a statistical knowledge of the under-

lying EH process [1], [11]. In the online framework the op-

timization problem is modeled as a Markov decision process,

and the optimal policy can be determined through dynamic

programming. Most of the work in the literature on the online

optimization show performance results that are very close to

those achieved by optimal offline policies [12], [13]. However,

it is not yet clear how much of these results can be attributed

to the particular online policy chosen, or the stochastic model

considered for the EH process.

In this work we aim at answering the following fundamental

questions: Can the gap between the achievable offline and

online throughputs be unbounded? If this is not the case,

compared to the optimal offline throughput, can we quantify

the loss of adopting an online policy, independent of the

statistics of the EH process? Can we characterize a generic

online policy that minimizes this gap? The answers to these

important questions will determine the value of the knowledge

about the EH process. If the gap between the optimal offline

and online policies can be significantly large, more effort

should be put into characterizing and learning the behaviour
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of the underlying EH processes [14]. Moreover, identifying

this gap independent of the EH statistics will also let us know

the value of the offline results as a performance benchmark, a

claim commonly used in the literature. To that end, we adopt

a competitive analysis framework, for which the statistics of

the EH process are not relevant.

The most related paper to our work is [15], in which the

authors introduce a competitive analysis for an EH communi-

cation systems, and define the competitive ratio as the maxi-

mum ratio between the gain of the optimal offline algorithm

and that of the online algorithm over all possible energy arrival

profiles. They consider point-to-point communications over

a slotted transmission interval and consider, both, arbitrary

energy arrivals and time-varying channel coefficients which

are known only causally at the transmitter. For this scenario,

authors show that when all the energy arrives at the start of

the transmission and only the fading coefficients are arbitrarily

varying, the optimal competitive ratio over N slots is N .

Then, they show that this same ratio is achieved for the

general case of arbitrarily varying energy arrivals and fading

coefficient. Here, we study the competitive rate gap rather than

the competitive ratio for a static channel setting. We show that

the optimal competitive rate gap for N time slots is upper-

bounded by log2(N). Other works addressing the design of

online algorithms for fading channels under the competitive

analysis framework are [16]–[20].

The remainder of the paper is organized as follows. The

system model is described in Section II. The competitive

analysis framework is developed in Section II-A. The case

of two time slots is studied in Section III, and the extension

to N time slots is done in Section IV. Numerical results are

presented in V. Finally, concluding remarks are presented in

Section VI.

II. SYSTEM MODEL

Consider wireless transmission from a source to a des-

tination over an AWGN channel with zero mean and unit

variance. The communications has a fixed time duration of T

time units, which is divided into N slots of equal duration
T
N

. We consider the Shannon capacity function to relate

the achieved instantaneous rate to the power; that is, if the

transmission power at time t is p(t) then the instantaneous

rate is given by r(p(t)) = 1
2 log2(1 + p(t)), and the total

number of bits transmitted over the period of time T is given

by
∫ T

0
r(p(t))d(t).

The source terminal harvests energy from the environment

over time. The energy harvested during time slot n− 1 is first

stored into the battery, and is only available at the beginning

of slot n, and is denoted by En ∈ {0,R+}, n = 1, 2, . . . , N .

Denote by Un the energy allocated for transmission during

time slot n.

It is well known that, due to the strict concavity of the

capacity function, the rate in each slot is maximized by equally

distributing the energy Un over the whole slot duration T
N

.

Then, the total number of bits transmitted over slot n is found

as follows.

Dn(Un) =
T

2N
log2

(

1 +N
Un

T

)

.

After N time slots, the rate achieved is R =
1
T

∑N

n=1 Dn (Un). Due to the energy causality constraint,

the total energy used by the end of slot n cannot be more

than the energy harvested by the beginning of time slot n,

n = 1, 2, . . . , N , that is, Um values have to satisfy:

n
∑

m=1

Um ≤

n
∑

m=1

Em, ∀n ≤ N.

A. Competitive Rate Gap

Power polices are typically classified based on the knowl-

edge they assume at the transmitter about the underlying EH

process into two categories: offline and online policies. Offline

policies assume that the input EH sequence E = 〈E1, ..., EN 〉
is completely known in advance at the source. The optimal

offline transmission policy for the point-to-point communica-

tion scenario considered here was first presented in [2]. We

denote the offline rate as RO (E).
Online policies, instead, consider that the future energy

arrivals are unknown. While the optimal offline policy is

characterized as the solution of a convex optimization problem,

the online problem falls into the category of Markov decision

processes, and the optimal solution can be identified by

dynamic programming. Alternative simple online policies can

also be considered, such as the greedy policy, which uses all

the available energy in the next slot, or the myopic policy

which uses the offline optimization solution on the current

available energy as if there will be no further energy arrivals,

without claiming optimality.

In this study, we assume that there is no underlying known

statistics for the EH process. Hence, we consider online

policies U that make their decisions based only on the past

energy arrivals and the transmission powers, namely

U (〈E1, ..., EN 〉)= 〈U1, ..., UN〉 ,

where the energies spent at time slots n = 1, ..., N are defined

by the functions

Un (〈E1, ..., En〉) :
{

0,R+
}n

→ [0, Bn] ,

where Bn denotes the energy available for transmission at time

slot n. Under this assumption, our goal is to study the rate

gap between the rate achieved by the optimal offline policy

RO (E) and the rate RU (E) that is achieved by an online

policy maximized over all possible energy profiles. We want

to characterize the minimum value of this maximum rate gap,

the competitive rate gap (g), defined as

g = min
U

max
E∈{0,R+}N

RO (E)−RU (E) (1)

This can be considered as a worst case guarantee: For

example, if we can prove that this competitive rate gap has

a finite value of G, then we can claim that there exists an
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online policy that achieves rates within G bits per unit time

of the offline policy independent of the energy arrival profile.

In general, solving (1) directly can be quite difficult, we

instead derive upper- and lower-bounds on g. The lower-

bounds can be obtained by consider only a subset of all the

possible EH input sequences S ⊂ {0,R+}
N

, and minimizing

over all the online policies U , then g ≥ gL with

gL = min
U

max
E∈S

RO (E)−RU (E)

Upper-bounds, can be obtained by fixing a particular the online

policy U∗ and solving

gU = max
EN∈E

RO −RU∗

If both upper- and lower-bound coincide then, we can conclude

that the policy U∗ is optimal. In that case, observe that an

optimal policy satisfies

RO (E)−RU∗ (E) ≤ g

for any input EH sequence, and thus the competitive rate gap

informs us about the maximum number of bit/channel use that

we may lose by adopting the online policy U∗ instead of the

optimal offline policy.

The competitive rate gap, here considered, is quite similar

to the competitive ratio defined as

r = min
U

max
E∈{0,R+}N

RO (E)

RU (E)

The competitive ratio was addressed in [15] for a EH point

to point slotted communication over a fading channels. There

authors show, that if the power policy is online with respect to

both; the EH input process and the channel fading process then

the competitive ratio is equal to the number of slots r = N .

The competitive rate gap studied here complements the

information provided by the competitive ratio. Observe that

from the competitive ratio r one could wrongly conclude that,

given that for an EH input sequence E it is satisfied that

RO (E)

RU∗ (E)
≤ r

and, thus,

RO (E)−RU∗ (E) ≤ (r − 1)RU∗ (E)

then, the competitive rate gap is an increasing function of the

online rate RU∗ (E), and thus an increasing function of the

total energy harvested. However, as we will show here the

competitive rate gap is bounded and in particular it is satisfied

that

RO (E)−RU∗ (E) ≤ log2 N

for any EH input sequence E.

III. TWO TIME SLOTS

We first consider the case of N = 2. In this case, we are

able to determine the competitive rate gap and propose an

online policy that achieves it. For convenience, let us introduce

αn (〈E1, ..., En〉) ∈ (0, 1], as the fraction of the available

energy at time slot n, that is consumed in the same slot. Then,

we can rewrite the energy consumed in slot n as

Un = αnBn,

= αn

(

(1− αn−1)
Un−1

αn−1
+ En

)

, n = 1, ...N. (2)

Theorem 1: The competitive rate gap for two time slots is

given by

g =
1

2
log2

(

4

3

)

,

= 0.2075 bits/s

and can be achieved by the online policy 〈U1, U2〉 =
〈

3
4E1,

1
4E1 + E2

〉

.

Proof: If N = 2, then the offline rate can be expressed

as [2]

RO =

{

log2
(

1 + E1+E2

T

)

, if E1 ≥ E2,
1
2 log2

(

1 + 2E1

T

)

+ 1
2 log2

(

1 + 2E2

T

)

, if E1 ≤ E2.

whether, the online rate is given by

RU =
1

2
log2

(

1 + 2
U1

T

)

+
1

2
log2

(

1 + 2
U2

T

)

where by using the notation previously introduced, we can

write U1 = α1E1 and U2 = α2

(

(1− α1)
U1

α1
+ E2

)

.

Following the procedure described in previous section, in

order to determine the competitive rate gap, we need to find

an upper- and a lower-bound on it. To find a lower bound

gL, consider the following two input EH sequences: E1 =
lim

E1→∞
〈E1 , 0〉 and E2 = lim

E1→∞

〈

E1, E
2
1

〉

. Particularizing the

online policy, we obtain

U1 (E1) = U1 (E2) = lim
E1→∞

U1 (E1) = α̂1E1,

U2 (E1) = lim
E1→∞

U2 (〈E1 , 0〉) = α̂
(1)
2 (1− α̂1)E1,

U2 (E2) = lim
E1→∞

U2

(〈

E1 , E2
1

〉)

= α̂
(2)
2 E2

1

where, we have defined α̂1 = lim
E1→∞

α1 (E1), α̂
(1)
2 =

lim
E1→∞

α2 (〈E1, 0〉) and α̂
(2)
2 = lim

E1→∞
α2

(〈

E1, E
2
1

〉)

. Then,

the rate gaps GU (E) = RO (E)−RU (E) are given by

GU (E1) = lim
E1→∞

GU (〈E1, 0〉) = −
1

2
log2

(

4α̂1α̂
(1)
2 (1− α1)

)

,

GU (E2) = lim
E1→∞

GU

(〈

E1, E
2
1

〉)

= −
1

2
log2

(

α̂1α̂
(2)
2

)

.

Now, we can compute the competitive rate gap lower-bound

gL as

gL = min
0≤α̂1,α̂

(1)
2 ,α̂

(2)
2 ≤1

max (GU (E1) , GU (E2)) .
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Observe that GU (E1) and GU (E2) decrease with α̂

(1)
2 and

α̂
(2)
2 . Then, gL can be found by fixing α̂

(1)
2 = α̂

(2)
2 = 1. The

optimal α̂1 is found in the equality of GU (E1) , and GU (E2)
at α∗

1 = 3
4 , obtaining

gL =
1

2
log2

(

4

3

)

.

To derive the competitive rate gap upper-bound gU ,

let us fix the online policy by choosing 〈U∗
1 , U

∗
2 〉 =

〈

3
4E1,

1
4E1 + E2

〉

or, equivalently, α∗
1 (E1) = 3

4 and

α∗
2 (〈E1, E2〉) = 1, then

gU = max
E1,E2≥0

GU∗ (〈E1, E2〉) .

Consider first that E2 < E1. Then, GU∗(E) decreases if 0 ≤
E2 ≤ E1

2 and increases if E2 ≥ E1

2 . Consequently, GU∗(E)
is maximized either at E2 = E1 or at E2 = 0. In both cases,

GU∗(E) increases monotonically with E1 and, we have

GU∗(E) ≤ lim
E1→∞

GU∗(〈E1,0〉) = lim
E1→∞,

GU∗(〈E1,E1〉)

=
1

2
log2

(

4

3

)

.

Instead, if E1 < E2, GU∗(E) increases monotonically with

E2 for any E1. Moreover at E2 → ∞, GU∗(E) increases

monotonically with E1. Let us define the ratio E2

E1
= β, then

GU∗ (E) satisfies

GU∗(E) = max
β

lim
E1→∞

G (〈E1,βE1〉) ,

= max
β

1

2
log2

(

4

1 + 4β

4

3
β

)

,

≤
1

2
log2

(

4

3

)

with equality as β → ∞. Consequently, we conclude that

gU =
1

2
log2

(

4

3

)

.

Given that, the upper-bound and the lower-bound coincide we

have g = gU = gL. Moreover, the online policy α∗
1 (E1) =

3
4

and α∗
2 (〈E1, E2〉) = 1 achieves the competitive rate gap.

IV. N TIME SLOTS

Next, we study the situation where the transmission is

divided into N slots. In this case, we derive an upper-bound

on the competitive rate gap and present an online policy which

obtains a lower competitive rate gap.

Theorem 2: The competitive rate gap for a EH point-to-

point communication over N time slots is upper-bounded by

g ≤ log2 (N) .

The online transmission policy U = 〈U1, ..., UN 〉, with

Un =

n
∑

l=1

El

N − l + 1
, n = 1, ..., N (3)

achieves a lower competitive rate gap.

Before proving Theorem 2, we introduce a sufficient condi-

tion on the input EH sequences E that, if satisfied, ensures that

the optimal offline policy consists on spending all the energy

harvested in time slot n− 1 in time slot n.

Lemma 1: If the energy harvested input sequence E =
〈E1, ..., EN 〉 satisfies

En ≥
1

n−m

n−1
∑

i=m

Ei for all m < n and n = 1, .., N (4)

then, the rate maximizing offline policy is Un = En for n =
1, ..., N and the offline rate can be expressed as

RO (E) =
1

N

N
∑

n=1

log2

(

1 +N
En

T

)

.

Proof: It was shown in [2] that if the overall transmission

duration is T , then the optimal transmission policy is the one

that yields the tightest piecewise linear energy consumption

curve that lies under the energy harvesting curve H(t) =
∑

n<N t

T

En at all times t and touches the energy harvesting

curve at t = T . Define Hn = H(n T
N
) and the slope of the

curves connecting H(n T
N
) with H(m T

N
) as

sn,m =
N

T
(Hn −Hm) ,

then, for the case of equal slot durations, the optimal energy

consumption curve connects H(T ) with H((N − 1) T
N
) if the

slope of the line connecting H(T ) and H((N − 1) T
N
) is larger

or equal than slope of the lines connecting H(T ) and H(m T
N
),

for all m < n, namely sN,N−1 ≥ sN,m, for all m < N − 1.

We, additionally, require the optimal energy consumption

curves to touche the energy harvesting curve at t = n T
N

for

all n, then, the EH input sequence must satisfy sn,n−1 ≥ sn,m,

for all n and m < n or, equivalently (4).

Next, we prove Theorem 2.

Proof: Following the procedure descried in Section II-A,

we can find an upper-bound gU on the competitive rate gap

by fixing a particular online policy. In this case, we use U
in (3), which is equivalent to choosing αn = 1

N−n+1 in (2).

For the offline rate, we use an upper-bound, which we obtain

by simply considering that at slot n, the energy harvested is

Ûn =
∑n

l=1 El. The input EH sequence Ê =
〈

Ê1, ..., ÊN

〉

satisfies the condition in Lemma 1, as we can check simply

by showing that

Ûn ≥
1

n−m

n−1
∑

i=m

Ûi, (5)

for all m < n and n = 1, .., N . Observe that substituting (??)

into (5), condition (5), can be rewritten as

n
∑

l=1

El ≥
1

n−m

n−1
∑

i=m

i
∑

l=1

El,

=

m
∑

i=1

Ei +
1

n−m

n−1
∑

i=m+1

(i−m)El.



5
Now, observe also that for any EH input sequence E, we have

n
∑

l=1

El ≥
n.−1
∑

i=1

Ei,

≥

m
∑

i=1

Ei +
1

n−m

n−1
∑

i=m+1

(i−m)El,

and thus, condition (5) is always satisfied and the offline rate

can be upper-bounded by

R̂O(E) =
1

N

N
∑

n=1

log2

(

1 +N
Ûn

T

)

.

We are now ready to formulate the competitive rate gap

upper-bound problem, as

rU = max
E∈{0,R+}N

R̂O (E)−RU (E) .

Define ḠN (E) = R̂O (E) − RU (E), for a N slots commu-

nication. In the following, we show that ḠN (E) is maximum

at E = lim
E1→∞

〈E1, 0, ...., 0〉. First, observe that ḠN can be

written as a function of ḠN−1 as

ḠN = ḠN−1 +
1

N
log2

(

1 +N ÛN

T

1 +N Un

T

)

.

Denote as 0l the length l zero vector, and the EH input se-

quence Ei,j = 〈Ej , ..., Ej〉. By taking the first order derivative

of ḠN with respect to EN , it can be shown, that ḠN is a

monotonically decreasing function of EN . Consequently, ḠN

is maximized by choosing EN = 0. This is,

ḠN (E) ≤ ḠN (〈E1,N−1, 0〉) ,

where

ḠN (〈E1,N−1, 0〉)

= ḠN−1 (E1,N−1) +
1

N
log2

(

1 +N
ÛN−1

T

1 +N
UN−1

T

)

. (6)

Next, by taking the first order derivative of

ḠN (〈E1,N−1, 0〉) with respect to EN−1, we observe

that ḠN (〈E1,N−1, 0〉) increases with EN−1, if

ÛN−2 <
T

N
+ 2UN−2, (7)

and, otherwise, decreases. Consequently, ḠN

(〈

EN−1
1 , 0

〉)

is

maximized either as EN−1 → ∞ or at EN−1 = 0, this is

ḠN (E) ≤

{

ḠN (〈E1,N−2, 0, 0〉) , if ÛN−2 ≥ T
N

+ 2UN−2

ḠN (〈E1,N−2,∞, 0〉) , otherwise.

where

ḠN (〈E1,N−2,∞, 0〉) = ḠN−2 (E1,N−2) +
2

N
log2(2),

ḠN (〈E1,N−2, 0, 0〉) = ḠN−2 (E1,N−2)

+
1

N
log2

(

1 +N
ÛN−2

T

1 +N
UN−2

T

)

.

Next, we maximize ḠN

(〈

E
N−2
1 ,∞, 0

〉)

and

ḠN

(〈

E
N−2
1 , 0, 0

〉)

with respect to EN−2. First, observe that

both increase with EN−2 if

ÛN−3 < 2
T

N
+ 3UN−3, (8)

and decrease otherwise. Then, observe that condition (7) can

be rewritten in terms of EN−2, as

EN−2 < 3

(

T

N
+ 2UN−3 − ÛN−3

)

. (9)

Suppose T
N

+ 2UN−3 > ÛN−3, then condition (8) is always

satisfied, and ḠN (〈E1,N−2,∞, 0〉) is maximized in the equal-

ity of (9) whereas ḠN (〈E1,N−2, 0, 0〉) is maximized by letting

EN−2 → ∞. Evaluating both cases, we have

ḠN

(〈

E1,N−3, E
∗
N−2,∞, 0

〉)

= ḠN−3 +
3

N
,

ḠN (〈E1,N−3,∞, 0, 0〉) = ḠN−3 +
3

N
log2 (3) .

Suppose instead that ÛN−3 > T
N

+ 2UN−3, then condi-

tion (9) is never satisfied and, we only need to consider

ḠN (〈E1,N−2, 0, 0〉), which is maximized either by letting

EN−2 → ∞ if ÛN−3 < 2 T
N

+ 3UN−3 or otherwise at

EN−1 = 0. Thus,

ḠN (〈E1,N−2,∞, 0, 0〉) = ḠN−3 +
3

N
log2 (3) ,

ḠN (〈E1,N−2, 0, 0, 0〉) = ḠN−3 +
3

N
log2

(

1 +N
ÛN−3

T

1 +N
UN−3

T

)

.

Summarizing the results above, we have

ḠN (E) ≤

{

ḠN

(〈

E1,N−3,∞,02

〉)

if ÛN−3 < 2
T
N

+ 3UN−3,

ḠN

(〈

E1,N−3,03

〉)

if ÛN−3 > 2
T
N

+ 3UN−3

Following this procedure, for j = 1, we obtain

Ḡ (〈E1,∞,0N−2〉) =
1

N
log2

(

1 +N E1

T

1 + E1

T

)

+
N − 1

N
log2 (N − 1)

if E1 < (N − 2)T and

Ḡ (〈E1,0N−1〉) = log2

(

1 +N E1

T

1 + E1

T

)

if E1 > (N − 2)T . Consequently, the competitive rate gap is

upper-bounded by

rU = maxG (E) ,

≤ ḠN (〈∞,0N−1〉) ,

= log2 (N) .
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Fig. 1: Rate gap as a function of E1, for N = 2.

V. NUMERICAL RESULTS

In this section, we illustrate the competitive rate gap for the

case of two slots. Assume that the EH process is completely

unknown to the source, then the optimal online policy consist

on choosing U2(〈E1, E2〉) = E1 + E2 − U1 and U1(E1) as

the solution to

g (E1) = min
U1(E1)

max
E2

RO −RU . (10)

for all E1. We solve (10) numerically. The resultant com-

petitive rate gap as a function of the energy available in

the first slot E1 is depicted in Fig. 10, together with the

bound given by the competitive rate gap RO −RU < 0.2075,

and the rate gap obtained by using the competitive rate gap

optimal online strategy here proposed U1(E1) = 3
4E1, and

U2(〈E1, E2〉) =
3
4E1+E2. Observe that, the competitive gap

g (E1) is an increasing function with E1 bounded by 0.207 52.

Observe also that the proposed online strategy is indeed very

close to the optimal online strategy, when the statistics of the

EH process are ignored.

VI. CONCLUSIONS

In this paper, we study the competitive rate gap for EH

communication systems. For a communication divided in two

slots, we showed the competitive gap is 0.20 bits/channel use,

namely, the maximum difference between the rate obtained

with an offline power policy and an online power policy can be

made as low as 0.20 bits/channel use, regardless of the amount

of energy harvested in each slot. For a communication divided

into N slots, we showed that the rate gap is upper-bounded

by log2 N . We observed that the competitive rate gap upper-

bound obtained here for the case of N time slots is lossy for

N = 2, 0.207 52 < log2 (2) = 1. In future immediate work

we will address the problem of obtaining the competitive rate

gap for the case of N slots, by improving the rate gap upper-

bound and deriving a lower-bound on it. In addition, these

results can be extended to EH terminals with battery capacity

constraints, as well as, to fading channels. The extension to

multi-terminal communications, such as the multiple access,

the broadcast, the relay and the interference channel are also

of interest.
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