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Abstract. Biaxial loading and reverse loading tests were performed using seamless carbon 
steel tubes. Biaxial stress components in the axial and circumferential directions were applied 
to the tubular specimens using a servo-controlled multiaxial tube expansion testing machine 
developed by Kuwabara and Sugawara (2013). The tubular specimens were loaded under 
linear tensile stress paths. Contours of plastic work were measured in the principal stress 
space, and the differential hardening (DH) behavior was observed; the shapes of the contours 
of plastic work changed with an increase in plastic work. In addition, small uniaxial tensile 
specimens were fabricated from the mother tube wall in axial and hoop directions, and 
tension–compression reverse loading tests were performed to quantitatively evaluate the 
Bauschinger effect of the test material. Moreover, bilinear stress path experiments were 
performed to investigate the effects of axial prestraining on the change in the Bauschinger 
effect; compressive preloading in the axial direction (first loading) was followed by the 
application of linear stress paths in the first quadrant of the principal stress space (second 
loading). The measured Bauschinger effect in the second loading was different from those 
measured in the uniaxial reverse loading tests for the as-received material. The material model 
will be utilized to improve the accuracy in the numerical analyses of the cold working 
processes for fabricating steel tubes.

1 INTRODUCTION 
In recent years, the deformation behavior of materials in metal forming processes is

predicted using finite element analyses (FEA). In case of cold working simulations of steel 
tube processing, an isotropic yield function [1], associated flow rule, and isotropic hardening 
are assumed as a material model, as shown in equations (1–3).
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Using these models, plastic material parameter is prepared on the basis of equivalent stress–
strain relationship. Usually, that is measured by uniaxial tension test. However, such models 
cannot reproduce actual phenomena obtained from detailed observation of actual plastic 
deformation behavior such as initial and subsequent anisotropy and Bauschinger effect. To
improve the predictive accuracy of FE simulations, using a material model that is capable of 
accurately reproducing the deformation behavior of the material is necessary. 

In the case of sheet metal forming simulation, biaxial tensile test and reverse loading test 
are most popular advanced testing method for considering the actual plastic deformation. 
Cruciform specimen is loaded for biaxial tensile stress and plastic deformation behavior is 
measured [2]. Using a yield function that is capable of accurately reproducing under the 
biaxial stress state is important for accurate FE simulation [3, 4]. Uniaxial tensile specimen is
loaded for tension and compression stress and Bauschinger effect is measured in the reverse 
loading test. For accurate FE simulation, including the reverse loading state, using an 
accuracy hardening rule that is capable of accurately reproducing under reverse loading test is 
important [5]. However, previous research about these phenomena are investigated on limited 
stress and strain state such as an almost proportional or uniaxial stress state.

On the other hand, cold drawing [6], UOE pipe forming [7, 8], roll forming, tube bending, 
and straightening [9] are performed; pipe manufacturing and forming process are loaded 
under the multiaxial and reverse stress and strain state in axial, circumferential, and thickness 
direction. To improve the predictive accuracy for FE simulations, considering the material 
anisotropy and Bauschinger effect on cold working process on the pipes is necessary.
However, very few studies exist on material modeling and verification under the multiaxial 
and reverse stress-strain state [10]. 

The objective of the present study is to clarify the effect of the reverse loading under the 
biaxial stress state and validate the accuracy of existing material models. An appropriate yield 
function for the test material was determined by multiaxial tube expansion test using tubular 
specimens. Nonlinear kinematic hardening parameter was determined by reverse loading test 
using small uniaxial tensile specimen. Then, combined biaxial stresses were loaded to the 
tubular specimens and the accuracy of nonlinear kinematic and isotropic hardening models 
was validated. 
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2 EXPERIMENTAL METHODS 
Seamless, low-carbon-steel tube was chosen as the test material; as shown in Figure 1(a), 

it was fabricated using a hot pipe making process. Table 1 shows the chemical composition of 
the test material. Tubular and small uniaxial tensile specimens were made by machining from 
center of the mother tubes and used in the material tests. Small uniaxial tensile specimens 
were fabricated from the mother tube wall in the axial and circumferential directions. Initial 
anisotropy and SD effect were not observed in uniaxial tension and compression tests in both 
directions.

2.1 Multiaxial tube expansion test 
Figure 2 shows schematic of the servo-controlled multiaxial tube expansion testing 

machine developed by Kuwabara and Sugawara [11]. By controlling axial forces and an 
internal hydraulic pressure, this testing apparatus is capable of applying arbitrary biaxial stress 
paths to the central section of the tubular specimen shown in Figure 1(b). An axial force T and 
internal pressure P were applied to a tubular specimen by a hydraulic cylinder and pressure 
booster, respectively. These were measured using a load cell and pressure gauge, respectively,
and the variable ranges were MPa500 and kN200200  PT .

Table 1: Chemical composition of the test material.

C Si Mn P S Fe
0.21 0.19 0.5 0.18 0.03 Bal.

(a) Schematic of mother tube and cutting view of small uniaxial tensile specimen.

(b) Tubular specimen. (c) Small uniaxial tensile specimen.
Figure 1: Schematic of mother tube and specimens.
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Figure 2: Schematic of the multiaxial tube expansion testing machine.

Axial and circumferential strains,  and  and radius of axial curvature R were measured 
continuously by 6 displacement transducers that are installed in the center of the testing 
machine. The axial and circumferential stresses,  and  at the mid-section of the bulging 
specimen were calculated as the values at the mid wall using equations (4) and (5): 
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based on the equilibrium requirements for a material element at the mid-section of a specimen. 

2.2 Uniaxial reverse loading test 
Uniaxial tension–compression reverse loading test was performed using a small uniaxial 

tensile specimen shown in Figure 1(c); it was preformed to quantitatively evaluate the 
Bauschinger effect of the test material. The specimen was fixed by screw on the ends. A stout 
frame around the specimen was used to prevent buckling. 

2.3 Reverse loading tests under biaxial stress states 
Compressive preloading (first loading) in the axial direction was applied by a hydraulic 

press machine to the mother tube. Consequently, tubular specimens were fabricated from the 
prestrained mother tube by machining. This was followed by the application of linear stress 
paths in the first quadrant of the principal stress space (second loading) to the prestrained 
tubular specimens for measuring the Bauschinger effect in the second loading. 

3 RESULTS AND DISCUSSION 

3.1 Multiaxial tube expansion test under liner stress paths 
Tubular specimens were subjected to proportional loading with true stress ratios   : = 

4:1, 2:1, 4:3, 1:1, 3:4, 1:2, and 1:4. The small uniaxial tensile specimens were used for 
uniaxial tensile tests with   : = 1:0 and 0:1.

Figure 3 shows representative example of true stress–true plastic strain curves (s–s curves) 
measured using the tubular specimens or small uniaxial tensile specimens (uniaxial stress 
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states). The s–s curves were successfully measured up to a strain level of specimen fracture 
for all stress ratios. 

Figure 3(a) shows the results of   : = 1:0, i.e., a uniaxial s-s curve in axial direction 
that was in good agreement with Swift’s power law. Figure 3(b) shows the results of   : =
4:1, the strain increment in   direction was minus because the stress state was close to 
uniaxial. Figure 3(c) shows the results of   : = 1:1; s–s curves overlapped with each other 
because the test material had initial isotropy. Figure 3(d) shows the results of   : = 1:2; 
the stress ratio gives the plane strain state, and thus, the plastic strain increment in the 
direction remains zero. 

These results marshaled contours of plastic work [12, 13] in the stress space and they were 
used to quantitatively evaluate the work hardening behavior of the test material under biaxial
tension. The s-s curve obtained from a uniaxial tensile test in the axial direction was selected 
as a reference datum for work hardening; the uniaxial tensile true stress 0 and the plastic 
work per unit volume 0W  associated with a particular value of offset true plastic strain p

0
were determined (Figure 4(a)). The uniaxial true stress  in the circumferential direction 
and the biaxial true stress components (   , ) were then determined at the same plastic work 
as 0W  (equation (6) and Figure 4(b)). The stress points ( 0,0 ), ( ,0 ), and (   , ) were 
plotted in the principal stress space form a contour of plastic work associated with a particular 
value of p

0 (Figure 4(c)). When p
0 is considered to be sufficiently small, the work contour 
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Figure 3: True stress-logarithmic plastic strain diagrams measured using multiaxial tube expansion tests with yield 
points.
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can be practically viewed as a yield locus.
Figure 5(a) shows measured stress points forming the contours of plastic work for 

different levels of p
0 . The maximum value of p

0 for which the work contour has a full set of 
nine stress points was p

0 = 0.24, which was limited by the maximum loading point in uniaxial 
tensile test in axial direction.

Figure 5(b) shows the stress points forming contours of plastic work, the values of which 
are normalized by 0 associated with p

0 . The normalized stress points do not stay constant;
the material exhibits “Differential hardening” (DH). However, the degree of DH is small.

The theoretical yield loci based on the von Mises [1], Hill’s quadratic [14], and the 
Yld2000-2d [15] yield functions are superimposed in the figure. The unknown parameters of 
the Hill’s quadratic yield function were determined using   , , and b and those of the 
Yld2000-2d yield function were determined using  rr , , and br and   , , and b , where b
and br are the equal biaxial tensile flow stress b   and the ratio of the plastic strain 
increments pp /   dd at p

0 =0.10, respectively, and r is the r-value in uniaxial tensile state 
at p

0 =0.10. Then,  rr , , and br are assumed 1 because of the test material having initial 
isotropy and because it is difficult to measure the r-value at uniaxial tensile state for the 
tubular material. The exponent of the Yld2000-2d yield function was assumed 6 because the 
test material is a b.c.c. material. The von Mises yield function overestimates the work 
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(c) Plotting each stress values in principle stress space

Figure 4: Calculation method of stress points at equal plastic work of W0.
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contours at all stress paths except at   : =1:0 and 0:1. Hill’s quadratic yield function 
overestimates the work contours in the vicinity of plane strain tension, i.e.,   : =2:1 and 
1:2. The Yld2000-2d has a better agreement with the measured work contours.

0 200 400 600 800
0

200

400

600

800
Yield point

C
irc

um
fe

re
nt

ia
l s

tre
ss

 
 /

 M
Pa

Axial stress  / MPa

p
0=

0.01
0.03
0.05
0.1
0.15
0.24

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

von Mises
Hill '48
Yld2000-2d

Normalized stress  / 0
N

or
m

al
iz

ed
 s

tre
ss

 
 /

 
0

(a) Contours of plastic work. (b) Normalized contours of plastic work and 
calculated theoretical yield loci.

Figure 5: Measured stress points forming contours of plastic work compared with theoretical yield loci.

3.2 Uniaxial reverse loading test 
Uniaxial tension–compression reverse loading tests were performed using small uniaxial 

tensile specimens to quantitatively evaluate the Bauschinger effect of the test material. Figure 
6(a) shows the results of a reverse loading test under the uniaxial stress state in axial direction 
and calculated curve using nonlinear kinematic hardening (NKH) model [16, 17] (equations 
(7–9)), and isotropic hardening (IH) model using Swift’s power law with the von Mises yield 
function. The NKH ratio C uses two values: C1 and C2; in first loading C = C1 and in the 
second loading C = C2. Unknown parameters are identified to reproduce cyclic loading test 
using a least-square approach (approximated values are shown in Table 2). Here, C1 is 
assumed to be 2000 to prevent C1 rise up to infinity because of the test material shows yield 
point elongation (YPE) in the first loading. The experimental result is in good agreement with 
the NKH calculation. The IH model is inferior to the NKH model with respect to the 
reproducibility of the test material’s Bauschinger effect. 

Furthermore, Figure 6(b) shows the measured uniaxial stress–strain curve in axial direction 
and that calculated using the NKH model, the parameters of which are shown in Table 2; the 
experimental result is in good agreement with the NKH calculation again. 

3.3 Biaxial tensile stress test after axial prestraining 
Combined stress path experiments using prestraind tubular specimens were performed to 
investigate the effect of axial prestraining on the stress–strain curves in the second loading.
Figure 7 shows the stress paths in the first (prestraining) and second loading. Figure 8 shows 
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the measured s–s curves and calculated s–s curves based on the NKH model and IH model.
Here, the origin in x-axis (   , ) is shifted to zero to determine the effect of reloading. 

Figure 8(a) shows uniaxial tensile state in axial direction on second loading, which is 
overestimated using IH. Using NKH calculation, re-yielding behavior and flow stress are 
shown to be in well agreement because parameter of NKH was approximated in uniaxial 

)()( 0 RYf  ασ (7)

 
p

2

p
1

p
1

21

εα
αεα

ααα

dHd

dadCd







 (8)

  pdRQbdR  (9)

Q
b
H
a
C
Y



0



hardening isotropic of  valueSaturated:
ratio hardening Isotropic:

ratio hardening kinematicLinear :
hardening kinematicnonlinear  of  valueSaturated:

ratio hardening kinematicNonlinear :
stress Yield :
function Yield:

-0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10
-800

-400

0

400

800

Ax
ia

l s
tre

ss
 

 /
 M

Pa

Axial strain

 Exp.
 IH
 NKH

0.00 0.05 0.10 0.15
0

200

400

600

800

Ax
ia

l s
tre

ss
 

 /
 M

Pa

Axial strain 

 Exp.
 IH
 NKH
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Figure 6: The result and calculation of reverse loading and tensile tests under the uniaxial stress state.

Table 2: Approximated parameters in NKH model.

Y0 /MPa 202.6
C1 /- 2000
C2/- 156.3

a /MPa 94.6
H∞ /MPa 865.0

b /- 9.315
Q /MPa 173.1
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stress state. 
Figure 8(b) shows the results of   : = 2:1; re-yielding behavior is shown to be in 

agreement using NKH; however, the flow stress is calculated to be lower than the 
experimental. Strain increment in  direction is calculated 0d using IH; however, the 
NKH calculation and the experimental result indicate 0d ; this is because the outward 
normal vector of the yield function at   : = 2:1 is negative in  direction because of 
kinematic hardening caused by prestraining. These corroborate the validity of the associated 
flow rule on reverse loading under biaxial stress state. 

Figure 8(c) shows the results of   : = 1:1; strain increment ratio around re-yielding 
becomes   dd  because of the same reason of previous consideration; these validate the 
NKH model. However, flow stress is calculated to be lower than the experimental. 

Figure 8(d) shows the results of   : = 1:2. The experimental result shows 0d ,
which is different from the experimental   : = 2:1 in the minimum principal stress 
direction because of the same reason of previous consideration; these are shown using NKH. 

Figure 8(e) shows the results of   : = 0:1; the stress state in second loading is changed 
to 90° from the first loading in stress space. The flow stress is shown to be reproduced using 
IH, and the effect of first loading is limited to only the early phase after re-yielding. 

4 CONCLUSIONS 
Reverse loading tests under the uniaxial and biaxial stress states were performed using 
seamless carbon steel tubes. The conclusions of this study are summarized as follows: 

- The test material exhibited differential hardening behavior under proportional loading.
The Yld2000-2d yield function with an exponent of 6 could reproduce the initial and 
successive contours of plastic work in the principal stress space (Figure 5). 

- The experimental results were in good agreement with the prediction by the NKH 
model under the uniaxial tension–compression reverse loading (Figure 6(a) and 
Figure 8(a)). 

- Reverse loading tests (axial compression followed by biaxial tension) were 
performed using the multiaxial tube expansion testing method. The observed strain 
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increments were in qualitative agreement with those predicted using the NKH model. 
However, the flow stresses were not well reproduced by the NKH model (Figure 8). 

- In order to improve the predictive accuracy of the FEA for cold working processes on 
steel tubes, it is necessary to perform material testing for not only limited stress states,
such as proportional loading and reverse loading under uniaxial stress states, but also 
for more complex stress states using the multiaxial tube expansion testing method.
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Figure 8: The experimental result compared with the calculated under the biaxial reverse loading state.
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