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Abstract—In this paper, we investigate how to minimize the
distortion in the reconstruction of correlated sources. We consider
a communication scenario where a sensor node is capable of
harvesting energy from the environment and where the Fusion
Center (FC), in order to exploit correlation, uses past obser-
vations as side information for decoding. We provide a convex
formulation of the problem and derive the optimal transmission
policies (i.e., power and rate allocation). We also propose an
iterative procedure based on the subgradient method by means
of which a solution can be iteratively found. Interestingly, each
iteration entails the interaction (coupling) of a directional water-
filling and a reverse water-filling schemes. Numerical results are
provided in order to illustrate the impact of correlation in the
resulting transmission policies.

I. INTRODUCTION

Sensor nodes are usually powered by batteries which can
be costly, difficult or even impossible to replace (e.g., when
nodes are deployed in remote locations). In recent years,
energy harvesting has emerged as a technology capable of
overcoming (or, at least, alleviating) the limitations imposed by
non-rechargeable batteries. Specifically, nodes equipped with
an energy harvesting device are capable of scavenging e.g.,
solar, wind, thermal, kinetic energy from the environment [1]
and, by doing so, extend their operational lifetime.

Energy harvesting has received considerable attention by the
wireless communications and information theory communities.
For point-to-point scenarios, and under the assumption of
known energy and data arrivals (offline optimization), the
main focus has been on the derivation of optimal transmission
strategies at the sensor node. In [2], the authors study the
problem of minimizing the time by which all data packets are
transmitted to the destination. A number of authors go one
step beyond and investigate the impact of finite energy storage
capacity [3] or battery leakage [4]; generalize the analysis
to fading channels [5]; or explicitly take into consideration
the energy needed for data processing (in addition to data
transmission) [6].

A number of works [7], [8] address the problem of source
and channel coding with side information in Wireless Sensor
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Networks (WSNs) contexts. Other authors have also investi-
gated source-channel coding aspects in an energy harvesting
context. In [9], for instance, the case of a source generating
independent samples of a Gaussian distribution is analyzed.

In this paper, we consider a point-to-point communication
scenario where an energy harvesting sensor node collects and
encodes observations from a series of (temporally) correlated
underlying sources, and wirelessly transmits them to a remote
Fusion Center (FC). For simplicity, correlation is modeled
as a first order autoregressive process. In order to exploit
correlation, the FC uses past observations as side information
for decoding and adopts the well-known Wyner-Ziv approach
[10]. We derive the optimal transmission policy (i.e., power
and rate allocation) which minimizes the average distortion in
the reconstructed observations at the FC. We also propose a
procedure based on the subgradient method [11] to iteratively
solve the problem. We show that such scheme encompasses the
interaction of a directional [5] and reverse [12] water-filling
schemes.

The paper is organized as follows. In Section II we introduce
the system model and provide details on the encoding and
decoding processes with side information. In Section III, we
pose the problem in a convex optimization framework and
derive the optimal power and rate allocation policies in terms
of the solution to the dual problem. Next, we review the
subgradient method and propose an iterative scheme based
on it to solve the problem of interest (Section IV). Some
numerical results are then presented in Section V. The paper
closes by summarizing the main conclusions in Section VI.

II. SYSTEM MODEL

Consider the point-to-point communication scenario of Fig.
1, where time is slotted with M time slots. An energy har-
vesting sensor measures a time-varying physical phenomenon
modeled by multiple correlated and memoryless sources,
where each source models the phenomenon in a given time
slot1. In each time slot, the sensor node (i) collects a large
number of independent and identically distributed (i.i.d.) sam-
ples from the corresponding source; (ii) subsequently encodes
the sequence of measurements and (iii) wirelessly conveys

1This model could apply to image observations, such as in a Wireless Video
Sensor Network (WVSN) or spectrum sensing in a cognitive radio node.
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Fig. 1. System Model.

them to a remote fusion center; where we model the sensor-
to-FC channel as a Gaussian channel. Therefore, the channel
rate in the i-th time slot must satisfy2

R
(c)
i ≤ log

(
1 + |hi|2pi

)
, (1)

with |hi|2 and pi standing for the corresponding channel
gain and average transmit power, respectively. The underlying
energy harvesting process can be modeled as a counting
process with energy arrivals of Ei Joules at the beginning of
time slot i. For simplicity, we assume that energy is stored in
a rechargeable battery of infinite capacity. Hence, considering
transmit power as the only energy cost, any transmission
(power allocation) policy {pi} designed for the sensor node
must satisfy the following energy causality constraint

Ts

i∑
j=1

pj ≤
i∑

j=1

Ej , i = 1, . . . ,M, (2)

where Ts denotes the duration of the time slot which, in the
sequel, we will normalize (i.e., Ts = 1).

As discussed earlier, the physical phenomena is modeled
by a series of temporally correlated sources. During the i-
th time slot, the sensor node collects a sequence of n i.i.d.
samples from the corresponding source, which we will denote
by {xki }nk=1. Furthermore, these samples are correlated over
time slots, and modeled as a first-order autoregressive process.
Therefore a given sample of the i-th source is modeled by

xki =
√
ρxki−1 + wki ,

k = 1, . . . , n,

i = 1, . . . ,M,
(3)

with ρ = E
[
xki x

k
i−1
]

denoting the correlation coefficient; and
wki standing for an i.i.d. zero-mean Gaussian random variable
with variance σ2

w.
Our goal is to reconstruct at the FC the sequence of mea-

surements {xki }nk=1 in each time slot. Due to the continuous-
valued nature of the sources and the capacity constraint
(1) of the point-to-point channel, the reconstructed source
measurements {x̂ki }nk=1 will be unavoidably subject to some
distortion. Such distortion will be characterized by the Mean

2Here, we assume that the duration of each time slot is such that Shannon’s
law holds.

Squared Error (MSE) metric, that is

Di =
1

n

n∑
k=1

(
xki − x̂ki

)2
. (4)

A. Source Coding and Distortion

As for the encoding process at the sensor node, we assume
separability of source-channel coding. The source sequence is
then encoded into a length-n codeword (with a sufficiently
large n) given by {uki }nk=1 , and which we model as [8]

ui = xi + zi, i = 1, . . . ,M, (5)

where for ease of notation we have omitted the sample index
and where zi denotes i.i.d. zero-mean Gaussian random noise
of variance σ2

zi which plays the role of encoding noise.
Assuming that, in order to decode the received data, the FC
exploits the available side information (i.e., all the preceding
ui), the average rate per sample Ri at the output of the encoder
at the i-th time slot must satisfy [12]

Ri ≥ I(xi;ui|u1, . . . , ui−1), (6)

where I(·; ·|·) stands for the conditional mutual information.
From (5), this last expression can be rewritten as follows

I(xi;ui|u1, . . . , ui−1) =H (ui|u1, . . . , ui−1)−
H (ui|u1, . . . , ui−1, xi)

= log

(
1 +

σ2
xi|u1,...,ui−1

σ2
zi

)
, (7)

with H(·|·) standing for the conditional entropy and
σ2
xi|u1,...,ui−1

for the conditional variance of the i-th obser-
vation given all the previous data available at the FC. Hence,
from (6), the variance of the encoding noise is lower bounded
by

σ2
zi =

σ2
xi|u1,...,ui−1

eRi − 1
. (8)

For a reliable transmission to occur, the source coding rate of
(6) must satisfy the channel capacity constraint of (1)3, that is

Ri = R
(c)
i ≤ log

(
1 + |hi|2pi

)
. (9)

Finally, at each time slot, the FC produces the optimal Min-
imum Mean Squared Error (MMSE) estimate given the past
encoded observations, namely

x̂i = E [xi|u1, . . . , ui] , i = 1, . . . ,M. (10)

Bearing this in mind, the distortion in the reconstruction of xi
in the i-th time slot reads:

Di = σ2
xi|u1,...,ui

, (11)

which, after some algebra, can be expressed as

3For simplicity, we have assumed that the number of samples per time slot
equals the number of channel uses per time slot.



Di = σ2
x

(
(1− ρ)

i∑
j=2

ρi−je

−

i∑
k=j

Rk

+ ρi−1e

−

i∑
k=1

Rk)
.

(12)

III. MINIMIZATION OF THE AVERAGE DISTORTION

In this section, we attempt to find the optimal power and rate
allocation that minimizes the average distortion subject to the
energy causality constraint of (2) and the capacity constraint
of (1). Accordingly, the optimization problem can be posed
as:

min
{pi},
{Ri}

σ2
x

M

M∑
i=1

(
(1− ρ)

i∑
j=2

ρi−je

−

i∑
k=j

Rk

+ ρi−1e

−

i∑
k=1

Rk)
(13a)

s.t. Ri ≤ log
(
1 + |hi|2pi

)
, i = 1, . . . ,M, (13b)

i∑
j=1

pj ≤
i∑

j=1

Ej , i = 1, . . . ,M, (13c)

− pi ≤ 0, i = 1, . . . ,M, (13d)
−Ri ≤ 0, i = 1, . . . ,M. (13e)

Due to the coupling (over time slots) of the rates in the
exponential terms, this optimization problem cannot be solved
analytically. To circumvent this, we define the cumulative rates
as rij ,

∑i
k=j Rk, for i = 1, . . . ,M and j = 1, . . . , i. By

doing so, the optimization problem can be rewritten as follows:

min
{pi},{Ri},
{rij}

σ2
x

M

M∑
i=1

(
(1− ρ)

i∑
j=2

ρi−je−rij + ρi−1e−ri1
)
(14a)

s.t. rij =

i∑
k=j

Rk i = 1, . . . ,M, j = 1, . . . , i (14b)

Ri ≤ log
(
1 + |hi|2pi

)
, i = 1, . . . ,M, (14c)

i∑
j=1

pj ≤
i∑

j=1

Ej , i = 1, . . . ,M, (14d)

− pi ≤ 0, i = 1, . . . ,M, (14e)
−Ri ≤ 0, i = 1, . . . ,M, (14f)

where now the optimization is with respect to variables {pi},
{Ri} and {rij}. Since the objective function (14a) is convex
and the constraints (14b)-(14f) define a convex feasible set, the
optimization problem (14) is convex and, thus, has a global
solution [13]. By satisfying the Karush-Kuhn-Tucker (KKT)
conditions, we identify the necessary and sufficient conditions
for optimality. The Lagrangian of (14) reads

L =
σ2
x

M

M∑
i=1

(1− ρ)
i∑

j=2

ρi−je−rij + ρi−1e−ri1


+

M∑
i=1

i∑
j=1

λij

rij − i∑
k=j

Rk


+

M∑
i=1

µi
(
Ri − log

(
1 + |hi|2pi

))
+

M∑
i=1

βi

 i∑
j=1

pj −
i∑

j=1

Ej


−

M∑
i=1

ηipi −
M∑
i=1

δiRi, (15)

where {µi} ≥ 0, {βi} ≥ 0, {ηi} ≥ 0, {δi} ≥ 0 and
{λij} stand for the corresponding Lagrange multipliers. The
additional complementary slackness conditions are given by

µi
(
Ri − log

(
1 + |hi|2pi

))
= 0, ∀i, (16)

βi

 i∑
j=1

pj −
i∑

j=1

Ej

 = 0, ∀i, (17)

ηipi = 0, ∀i, (18)
δiRi = 0, ∀i. (19)

Finally, by taking the derivative of the Lagrangian with respect
to pi, Ri, rij and letting them be equal to zero we obtain the
set of optimality conditions, namely,

∂L
∂pi

= − µi|hi|2

1 + |hi|2pi
+

M∑
j=i

βj − ηi = 0, (20)

∂L
∂Ri

= −
M∑
k=i

i∑
j=1

λkj + µi − δi = 0, (21)

∂L
∂rij

=

{
− 1
M σ2

xρ
i−je−rij + λij = 0, if j = 1,

− 1
M σ2

x (1− ρ) ρi−je−rij + λij = 0, if j 6= 1.
(22)

A. Optimal Power Allocation

From (20), (21), (18) and (19), the optimal power allocation
follows,

p?i =


M∑
k=i

i∑
j=1

λkj

M∑
j=i

βj

− 1

|hi|2


+

, i = 1, . . . ,M, (23)

where [·]+ = max[·, 0]. It is worth nothing that, unlike in
classical waterfilling, the solution here exhibits multiple water
levels (i.e., for the i-th time slot, the waterlevel is given by
νi =

∑M
k=i

∑i
j=1 λkj∑M

j=i βj
). This is due to the fact that energy



becomes available only when it is harvested. Moreover, as in
[5], it turns out to be a directional waterfilling solution in that
water (energy) can only flow forward (since energy cannot be
consumed before it has been harvested). This results into the
inclusion of the βj multipliers, the ones associated with the
causality constraints, in the denominator of the first term of
equation (23).

B. Optimal Rate Allocation

Next, by solving (22) for rij , and noting that rij is neces-
sarily positive due to constraints (14b) and (14f), the optimal
cumulative rate allocation can be written as

r?ij =


[
log

( 1
M σ2

xρ
i−j

λij

)]+
, if j = 1,[

log

( 1
M σ2

x (1− ρ) ρi−j

λij

)]+
, if j 6= 1.

(24)

We can observe that {λij} > 0, and therefore from (21),
{µi} > 0. This implies that the constraint (14c) is satisfied
with equality. Moreover, expression (24) can be readily inter-
preted in terms of the classical reverse water-filling solution
for the reconstruction of parallel Gaussian sources [12, Chapter
10]. To see that, we define

γij =

{
1
M σ2

xρ
i−j , if j = 1,

1
M σ2

x (1− ρ) ρi−j , if j 6= 1,
(25)

and

Dij =

{
λij , if λij < γij ,

γij , if λij ≥ γij .
(26)

Bearing all the above in mind, equation (24) can be rewritten
as

r?ij = log

(
γij
Dij

)
. (27)

Clearly, this last expression mimics that of the classical reverse
waterfilling of [12, Theorem 10.3.3]. However, the allocated
rates r?ij here are cumulative rather than individual; and the
reverse water level given by λij is not constant (since, again,
it depends on energy harvested up to time slot i). Besides,
the numerator in the argument of (27) does not only depend
on the variance of the sources σ2

x but also on the correlation
coefficient ρ, as (25) illustrates.

Finally, by replacing (27) in (12), the optimal distortion in
the i-th time slot reads

D?
i =

i∑
j=1

Dij , (28)

that is, it can be computed as the sum of the distortions
associated to the corresponding cumulative rates.

IV. OPTIMIZATION ALGORITHM

The expressions derived in the previous section reveal
that the optimal power allocation (23) and the optimal rate
allocation (24) can be expressed in terms of the Lagrange
multipliers λij . Moreover, one can easily prove that problem

(14) satisfies Slater’s condition and, hence, strong duality holds
[13]. Since in these conditions the duality gap is zero, we
propose to solve the corresponding dual problem in order to
determine the exact solution (power and rates) to the original
one in which we are interested. Specifically, we will resort to
the subgradient method [11], an iterative scheme which we
will adapt to the problem at hand. This is further explained in
the following subsections.

A. Solving the Dual Problem with the Subgradient Method

Our constrained optimization problem (14), which in the
sequel we will refer to as the primal problem, can be cast into
the following general form4:

minimize f0 (x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

x ∈ X
(29)

where f0 : Rn 7→ R and fi : Rn 7→ R are convex functions,
and X is a convex closed subset of Rn. The Lagrangian of
this problem can be expressed as

L (x,λ) = f0 (x) +

m∑
i=1

λifi (x) . (30)

From here we can derive the dual function as

g (λ) = inf
x∈X
L (x,λ) = f0 (x

? (λ)) +

m∑
i=1

λifi (x
? (λ)) ,

(31)
where λ ∈ Rm corresponds to the vector collecting all the
Lagrangian multipliers. Then, the corresponding dual problem
can be expressed as

maximize g (λ)

subject to λ � 0

λ ∈ Rm.
(32)

Where � corresponds to the element-wise inequality. In order
to solve the dual problem, we use the subgradient method
which allows to update the current solution as follows

λ
(k+1)
i =

[
λ
(k)
i + αfi(x

(k))
]+
, i = 1, . . . ,m, (33)

where α is the step size, and fi
(
x(k)

)
turns out to be the

subgradient of g at λ(k)i , with

x(k) = argmin
x∈X

(
f0 (x) +

m∑
i=1

λ
(k)
i fi (x)

)
. (34)

The convergence of the subgradient method is guaranteed
under some mild conditions (e.g., for the case of a constant
step size, the algorithm is guaranteed to converge to the
optimal value, given a sufficiently small step size). As stated
earlier, the resulting solution to the dual problem λ? allows
to obtain the optimal solution to the primal problem x? (i.e.,
power and rate allocation, in our case).

4Here, we consider the general case with only inequality constraints.



Algorithm 1 Procedure for the computation of the optimal
power and rate allocations

1: t . Iteration index
2: Set α . Step size
3: Set stopping criteria
4: Initialize λ(t)ij ∀i, j
5: repeat
6: for all i do . Directional Water-Filling (23)

7: p
(t+1)
i ←


M∑
k=i

i∑
j=1

λ
(t)
kj

M∑
j=i

βj

− 1

|hi|2


+

8: end for
9: for all i, j do

10: if j = 1 then . Cumulative rate allocation (24)

11: r
(t+1)
ij ←

[
log

(
1
M σ2

xρ
i−j

λ
(t)
ij

)]+
12: else

13: r
(t+1)
ij ←

[
log

(
1
M σ2

x (1− ρ) ρi−j

λ
(t)
ij

)]+
14: end if

. Update Lagrangian multiplier (33)

15: λ
(t+1)
ij ←

[
λ
(t)
ij +

16: α

(
r
(t+1)
ij −

i∑
k=j

log
(
1 + |hk|2p(t+1)

k

))]+
17: end for
18: until stopping criteria is met

B. Optimization Procedure

Algorithm 1 is a particularization of the subgradient method
to problem (14). We start by initializing the Lagrange multi-
pliers of the cumulative rates (which act as our dual variables)
to an arbitrary yet positive value. Then, the iterative process
begins. At iteration t, for the given value of the multipliers λij ,
we compute in Step 7 the corresponding power allocation by
following the directional water-filling algorithm of [5]. Then,
the cumulative rate allocation is computed in Steps 10-14 and
the value of the multipliers is updated through the subgradient
method in Step 15. The procedure is repeated until the selected
stopping criteria is met.

V. NUMERICAL RESULTS

In this section, we assess the performance of the proposed
optimal power and rate allocation scheme. We are particularly
interested in analyzing the impact of the correlation coefficient
ρ in the resulting transmission policy. For this reason, in all
numerical results we have set the channel gains to a (constant)
unit value. The simulation setup considers a system with
M = 10 time slots and, without loss of generality, an energy
harvesting profile with energy arrivals given by E1 = 0.2,
E3 = 0.6, E6 = 0.8 and E7 = 1.4.
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Fig. 2. Optimal power allocation for a varying correlation coefficient ρ.

Figure 2 reveals that, for uncorrelated sources (i.e., ρ = 0),
the solution corresponds to the well-known geometrical so-
lution of [2] and [14]. This corresponds with the tightest
string below the cumulative energy harvesting (cEH) curve
connecting the origin and the total harvested energy by the
end of time slot M . However, as correlation increases, the
harvested energy tends to be spent (i.e., allocated as transmit
power) sooner. As a result, in Fig. 2 the slope of the energy
consumption (EC) curves right after new energy arrivals (e.g.,
in the beginning of time slot 3) increases with ρ. This indicates
that, in order to minimize the average distortion, one should
encode the observations as accurately as possible when some
new energy is made available. This stems from the fact that
past observations are used here as side information at the
receiver (see (10)). Intuitively, the earlier an observation is
accurately encoded, the more estimates (in subsequent time
slots) can benefit from such an increased accuracy. This holds
true even at the expense of a reduced or zero (as in time slot 3,
for ρ = 1) transmit power being allocated to some subsequent
time slots in which case transmission is suspended. All the
above is in stark contrast with the uncorrelated case of [2]
where the transmit power is (i) strictly positive for all time
slots and (ii) a monotonically increasing function.

Figure 3 depicts the reconstruction distortion in each time
slot resulting from the optimal policy. Unsurprisingly, the
higher the correlation, the more predictable the sources are
and, hence, the lower the distortion (curves are shifted down-
wards). For correlated sources, however, distortion does not
monotonically decrease with the time slot index. As discussed
in the previous paragraph, this follows from the anticipated
consumption of the harvested energy for the encoding of
previous observations (yet, in the end, the average distortion
will be lower).

Finally, in Figure 4, we illustrate the convergence of the
proposed algorithm. Specifically, we depict the residual error
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Fig. 3. Distortion per time slot for a varying correlation coefficient ρ.
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Fig. 4. Convergence error of the proposed algorithm (α = 0.01).

in the attained distortion, namely

ε =

∣∣Dopt −D(t)
∣∣

Dopt
. (35)

As expected, the algorithm converges in all cases. However,
convergence (in relative terms) is faster when correlation is
high. This is due to the fact that, for high ρ, the update of the
cumulative rate allocation (Step 10 in Algorithm 1) is slower,
and so is convergence.

VI. CONCLUSIONS

In this paper, we have investigated the impact of correlated
sources in the design of optimal transmission policies. The
goal was to minimize the average distortion in the decoded
(reconstructed) observations when side information is used
at the FC for decoding data. We have also proposed an
iterative procedure based on the subgradient method to solve
the problem which entails the interaction of a directional and

reverse water-filling schemes in each iterations. Numerical
results revealed that, differently from the uncorrelated case
(without side information), minimizing the average distortion
implies encoding observations as accurately as possible when
some new energy is made available. This holds true even if
the transmit power allocated to some subsequent time slots
is lower or, eventually, zero (and, thus, distortion in such
time slots in particular is potentially higher). The iterative
scheme converges to the optimal solution with convergence
time depending on the degree of correlation.
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