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Abstract. Extract, Transform and Load (ETL) processes are widely used in
Data Warehousing in order to extract, cleanse and load data into a central-
ized location for better analysis and decision-making. As users become more
demanding for on-line decision making, ETL processes grow large and more
complex. Most processes are deployed at the physical level without any ab-
straction, thus costs of maintenance and efforts for reuse are considerable.
Therefore, having logical and conceptual abstractions of ETL processes makes
such tasks substantially easier.
In this thesis, given a logical ETL representation, we provide an algorithm
that automatically translates logical ETL flows into their BPMN represen-
tation. To achieve this goal, we create a dictionary that defines simple and
composite ETL flow patterns and their corresponding BPMN elements. The
pattern dictionary follows a formalized grammar and can be further extended
with additional ETL flow patterns.
As a result, we can produce conceptual ETL flows in BPMN 2.0 format that
can be further edited by the business user. The patterns defined in the dic-
tionary help to move away from technical details and complexity of the ETL
flows and make the output model semantics more intuitive and understandable
for the business users, as shown during the approach validation.

Keywords: Data Warehouses, ETL, BPMN, Patterns, Reverse Engineering,
Process Mining, xLM, Conceptual Modeling

1 Introduction

ETL process represents a data flow in a Data Warehousing system that extracts,
transforms, cleans, and loads data in formats ready for further analysis and explo-
ration. This process is widely used in Business Intelligence projects, and is considered
as one of the most complex, error-prone, and time consuming tasks. The complexity
often comes from the lack of standardization of capabilities offered by different tools
in this field. Such tools have different underlying languages with various sets of fea-
tures and wizards which would make conceptually similar models look quite different
at the physical level [2].
Some recent approaches (i.e., [2], [12], [21]) that propose methodologies to include
conceptual modeling into the ETL design process assume that the model will be cre-
ated as part of the design process. However, most organizations already have a large
number of ETL processes designed and deployed without any logical or conceptual
abstraction. Hence, being able to understand, maintain and reuse existing processes
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Fig. 1. Merge Join: from Physical to Conceptual

requires a cumbersome task of discovering the underlying logic of the process and
what each component is responsible for. There is an obvious need for raising the level
of abstraction of existing models to the conceptual level, where business users can
have an overview of the main logic of the flow, as well as the different ETL flow pat-
terns.
In the traditional database design, the three levels of data modeling (i.e., conceptual,
logical, and physical) have been proven as an effective method to ensure the qual-
ity, understandability, and reusability of the models despite the database provider.
Motivated by this idea, we think it is important to separate ETL design into these
three levels of abstraction as well. The notable difference, however, lays in the order
of model creation during the modeling phase. In database design, the process starts
with conceptual, going to logical, and ending in physical level, whereas our goal is
to go backwards (physical - logical - conceptual) following the principles of reverse
engineering.
An approach by Wilkinson et al. [21] introduces the first step of the reverse engineer-
ing chain, by providing an XML-based logical representation of ETL (i.e., xLM). Our
goal is to provide the complete reverse engineering process, ending with the conceptual
representation of ETL processes expressed in Business Process Model and Notation
(BPMN) 2.0.
Figure 1 shows a part of an ETL flow at the physical level and the two correspond-

ing mappings in BPMN. The first model is mapped directly, where each component
of the ETL flow is translated to BPMN notation. The second model shows a more
concise translation, where the mergeJoin is represented in the form of a subprocess.
Both BPMN models are syntactically correct, however, one might be preferred over
another based on the business user’s needs. In this particular case, for the high level
view of the process it is often enough to see that the two data inputs are joined,
without the implementation details (i.e., the necessity to sort inputs before they are
merged).
Even though it is clear that the understandability of the process is much higher when
presented as a conceptual or logical model, the difficulty of raising the abstraction
level is not always evident. A conceptual formalization is richer and thus, mapping
components one-to-one is not always possible or beneficial to increase the under-
standability of the ETL flow, as demonstrated in Figure 1. There is a need to extract
semantics from the physical implementation in order to express concepts that are not
necessarily explicit, but are important for the conceptualization of the process.
In order to achieve the goal of conceptualizing ETL processes and making them more
understandable and reusable, we start from the logical representation of an ETL pre-
sented in [21], and produce a BPMN 2.0 XML as an output conceptual model of the
given ETL process. The output file can be then visualized and edited using any graph-
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ical BPMN editor that supports BPMN 2.0 specification1. Beside simply translating
ETL activities into BPMN elements, we also define and discover ETL flow patterns
that can be more familiar to business users and help them in understanding the se-
mantics of the given ETL process.

Contributions.

– To enable translation between logical ETL and BPMN, we identified the mappings
between their elements.

– To facilitate an automatic translation mechanism, we defined a dictionary that
follows a formal grammar and can be further extended with new ETL flow patterns
and BPMN mappings.

– In terms of the provided dictionary, we defined an extensible list of ETL flow
patterns to enhance the understandability of the ETL flow semantics at the con-
ceptual level.

– We introduced a novel algorithm that automatically translates logical ETL process
designs into conceptual BPMN models.

The paper is organized as follows. In Section 2, we provide a review of related work
in ETL design, reverse engineering and process mining fields. Section 3 presents the
conceptual idea of our approach and describes the logical representation of ETL that
we use (i.e., xLM). Formal definitions of the ETL flow graph, ETL flow patterns,
dictionary grammar and the algorithm are presented in Section 4. Section 5 demon-
strates an enhanced example of an ETL flow and its complete translation to BPMN.
Section 6 describes our output validation process and its results. We summarize our
achievements and present ideas for future work in Section 7. Finally, the Appendix
contains a full list of ETL flow patterns currently defined in the dictionary (i.e., Sec-
tion A) along with details of empirical studies conducted to validate the approach
(i.e., Section B).

2 Related Work

Numerous approaches have already studied the importance of adding a conceptual
level into ETL design in the last few years. Some tried to achieve this goal with the
use of ontology mapping [17], while others exploited UML models [11], and BPMN
notation ([2], [5], [12]). Using a language that already entails some semantics and does
not require to define a supplementary ontology, such as UML or BPMN, is preferable.

2.1 ETL in BPMN

BPMN is the most cited and used in practice OMG’s Business Process Model stan-
dard that covers a large amount of the real world concepts and is already incorpo-
rated into many organizations as a de-facto process modeling language [16]. Moreover,
BPMN 2.0 includes a meta-model that represents the language’s constructs and their
relationships in XML format. BPMN 2.0 XML serialization allows for model inter-
changeability within BPM tools from different vendors [13].
Akkakoui and Zimany argue the benefits of using BPMN notation to conceptualize

1 http://www.omg.org/spec/BPMN/2.0/
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ETL processes and automate the translation of BPMN into an executable represen-
tation, such as BPEL (i.e., a standard executable language for specifying interactions
with web services) in [5]. Later, in 2013, they present a meta-model framework that
supports the development of ETL systems using BPMN and generates code specific
to several ETL commercial tools [2]. Oliveira and Belo use BPMN to provide a set
of meta-models, also referred to as patterns, that enhance testing and validation of
standard ETL processes before the construction of the final data warehousing system.
The ideas presented by these authors are value-adding for ETL design and mainte-
nance, however, they are meant to guide the design or enhancement of existing BPMN
models for ETL processes. Our approach, on the other hand, produces a BPMN model
as a result of ETL flow translation from its logical to conceptual form. We aim at
enhancing the understandability and reusability of already deployed ETL processes
and not the design of new systems.
Wilkinson et al. propose BPMN as an ETL conceptual model in [21] and show how
to translate it to a logical ETL representation, xLM (i.e., the reverse of what we are
trying to achieve). This approach claims that the translation of BPMN (in XPDL2

serialization format) to xLM is straightforward. However, the reverse mapping ap-
pears to be more complex. In order to extract proper semantics from xLM, reverse
engineering and process mining knowledge is used in our approach.

2.2 Reverse Engineering

The traditional area of reverse engineering that is most applicable to our needs is
software reverse engineering (SRE), where design patterns and cliché discovery are
often used to extract software design or architecture from the source code. In SRE,
when dealing with legacy systems, it is often helpful to abstract and recover the de-
sign from the source code, existing documents, developers’ knowledge and application
domain knowledge [3].
Linda Wills was one of the first who claimed that cliché matching is an effective
method for architecture recovery [22]. Wills developed the GRASPR environment
that used flow graph parsing and a cliché grammar to identify clichés and the rela-
tionships between them. Sartipi proposed an Architecture Query Language (AQL) to
enable users to create architectural patterns and later match them against the source
code represented as an attributed relational graph [14]. Others applied a similarity
scoring approach to depict design patterns in a class diagram [19]. A semantic clus-
tering approach based on Latent Semantic Indexing (LSI) was also proposed by [8] in
order to compute linguistic similarity between source artifacts.
While these approaches prove their effectiveness in the field of SRE, they all require
the source code as an input and produce design trees or distribution maps that depict
identified patterns. Our approach uses a different input, xLM, that is more suitable
to represent the nature of data flows (e.g., flow resources, properties, data elements,
etc.) and to produce an output model in any format that can depict control flow, such
as a sequence diagram. In this work, ETL is not viewed as a software program, but
as an encapsulation of code, hence the problem is noticeably different from standard
SRE.

2 XPDL is a standard offered by the Workflow Management Coalition (WfMC) as a format
to interchange business process definitions between different workflow products. XPDL
used to be a de-facto standard for model interchange until January 2011 when BPMN 2.0
introduced its own serialization standard.
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2.3 Process Mining

Another area that leverages reverse engineering in order to discover business pro-
cesses is process mining. More precisely, process mining is used to discover, improve
and monitor processes based on the knowledge extracted from event logs and pro-
duces a process model as result of the discovery [1].
The majority of existing process mining techniques are based on Business Process
Management (BPM) languages that have proper formal semantics and can be verified
in a formal way, such as Petri nets. The industry, however, is using notations that
are more suitable for representing real world situations, but lack proper semantics
and can be often interpreted in different ways [10]. Authors claim, since BPMN is
becoming a de-facto standard for BPM, it is essential to be able to produce BPMN
models as a result of process mining techniques.
As Kalenkova et al. suggest in [7], instead of replacing or improving existing tech-
niques, it might be easier to simply translate a given formal definition such as Petri
net into an industry-popular language, BPMN.
A bulk of existing techniques produce flat models when translating from Petri nets
to BPMN, discovering only activities, connecting arcs and gateways, similar to the
direct translation in Figure 1. However, obtaining a more abstract or semantically
rich BPMN representation (i.e., the subprocess in Figure 1) is less straightforward.
A two-phase discovery method to recover subprocesses is proposed in [9] where pat-
tern detection techniques are applied on the event log in order to uncover loops (i.e.,
tandem arrays) and maximal common subsequences of activities in a process instance
(i.e., maximal repeats). The idea is that these footprints correspond to the presence
of a subprocess in the event log.
Based on the two-phase method, Conforti et al. are able to recognize subprocesses,
interrupting boundary events, and multi-instance activities by analyzing dependen-
cies between event attributes [4]. This technique is applied to split the log into parent
and subprocess logs and uses existing discovery techniques for each log to produce
flat models. Another state-of-the-art approach is presented by [7] who developed the
plug-ins for ProM3 that claim to depict different types of data objects, swimlanes,
subprocesses and events.
Process mining techniques that transform Petri nets into BPMN also require the use

of patterns in order to identify BPMN constructs within a Petri net because BPMN is

3 ProM is a widely used open-source extensible framework that supports a variety of process
mining techniques in the form of plug-ins.

Table 1. Comparison with State of the Art in Process Mining

BPMN Element Kalenkova Conforti Samota

Activity X X X

Connecting Arc X X X

Gateway X X X

Data Objects X - X

Swimlane X - -

Subprocess - X X

Events -
Timer interrupting

Interrupting
-

Markers -
Loop

Multi-instance
Compensation
Multi-instance
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more expressive and abstract, similar to the transformation between the logical ETL
flow and BPMN.
In Table 1, we provide a comparison between the achievements of [7] and [4] when
producing BPMN models from Petri nets with our approach of translating logical
ETL flows to BPMN.
While most process mining techniques benefit from execution traces, our approach is
based on a different input, a data flow graph, hence identifying control-flow and exe-
cution related behavior is not always easy or even possible. However, the logical ETL
representation contains the information such as operation type, implementation type,
input and output schemata, node parameters, properties and features. This knowl-
edge allows us to go beyond what is currently possible in Process Mining.
We are able to discover ETL flow patterns and create BPMN structures that are typ-
ical for ETL flows and much more intuitive to the business users (i.e., checkpointing,
compensations actions, or flow replication).

3 Proposed Solution

In this section, we describe the prototype architecture and provide additional knowl-
edge about the logical representation that is used to obtain a conceptual view of an
ETL flow. Figure 2 depicts the architecture of the proposed solution.
The physical level is represented by an ETL flow that can be edited by a technical
user. The Logical Model Extraction module produces a logical representation of the
ETL flow in an XML-based language (i.e., xML). The conceptual level of Figure 2
depicts the contribution of this paper: Flow Pattern Discovery and Conceptual Model
Creation modules, which translate the input ETL flow into the BPMN format. Flow
Pattern Discovery module first uses the dictionary to check if the defined ETL flow
patterns are present in the ETL flow and then obtains their corresponding BPMN
mappings. The Conceptual Model Creation module, in turn, is responsible for filling
in and creating all of the necessary attribute values for the obtained BPMN elements
and constructing a valid BPMN 2.0 XML file.
The logical representation model that we use as an input, xLM, is an XML-based

flow metadata language with two important structural components, nodes and edges.
Design is the main component that describes the flow as a graph with its nodes as
operations or data stores, and edges as data flows between the nodes [6].

Fig. 2. Proposed Architecture
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<node>
<name>Supplier </name>
<type>Datastore </type>
<optype >TableInput </optype >
<implementation/>
<implementationType/>
<engine >SQL</engine >
<flowID >2</flowID >
<schemata/>
<ndproperties/>
<ndresources/>
<ndfeatures/>

</node>

<node>
<name>Sort on s_nationkey </name>
<type>Operator </type>
<optype >Sort</optype >
<implementation/>
<implementationType/>
<engine >SQL</engine >
<flowID >2</flowID >
<schemata/>
<ndproperties/>
<ndresources/>
<ndfeatures/>

</node>

<edge>
<from>Supplier </from>
<to>Sort on s_nationkey </to>
<enabled >Y</enabled >

</edge>

Code Snippet 1.1. xLM Nodes and Edges

Every node specifies a unique name, carries information about whether it represents
a data store or an operation (i.e., type), and describes its functionality through a list
of parameters:

– operation type such as Sort, Join, or Filter for operations, and TableInput or
TableOutput among others for the data stores.

– implementation type for each operation; for instance, a Join operator can be im-
plemented as a merge or a hash.

– engine type, alternatively for each node specifies the engine where the operation
of that node is executed, e.g., SQL, Pentaho Data Integration (PDI).

– schemata describes the input and output schema as well as parameters that con-
tain the semantics of each operation (i.e., sorting, filtering or join conditions).

We omit other node parameters that are not used in the paper for simplicity.
Code Snippet 1.1 shows the xLM representation of an operator, a data store, and
an edge between the two given nodes. Code Snippet 1.2 depicts a closer look at the
parameters schema of the Sort operation, where the operation semantics are specified
(i.e., the input file is sorted in ascending order). Note, that these nodes are part of
the initial ETL to BPMN example in Figure 1.

<schemata >
<parameter >

<param>
<pengine >SQL</pengine >
<ptype>order_attr </ptype>
<expr>

<leftfun ></leftfun >
<leftop ></leftop >
<oper></oper>
<rightfun >$$ $1 ASC</rightfun >
<rightop >Input_1.s_nationkey </rightop >

</expr>
</param >

</parameter >
</schemata >

Code Snippet 1.2. Example of Sort Node Parameters
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Table 2. Direct xLM Operation Mappings to BPMN

ETL Transformation Type [20] xLM Operation Type BPMN Element

Unary Row Level (1:1)
AttributeAddition, Rename,
Filter, Project, WSLookup,

UserDefinedFunction Task
Unary Grouper (N:1) Grouper, Distinct
Unary Holistic (N:M) Sort, TopK

N-ary
Union Parallel Gateway (AND-Join)

Join, LeftOuterJoin, Merger
Parallel Gateway, Sequence flow,

Task
Voter Event Based Gateway

Routers & Filters
Router Complex Gateway, Edge Conditions
Splitter Parallel Gateway (AND-Split)

In order to achieve the translation from logical to conceptual models, we first tried
to directly map xLM edges and nodes to BPMN elements, similar to the approach in
[4]. Edges are translated to BPMN sequence flows, nodes of type Datastore to data
stores, and a combination of node’s engine type and flowID defines the corresponding
unique pool in BPMN (e.g., both TableInput and Sort in Figure 1.1 are part of the
pool SQL 2). With regards to the nodes’ operation types, we discovered that not all
of the mappings are syntactic and some require multiple BPMN elements to represent
a single xLM node (e.g., Join).
Table 2 illustrates the single operation (i.e., simple) patterns that were considered in
this paper and their mappings to BPMN. We put these mappings in the context of
a well-known taxonomy of ETL transformations presented in [20] to try to classify
ETL activities being mapped to BPMN. However, we noticed that for some classes
of ETL activities defined in the taxonomy, we have several operations mapping to
different BPMN elements. This showed us that for determining the translation of
ETL activities into BPMN elements, we typically need additional information about
specific ETL operation semantics.
For example, both Splitter and Router are classified under Routers & Filters in the
taxonomy, since from a single input schema they generate multiple outputs. However,
Splitter maps to a simple AND-Split, while Router maps to a complex gateway, where
the input flow is routed to different outputs based on a given condition.
Using only the simple ETL flow pattern mappings from Table 2, we can obtain a
BPMN model as a literal translation of an input ETL process, still burdened with
input flow complexity and technical terminology (e.g., see middle part of Figure 1).
Similarly to the way natural languages are translated, we can use literal translations,
but these are often not in the spirit of the destination language or notation and some-
times cannot be understood or appreciated as such. Thus, when translating from one
language to another, additional techniques are used to give the translation a flavor of
the destination language.
In ETL flow translation, we use the pattern matching techniques as suggested by the
research in SRE to enrich the BPMN model with the semantics available in the log-
ical representation. The literal translations usually only use BPMN tasks, gateways
and sequence flows. However, we also want to detect parts of ETL flows that can be
nicely represented with other BPMN elements (i.e., events, subprocesses, markers) to
improve the understandability of a model by business users.
We use the pattern dictionary that enables us to define and translate ETL flow pat-
terns. We generalize the pattern dictionary to capture both, the simple patterns (i.e.,
direct mappings of ETL operations) such as a Router, and the composite patterns
that typically contain subflows of ETL operations (e.g., recoveryPoint pattern could
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contain a Router and a FileOutput). The dictionary follows a formal grammar that
is defined in Section 4.2 and can be extended to support new patterns and mappings.
Composite ETL flow patterns are designed to group together ETL flow operations
based on their semantics and relation within the flow. Currently, our approach con-
siders the following composite ETL flow patterns:

– mergeJoin - a user defined pattern that depicts a merge-Join between two sorted
data inputs in an ETL flow;

– recoveryPoint - a user defined pattern that identifies check-pointing in an ETL
flow;

– compensation - a user defined pattern that depicts compensation action operations
in an ETL flow;

– replication - a user defined pattern that identifies replicated flows in an ETL flow;
– externalDataValidationWS - a user defined pattern that identifies data quality

actions in an ETL flow data input (e.g., cross-checking names or titles, filling in
missing information, etc.) via a web service call.

4 Formalization

In this section, we first define the ETL flow graph and the ETL flow pattern. Then,
we formalize the pattern dictionary and introduce its parsing details. Finally, we
present an algorithm that discovers ETL flow patterns in the graph and translates
a logical ETL into its conceptual representation, while being aware of possible ETL
flow pattern nesting.

4.1 ETL Flow Graph and Pattern

The ETL flow graph is an acyclic parameterized digraph G(Ug) = (Vg(Ug), Eg),
where:

– Vg is a finite set of vertices;
– Ug is a finite set of properties of the vertices Vg;
– Eg ⊆ Vg × Vg, having (u, u’) denote an edge from node u to u’.

The ETL flow pattern graph is a user defined acyclic parameterized digraph Pn(Un) =
(Vn(Un), En), where Vn, Un and En are the set of vertices, the set of vertex properties,
and the set of directed edges, respectively, as defined for the ETL flow graph.

4.2 Dictionary Grammar

In Table 3, we define a grammar Gr to formalize the expressiveness of the dictionary
and allow others to extend it with new dictionary entries.
Each dictionary entry contains a unique name (i.e., Name), a description (i.e., Desc),
a pattern structure (i.e., P), an optional white (i.e., WL) and black (i.e., BL) list of
wild card operations that should be and cannot be contained in the pattern, respec-
tively and the corresponding BPMN elements (i.e., B).
The pattern structure (i.e., P) is defined by two elements, a linear sequence of steps

(i.e., Seq) and a set of flows running in parallel (i.e., parallelFlows)4. The pattern can

4 If a sequence appears before parallelFlows, it is a pattern that branches after a Splitter
or a Router (i.e., recoveryPoint, compensation, etc.). On the other hand, if parallelFlows
is the first element of the pattern, the flows start individually and independently of each
other (i.e., mergeJoin).
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Table 3. Dictionary Grammar

Gr = Name Desc P ?WL ?BL B, where
Name = p1| p2| p3|..., pi ∈ P;
Desc = s1| s2| s3|..., sk ∈ S;

P = (Seq| parallelFlows)+;

Seq = (optype oValue+| type tValue+|
implementationType iValue+| $whiteList |
$anyType $anyValue)+;
oValue = x1| x2| x3|..., xm ∈ X;
tValue = Datastore| Operator;
iValue = y1| y2| y3|..., yl ∈ M;

parallelFlows = P+;

WL = (optype oValue+| type tValue+|
implementationType iValue+)+;

BL = (optype oValue+| type tValue+|
implementationType iValue+)+;
B = (task tAttr| parallelGateway pAttr|
complexGateway cAttr| sequenceFlow sAttr|
eventBasedGateway eAttr|subProcess bAttr|
dataStoreRef dAttr)+;

tAttr = id ($graph|$create) name
($graph|$create);
pAttr = gatewayDirection
(Converging| Diverging)
id ($graph|$create) name ($graph|$create);
cAttr = gatewayDirection Unspecified
id ($graph|$create) name ($graph|$create);
eAttr = gatewayDirection Mixed
id ($graph|$create) name ($graph|$create);
sAttr = id $graph sourceRef $graph
targetRef $graph;
bAttr = id $create name $create
completionQuantity Q startQuantity Q
triggeredByEvent (true|false)
isForCompensation (true|false);
dAttr = id $graph name $graph
dataStoreRef ds Q;
Q = n1| n2| n3|..., nj ∈ N;

either start with a sequence or parallelFlows and repeat as many times as necessary.
Each sequence must have at least one step, which is defined as one characteristic type
(i.e., optype, type, implementationType, $anyValue, or $whiteList) and at least one
value (i.e., oValue, tValue, iValue, or $anyValue, respectively). When the character-
istic type is $whiteList the value is not required since it is assumed to be retrieved
from the pattern’s white list (i.e., WL), see Section 4.2 for dictionary parsing details.
Each parallelFlows element can have one or more flow branches, the structure of which
is equivalent to the one of the initial pattern (i.e., P). The white list (i.e., WL) and
the black list (i.e., BL) are used to represent wild card operations that should be and
cannot be present in the pattern structure, respectively, and have a structure similar
to the one of sequence (i.e., Seq).
In this grammar, the $ symbol is used to denote the keywords. Each keyword tells
the parser to perform some action:

– $whiteList specifies that the characteristic type and the value of the sequence step
are defined in the white list (i.e., WL);

– $anyType signifies that any characteristic type (i.e., optype, implementationType,
or type) could appear in the pattern sequence;

– $anyValue means that any value in the sequence step is accepted by the parser.

Example. In Code Snippet 1.3, pattern structure P consists of two main elements,
parallel flows (i.e., parallelFlows) and a sequence (i.e., Seq). The pattern defines one
branching flow that has to repeat at least twice (the ’repeat’ value can be either ’=1’
or ’>1’ and is syntactic sugar for identifying replicated flows). The flow contains a
two-step sequence that requires the first node to be of operation type (i.e., optype)
Sort (i.e., oValue = Sort) that can be followed by zero to many values from the white
list. The flow is then followed by a sequence that requires the next node to be of
operation type Join or LeftOuterJoin.
If the pattern structure is matched against the ETL flow graph, it is important to
know its corresponding BPMN elements. Therefore, each dictionary entry contains
one or more BPMN elements (i.e., B) that are used to build the output conceptual
model5. Each BPMN element has a tag name of its XML representation (e.g., sub-
Process, task, parallelGateway, etc.) and zero or more attributes. Each element type

5 In this grammar, we present only the BPMN elements and attributes currently used in
the dictionary. We omit the rest for simplicity and clarity of given examples.
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has a different set of possible attributes (i.e., bAttr contains subProcess attributes,
tAttr corresponds to attributes of task and pAttr to the ones of parallelGateway).
Each attribute has a unique name (i.e., id, name, gatewayDirection, etc.) and a value
(i.e., $graph, $create, true, false, etc.).

{"name":"mergeJoin",
"description": "A user defined pattern that depicts a merge

between two sorted data inputs in an ETL flow",
"pattern":[

{"parallelFlows":[
{"flow1":[

{"repeat": ">1",
"sequence":[

{"s1": {"name": "optype", "values":[{"value": "Sort"}]}},
{"s2": {"name": "$whiteList", "values":[]}}]}]}]},

{"sequence": [
{"s1": {"name":"optype","values":[{"value": "Join"},

{"value": "LeftOuterJoin"}]}}]}
],
"whiteList": [{"name": "optype", "values": [{"value": "Splitter"},

{"value":"Router"}]}],
"bpmnElement":[{"name":"subProcess",

"attributes":[{"name": "startQuantity", "value":"1"},
{"name":"id", "value":"$graph"},
{"name":"name", "value":"$create"},
{"name":"isForCompensation", "value":"false"},
{"name": "triggeredByEvent", "value":"false"},
{"name":"completionQuantity", "value":"1"}]}]

},

Code Snippet 1.3. Merge Join Pattern

Attribute values can be generalized into three main types:

– $graph - the value is coming from the xLM node or egde information contained
in the ETL flow graph;

– $create - the value has to be generated during parsing (e.g., randomly generated
id’s);

– default value that can be specified directly in the dictionary entry (e.g., a parallel
gateway (AND-Join) has a gatewayDirection attribute always set to ’Converg-
ing’).

Next, we define the necessary value sets for the grammar:

– a current set of extensible xLM operation types, X = {Router, Splitter, Union,
Merger, Voter, Filter, AttributeAddition, Rename, Project, TopK, Sort, UserDe-
finedFunction, Distinct, Grouper, Join, LeftOuterJoin, WSLookup};

– a current set of extensible pattern names (i.e., Name) is defined as P = {mergeJoin,
recoveryPoint, externalDataValidationWS, replication, compensation} ∪ X;

– an extensible sequence of strings in pattern description (i.e., Desc) is represented
by S, e.g., a simple mapping for any node with operation type Sort is a description
for the simple pattern Sort.

– a current set of extensible implementation types, M = {Merge, LeftOuterMerge};
– a set of all positive natural numbers is defined as N.

Dictionary Parsing After introducing the grammar and describing how to build
proper dictionary entries, we present some details about dictionary parsing. The gram-
mar defines two main parts for pattern structure (i.e., P) and BPMN elements corre-
sponding to a pattern (i.e., B), which are discussed separately in this section.
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Pattern Structure. When reading an xLM graph, we parse all dictionary entries
that a given node could potentially start. The pattern structure (i.e., P) is then used
to match each pattern entry to the ETL flow graph. The sequence steps are parsed
one by one, comparing if a given ETL node matches the condition defined in the dic-
tionary. The condition is matched based on the characteristic types, such as optype,
type, implementationType, $whiteList or $anyType.
Example. In the first step of the flow sequence in the mergeJoin dictionary entry
(see Code Snippet 1.3), the ETL flow graph will positively match any node with the
operation type of Sort (i.e., oValue = Sort).
Each sequence step is matched to exactly one node in the graph in case of opera-
tion type, type, and implementation type. However, when the characteristic type is
$whiteList or $anyType, zero or more nodes can be matched before finishing the pat-
tern or moving to the next step.

Parsing $whiteList. When parsing the dictionary, every time a $whiteList key-
word is encountered, we obtain the values stored in the pattern white list. We save
all sequentially matched nodes until we reach the node defined in the next step of the
sequence or the end of the pattern. For instance, in Code Snippet 1.3, we would stop
at a node with operation type of Join or LeftOuterJoin or if we didn’t encounter any
operations matching the white list conditions after the Sort.
Example. The keyword $whiteList is used in Code Snippet 1.3 to allow for more
flexibility of the pattern. The mergeJoin pattern, as we typically image, simply joins
two or more sorted inputs. However, it is possible that there might be other oper-
ations separating the Sort from a Join or a LeftOuterJoin operation. For instance,
see the third mergeJoin pattern (counting from left to right) in Figure 4. Obviously,
not having the $whiteList step in the dictionary entry would have prevented us from
identifying the mergeJoin pattern when the ETL flow splits after the Sort operation.
On the other hand, if we defined a sequence step that required to match operation
type Router or Splitter between the Sort and Join steps, we would have not been able
to identify the first two occurrences of the mergeJoin pattern in Figure 4.
Since we do not know the exact type of the operation(s), or the number of operations
that might occur before the merge, we define a set of allowed operations in the white
list. This way, with the use of the $whiteList keyword in the sequence, we are able to
identify all three mergeJoin patterns in the logical ETL flow depicted in Figure 4.

Parsing $anyType & $anyValue. When the parser encounters this combination of
keywords, any number of sequential nodes is accepted until we reach the node defined
in the next step of the sequence, a node matching the black list (i.e., BL), or the end
of the pattern.
It is essential to know when to stop parsing values that match $anyType and $any-
Value, hence if there is nothing defined in the sequence after this step, we use the
values from the black list as the ’stoppers’.
Example. In the externalDataValidationWS pattern, for instance, the combination
of $anyType and $anyValue is used twice to allow various tasks before and after the
WSLookup operator (see Code Snippet 1.4). The important part of the structure
requires a Router to split the flow, where one branch does not require any action
while the other branching flow requires a web service lookup. Then, the two flows are
merged using a Union.
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"pattern":[
{"parallelFlows":[

{"flow1":[
{"repeat": "=1",
"sequence":[

{"s1":{"name":"$anyType",
"values": [{"value":"$anyValue"}]}},

{"s2":{"name":"optype",
"values": [{"value":"WSLookup"}]}},

{"s3":{"name":"$anyType",
"values": [{"value":"$anyValue"}]}}]}]}]},

{"sequence":[
{"s1":{"name": "optype","values": [{"value": "Union"}]}}]}

],
"blackList": [{"name": "optype", "values": [{"value": "Union"}]}],

Code Snippet 1.4. Pattern Structure of externalDataValidationWS Pattern

The actions before or after the lookup and their number can vary and is irrelevant for
pattern identification in the ETL flow graph, hence they are expressed with $anyType
and $anyValue keywords. This measure provides the necessary flexibility because data
quality actions are different in each data flow, depending on the purpose and com-
plexity of data quality issues.
When matching the first step with $anyType and $anyValue in Code Snippet 1.4, any
number of sequential nodes will be saved until the node of operation type WSLookup
is reached. However, when matching the second $anyType and $anyValue step, it is
necessary to use the black list to know the ’stopping’ operation type (i.e., Union)
since it is the last step of a given sequence.
Finally, in case any of the steps fail to match, the pattern is automatically discarded,
hence the entire pattern structure from P must be matched against the graph to de-
clare that the ETL flow pattern is contained in the ETL flow graph (i.e., Pn ⊆ G).

BPMN Elements. If the ETL flow graph contains the subgraph described in the
dictionary entry, the corresponding BPMN element (i.e., B) is used to create the out-
put conceptual model. Each element’s tag name (i.e., task, subProcess, etc.) is used
directly for the output BPMN 2.0 XML, however, the attributes require additional
pre-processing.
Attributes with value $create are set to generated values, such as a random id for
each pattern identified in the ETL flow graph. The value $graph gets the value from
the xLM node or edge based on the attribute name. For example, the attribute name
for any matched operation is set to its xLM name from the ETL flow graph and the
attribute sourceRef gets the id of the source node from the corresponding xLM edge.
Example. A mergeJoin pattern displayed in Code Snippet 1.3 will be mapped to
a subprocess with six attributes (i.e., startQuantity, id, name, isForCompensation,
trigerredByEvent, completionQuantity). Interestingly, the value for attribute id is
borrowed from the pattern subgraph (i.e., bAttr = ’$graph’), the name is generated
automatically (i.e., bAttr = ’$create’) and the rest of the attributes have default
values. The output will look as follows:

<subProcess startQuantity="1" id="_p1" name="mergeJoin_1"
isForCompensation="false" trigerredByEvent="false" completionQuantity="1">
...
</subProcess >
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4.3 Algorithm

The field of graph pattern matching introduces a variety of algorithms, the major-
ity of which is based on subgraph isomorphism. We use an approach similar to most
state-space search algorithms described in [15]. However, there are additional specifics
to our approach due to possible pattern nesting and the need to translate identified
subgraphs into a different notation.
The algorithm proposed in this paper is a recursive function that discovers the chain
of nested Pn ⊆ G. As a result, a list of all BPMN elements corresponding to the
translation of graph nodes and edges, B, is returned for the construction of an output
conceptual model.
While traversing G in a topological order, for each node u in the ETL flow graph
that has not yet been visited, we obtain a set of ETL flow patterns from the pattern
dictionary D that u could potentially start. Given a set of potential patterns from D,
we try to match them against the graph G (see Section 4.2 under Pattern Structure)
and the largest matching subgraph, G′, is obtained. The getMaxMatchingSubgraph
(potentialPatterns, G) function can be implemented with any pattern matching algo-
rithm, given a state of Pn ⊆ G.
If the size of the returned subgraph is equal to one, hence we matched a single op-
eration pattern, we obtain the corresponding BPMN elements (see Section 4.2 under
BPMN Elements) and add them to the list of all BPMN elements for the ETL flow
graph, B. However, if the matched subgraph contains more than one ETL flow opera-
tion, we recursively call the algorithm for the subgraph G′ to find all nested patterns
and their corresponding BPMN translations (note that the pattern corresponding to
G′ is no longer considered for u when going into recursion).

Algorithm 1: Pattern Discovery and Translation to BPMN

Data: G, D
Result: B
def FnPatternDiscovery(G, D):
visitedNodes := ∅;
while iterator has next u ∈ G ∧ u /∈ visitedNodes do

potentialPatterns := getPotentialPatterns (u, D);
G′:= getMaxMatchingSubgraph(potentialPatterns, G);
if |G′| > 1 then

bpmn := getBpmn(G′, D);
nestedBpmn = FnPatternDiscovery(G′, D);
if bpmn = ’subProcess’ then

bpmn := bpmn.addSubelement(nestedBpmn);
B := B ∪ bpmn;

else
B := B ∪ bpmn ∪ nestedBpmn;

for u′ ∈ G′ do
visitedNodes := visitedNodes ∪ u′

else
bpmn := getBpmn(G′, D);
B := B ∪ bpmn;

return B
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We then obtain the corresponding BPMN element for the largest matched subgraph.
If the element is a subProcess, we add all returned nested BPMN elements as its
sub-elements. Then, we add the encompassing complex BPMN element to the list of
all BPMN elements for the ETL flow graph B. On the other hand, if it is a different
BPMN element, we add all elements (i.e., largest subgraph BPMN element and all
BPMN elements corresponding to nested patterns) to B without nesting.
This algorithm is sound and complete to discover and translate all patterns currently
defined in the dictionary. We make two assumption with regards to pattern discovery:

– in case any two given ETL flow patterns intersect, one is completely subsumed
by another, and

– there are no two (or more) patterns matching the same subgraph G’.

5 Enhanced Example

This section provides an example of an ETL flow in Figure 3, its logical representation
in xLM in Figure 4, and the translation to conceptual model in Figure 5. The logical
ETL flow is depicted as a graph G, where each vertex contains the xLM node meta-
data (Ug). For simplicity, each vertex in Figure 4 displays an identification (u(id))
and operation type (u(optype)). Moreover, to highlight the contribution of our paper,
we group nodes that belong to a certain pattern together and label them in the figure.
The patterns highlighted in the xLM graph are mostly generalized to be represented
by a subProcess in BPMN, except the recoveryPoint. Figures 6 and 7 show the BPMN
flows inside the externalDataValidationWS and replication patterns, respectively. The
direct mapping for mergeJoin has already been introduced before (see Figure 1).
As one can see, being able to identify patterns makes the conceptual representation
much more clear and understandable to a business user; it provides the semantics of
the operations without overwhelming the display (see further discussion in Section 6).
Example. To provide more intuition for the translation from Figure 4 to Figure 5, let
us go though the steps of Algorithm 1 starting at u(946) of operation type Splitter.
First, we obtain a list of patterns that u could potentially start, potentialPatterns =
{Splitter, recoveryPoint, compensation, replication}. Then, we use D to obtain the
pattern structure (i.e., P) for each pattern and match it against the ETL flow graph
depicted in Figure 4 to obtain the maximal subgraph G′. The function getMaxMatch-
ingSubgraph (potentialPatterns, G) finds two patterns that are present in G, Splitter
and recoveryPoint.

Fig. 3. ETL Flow Example (Pentaho Kettle) [18]
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Fig. 4. The xLM Graph Representation at the Logical Level

The G′ for recoveryPoint is returned as the largest subgraph (G′.size() = 2) with
two vertices, u(946) and u(1). Since the size of the subgraph is larger than one, we
obtain its corresponding BPMN elements (i.e., bpmn = textAnnotation) and call the
algorithm recursively for G′.
Now, the ETL flow graph G has only two vertices u(946) and u(1). We are at node
u(946) and potentialPatterns are again the same. However, when we apply the get-
MaxMatchingSubgraph (potentialPatterns, G) function, we make sure to omit the al-
ready identified pattern (recoveryPoint). This time, the function matches one pattern,
Splitter (G′.size() = 1). The new subgraph size is not larger than one, so we go to the
base case and obtain the BPMN element for Splitter (i.e., bpmn = parallelGateway).
Then, the iterator switches to the next node, u(1). The only potential pattern is File-
Output. FileOutput pattern is matched against the graph, and the largest subgraph
size is 1. Again, we go to the base case and obtain the BPMN element for the FileOut-
put pattern (i.e., bpmn = dataOutput). There are no more vertices to traverse in G,
so we start coming back from recursion. The nestedBpmn first contains dataOutput
and then the parallelGateway, that are added to the list of all BPMN elements for
the ETL flow graph, B along with the initial bpmn = textAnnotation.

Fig. 5. ETL Flow at Conceptual Level
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Fig. 6. Web Service Lookup Subprocess

Fig. 7. Replication Subprocess

Both nodes inside the maximal subgraph are added to visited nodes. The iterator
then skips to the next node in the main ETL flow graph G, u(286).

6 Output Validation

Following our enhanced example, we conducted an empirical study in order to evalu-
ate whether the output conceptual model generated by our approach is indeed more
understandable to the users than its physical representation. The survey measures
ETL flow pattern recognition, understanding the flow semantics, and the amount of
effort in terms of time spent on answering given questions.
In order to answer the questions, participants had to be familiar with both, the ETL
designer and the BPMN notation. Hence, we surveyed a group of twenty-one graduate
students in Computer Science, with a focus on Business Intelligence.
The survey was composed of two parts, including identical questions based on a differ-
ent image. First, participants were asked to evaluate an ETL flow in Pentaho Kettle
(i.e., Figure 3), and then a BPMN model visualized in Yaoqiang6 (i.e., Appendix, Sec-
tion B, Figure 8). The BPMN model used during validation is not a direct translation
of the ETL flow presented in the first part of the survey. The conceptual represen-
tation was altered in order to avoid the bias since the participants would already be
familiar with the semantics of the physical flow after completing the first part of the
validation process. The complete list of questions and survey results can be found in
Appendix, Section B.
As expected, participants were able to identify most patterns both, in the physical and
conceptual flows, which confirms our assumption that ETL flow patterns are easily
identifiable and understandable by users. However, recovery point and flow replica-
tion were more challenging to identify in the physical form than in conceptual. For

6 an open source BPMN editor.
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instance, see results for recovery point in Chart 1.

Pentaho BPMN

Yes 7

No 8

Not sure 6

Yes 19

No 1

Not sure 1

33.3%

38.1%

28.6%

90.5%

4.8%4.8%

Chart 1. Ability to identify a recovery point in a flow

Another interesting observation was revealed when asking to identify data quality
actions in the flow. While a similar number of participants claim to have recognized
such actions, based on the responses in the comments section, most participants iden-
tified separate small actions in the physical flow (e.g., Filter s phone not null, Filter
r name = ’europe’, etc.), where as the responses in the conceptual model were grouped
to identify one complete action (i.e., the tasks inside the WS Lookup subprocess).
Besides pattern recognition, we wanted to evaluate the understandability of the ETL
flow semantics and the data flow in both representations. In the physical view, eigh-
teen out of twenty-one participants replied that they wish to have a clearer view of
the ETL flow semantics (in contrast, only six expressed such desire in the conceptual
view). Moreover, the majority says they wish to see a more abstract model and that
the given model is burdened with technical details (10 votes in favor of each response).
Additionally, when asked about the ease of following the ETL flow semantics, the con-
ceptual model was found significantly easier for the participants to comprehend (see
Chart 2). While ten participants thought the physical flow was difficult to understand,
none said the same about the conceptual model.
On the other hand, there was no significant difference found between the ease of un-
derstanding the flow of data at two different levels.

Pentaho BPMN

Easy 2

Moderate 9

Difficult 10

Easy 10

Moderate 11

Difficult 0

9.5%

42.9%

47.6% 47.6% 52.4%

Chart 2. The ease of understanding flow semantics
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Finally, the majority of participants spent five or five to ten minutes evaluating the
physical model, where as most of them were able to evaluate the conceptual model in
less than five minutes.
This evaluation demonstrates that having a conceptual abstraction of an ETL flow
helps users understand the semantics of the flow with significantly less effort.

7 Conclusions and Future Work

In this thesis, we presented an automatic way to translate logical ETL flows into
their conceptual BPMN representation. Having a conceptual abstraction of an exist-
ing ETL flow increases its understandability and reusability within an organization.
As an input format, we used an existing logical abstraction (i.e., xLM) that represents
ETL as a data flow graph. We first tried to identify all possible mappings between
xLM and BPMN elements. However, we quickly realized that in order to allow ex-
tracting more semantics from an ETL flow, we had to identify and define a set of
ETL flow patterns that capture complex flow behavior. To automate the translation
between the logical and conceptual ETL flow representations we defined a pattern
dictionary.
We generalized the pattern dictionary to capture both, simple patterns (i.e., direct
mappings of ETL operations) and composite patterns that typically contain subflows
of ETL operations. The dictionary follows a formalized grammar and can be further
extended to support new patterns and BPMN mappings.
Finally, in this thesis, we proposed an algorithm that automatically discovers the
chain of nested patterns contained in the ETL flow graph and provides a BPMN
translation for every identified pattern. As a result, we are able to produce a BPMN
representation of an input ETL flow that can be further edited by a business user.
Our contribution can be extended and enhanced in several directions. The first would
be to enhance pattern discovery by removing initial assumptions made in our ap-
proach (i.e., strictly subsumed patterns and no two or more patterns matching the
same subgraph). Secondly, it would be important to develop a user-friendly tool that
facilitates the translation of the logical ETL to its conceptual BPMN representation
and encourages user interaction with the system. We believe that business users can
effectively specify their preference when two or more patterns intersect, validate the
correctness of defined patterns, and share opinions about which patterns are more
meaningful than others.
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A Pattern Dictionary Entries

{"name":"Filter",
"description" : "A simple mapping for any node with

operation type Filter",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "Filter"}]}}]}

],
"bpmnElement":

[{"name":"task","attributes":[{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},

{"name":"Grouper",
"description" : "A simple mapping for any node with

operation type Grouper",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "Grouper"}]}}]}

],
"bpmnElement": [

{"name":"task","attributes":[{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},

{"name":"Sort",
"description": "A simple mapping for any node with

operation type Sort",
"pattern":[

{"sequence":[
{"s1": {"name": "optype", "values": [{"value": "Sort"}]}}]}

],
"bpmnElement": [

{"name":"task", "attributes":[{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},

{"name":"Project",
"description": "A simple mapping for any node with

operation type Project",
"pattern": [

{"sequence":[
{"s1":{"name":"optype","values":[{"value":"Project"}]}}]}

],
"bpmnElement":[

{"name":"task","attributes":[{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},

{"name":"AttributeAddition",
"description": "A simple mapping for any node with

operation type AttributeAddition",
"pattern": [

{"sequence":[
{"s1": {"name": "optype","values":[{"value":"AttributeAddition"}]}}]}

],
"bpmnElement": [

{"name":"task","attributes":[{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},
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{"name":"Distinct",
"description": "A simple mapping for any node with

operation type Distinct",
"pattern": [

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "Distinct"}]}}]}

],
"bpmnElement": [

{"name":"task", "attributes":[{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},

{"name":"Rename",
"description": "A simple mapping for any node with

operation type Rename",
"pattern": [

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "Rename"}]}}]}

],
"bpmnElement": [

{"name":"task","attributes":[{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},

{"name":"TopK",
"description": "A simple mapping for any node with

operation type TopK",
"pattern": [

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "TopK"}]}}]}

],
"bpmnElement": [

{"name":"task","attributes":[{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},

{"name":"UserDefinedFunction",
"description": "A simple mapping for any node with

operation type UserDefinedFunction",
"pattern": [

{"sequence":[
{"s1": {"name": "optype",

"values":[{"value":"UserDefinedFunction"}]}}]}
],
"bpmnElement": [

{"name":"task", "attributes":[{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},

{"name":"Router",
"description": "A simple mapping for any node with

operation type Router",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "Router"}]}}]}

],
"bpmnElement": [

{"name":"complexGateway",
"attributes":[{"name":"gatewayDirection","value":"Unspecified"},

{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},
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{"name":"Union",
"description": "A simple mapping for any node with

operation type Union",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "Union"}]}}]}

],
"bpmnElement": [

{"name":"parallelGateway",
"attributes":[

{"name":"gatewayDirection","value":"Converging"},
{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},

{"name":"Merger",
"description": "A simple mapping for any node with

operation type Merger",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "Merger"}]}}]}

],
"bpmnElement": [

{"name":"parallelGateway",
"attributes":[{"name":"gatewayDirection","value":"Converging"},

{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]},

{"name":"sequenceFlow",
"attributes":[{"name":"id", "value": "$graph"},

{"name":"sourceRef", "value":"$graph"},
{"name":"targetRef", "value":"$graph"}]},

{"name":"task",
"attributes":[{"name":"name","value":"$create"},

{"name":"id", "value":"$create"}]}]
},

{"name":"Voter",
"description": "A simple mapping for any node with

operation type Voter",
"pattern":[

{"sequence":[
{"s1": {"name": "optype", "values": [{"value": "Voter"}]}}]}

],
"bpmnElement": [

{"name":"eventBasedGateway",
"attributes": [{"name":"gatewayDirection","value":"Mixed"},

{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},

{"name":"Splitter",
"description": "A simple mapping for any node with

operation type Splitter",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value":"Splitter"}]}}]}

],
"bpmnElement": [

{"name":"parallelGateway",
"attributes":[

{"name":"gatewayDirection","value":"Diverging"},
{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]}]

},
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{"name":"Join",
"description": "A simple mapping for any node with

operation type Join",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "Join"}]}}]}

],
"bpmnElement":[

{"name":"parallelGateway",
"attributes":[

{"name":"gatewayDirection", "value":"Converging"},
{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]},

{"name":"sequenceFlow",
"attributes":[

{"name":"id", "value": "$graph"},
{"name":"sourceRef", "value":"$graph"},
{"name":"targetRef", "value": "$graph"}]},

{"name":"task",
"attributes":[

{"name":"id", "value":"$create"},
{"name":"name", "value":"$create"}]}]

},

{"name":"LeftOuterJoin",
"description": "A simple mapping for any node with

operation type LeftOuterJoin",
"pattern":[

{"sequence":[
{"s1": {"name": "optype",

"values": [{"value":"LeftOuterJoin"}]}}]}
],
"bpmnElement":[

{"name":"parallelGateway",
"attributes":[{"name":"gatewayDirection", "value":"Converging"},

{"name":"id", "value":"$graph"},
{"name":"name", "value":"$graph"}]},

{"name":"sequenceFlow",
"attributes":[{"name":"id", "value": "$graph"},

{"name":"sourceRef", "value":"$graph"},
{"name":"targetRef", "value": "$graph"}]},

{"name":"task",
"attributes":[{"name":"id", "value":"$create"},

{"name":"name", "value":"$create"}]}]
},

{"name":"TableInput",
"description": "A simple mapping for any node with

operation type TableInput",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value":"TableInput"}]}}]}

],
"bpmnElement": [

{"name":"dataStore",
"attributes":[{"name":"id", "value":"$graph"},

{"name":"name", "value":"$graph"},
{"name":"isUnlimited", "value":"false"}]},

{"name":"dataStoreReference",
"attributes":[{"name":"dataStoreRef", "value":"DS_n"},

{"name":"id", "value":"$graph"}]}]
},
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{"name":"TableOutput",
"description": "A simple mapping for any node with

operation type TableOutput",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value":"TableOutput"}]}}]}

],
"bpmnElement": [

{"name":"dataStore",
"attributes":[{"name":"id", "value":"DS_n"},

{"name":"name", "value":"$graph"},
{"name":"isUnlimited", "value":"false"}]},

{"name":"dataStoreReference",
"attributes":[{"name":"dataStoreRef", "value":"DS_n"},

{"name":"id", "value":"$graph"}]}]
},

{"name":"FileInput",
"description": "A simple mapping for any node with

operation type FileInput",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value":"FileInput"}]}}]}

],
"bpmnElement": [

{"name":"dataStore",
"attributes":[{"name":"id", "value":"$graph"},

{"name":"name", "value":"$graph"},
{"name":"isUnlimited", "value":"false"}]},

{"name":"dataStoreReference",
"attributes":[{"name":"dataStoreRef", "value":"DS_n"},

{"name":"id", "value":"$graph"}]}]
},

{"name":"FileOutput",
"description": "A simple mapping for any node with

operation type FileOutput",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value":"FileOutput"}]}}]}

],
"bpmnElement": [

{"name":"dataStore",
"attributes":[{"name":"id", "value":"$graph"},

{"name":"name", "value":"$graph"},
{"name":"isUnlimited", "value":"false"}]},

{"name":"dataStoreReference",
"attributes":[{"name":"dataStoreRef", "value":"DS_n"},

{"name":"id", "value":"$graph"}]}]
},

{"name":"XMLInput",
"description": "A simple mapping for any node with

operation type XMLInput",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "XMLInput"}]}}]}

],
"bpmnElement": [

{"name":"dataStore",
"attributes":[{"name":"id", "value":"$graph"},

{"name":"name", "value":"$graph"},
{"name":"isUnlimited", "value":"false"}]},

{"name":"dataStoreReference",
"attributes":[{"name":"dataStoreRef", "value":"DS_n"},

{"name":"id", "value":"$graph"}]}]
},
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{"name":"XMLOutput",
"description": "A simple mapping for any node with

operation type XMLOutput",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "XMLOutput"}]}}]}

],
"bpmnElement": [

{"name":"dataStore",
"attributes":[{"name":"id", "value":"$graph"},

{"name":"name", "value":"$graph"},
{"name":"isUnlimited", "value":"false"}]},

{"name":"dataStoreReference",
"attributes":[{"name":"dataStoreRef", "value":"DS_n"},

{"name":"id", "value":"$graph"}]}]
},

{"name":"ExcelInput",
"description": "A simple mapping for any node with

operation type ExcelInput",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value": "ExcelInput"}]}}]}

],
"bpmnElement": [

{"name":"dataStore",
"attributes":[{"name":"id", "value":"$graph"},

{"name":"name", "value":"$graph"},
{"name":"isUnlimited", "value":"false"}]},

{"name":"dataStoreReference",
"attributes":[{"name":"dataStoreRef", "value":"DS_n"},

{"name":"id", "value":"$graph"}]}]
},

{"name":"ExcelOutput",
"description": "A simple mapping for any node with

operation type ExcelOutput",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value":"ExcelOutput"}]}}]}

],
"bpmnElement": [

{"name":"dataStore",
"attributes":[{"name":"id", "value":"$graph"},

{"name":"name", "value":"$graph"},
{"name":"isUnlimited", "value":"false"}]},

{"name":"dataStoreReference",
"attributes":[{"name":"dataStoreRef", "value":"DS_n"},

{"name":"id", "value":"$graph"}]}]
},

{"name":"WSLookup",
"description": "A simple mapping for any node with

operation type WSLookup",
"pattern":[

{"sequence":[
{"s1": {"name": "optype","values": [{"value":"WSLookup"}]}}]}

],
"bpmnElement": [

{"name":"task",
"attributes":[{"name":"id", "value":"$graph"},

{"name":"name", "value":"$graph"}]}]
},
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{"name":"recoveryPoint",
"description": "A user defined control -flow pattern that

identifies check -pointing in an ETL flow",
"pattern":[

{"sequence":[
{"s1":

{"name": "optype","values": [{"value": "Splitter"},
{"value": "Router"}]}}]},

{"parallelFlows":[
{"flow1":[

{"repeat": "=1",
"sequence":[

{"s1":{"name":"$whiteList","values": []}},
{"s2":{"name":"type",

"values": [{"value":"Datastore"}]}}]}]}]}],
"whiteList":[{"name": "optype",

"values": [{"value":"UserDefinedFunction"}]}],
"bpmnElement":[
{"name":"textAnnotation",

"attributes":[{"name":"id", "value":"$create"},
{"name":"textFormat", "value":"text/plain"}],

"text":"recoveryPoint"
},
{"name":"association",
"attributes":[{"name":"associationDirection", "value":"None"},

{"name":"id", "value":"$create"},
{"name":"sourceRef", "value":"$graph"},
{"name":"targetRef", "value":"$create"}]}]

},

{"name":"compensation",
"description": "A user defined control -flow pattern

to depict compensation action operations
in an ETL flow",

"pattern":[
{"sequence": [

{"s1":
{"name": "optype","values": [{"value": "Splitter"},

{"value": "Router"}]}}]},
{"parallelFlows":[

{"flow1":[
{"repeat": "=1",
"sequence":[

{"s1":{"name":"optype",
"values": [{"value":"UserDefinedFunction"}]}},

{"s2":{"name":"type","values":[{"value":"Datastore"}]}}]}]}]}
],
"whiteList": [{"name": "optype",

"values": [{"value":"UserDefinedFunction"}]}],
"bpmnElement":[

{"name":"subProcess",
"attributes":[{"name":"name", "value":"$create"},

{"name":"id", "value":"$graph"},
{"name":"completionQuantity", "value":"1"},
{"name":"isForCompensation", "value":"true"},
{"name": "startQuantity", "value":"1"},
{"name": "triggeredByEvent", "value":"false"}]}]

},

Currently, xLM does not support any operation types that can depict encryption
or compression that are often used in the ETL flow before chekpointing or other
operations used as compensation actions, hence both patterns (i.e., recoveryPoint
and compensation) use the UserDefinedFunction operation to express such behavior.
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{"name":"replication",
"description": "A user defined control -flow pattern

that identifies replication in an ETL flow",
"pattern":[

{"sequence":[
{"s1":

{"name": "optype","values": [{"value": "Splitter"},
{"value": "Router"}]}}]},

{"parallelFlows":[
{"flow1":[

{"repeat": ">1",
"sequence":[

{"s1":{"name":"$anyType",
"values":[{"value":"$anyValue"}]}}]}]}]},

{"sequence":[
{"s1":{"name": "optype","values": [{"value": "Union"}]}}]}

],
"blackList": [{"name": "optype","values": [{"value": "Union"}]}],
"bpmnElement":[

{"name":"subProcess",
"attributes":[{"name":"name", "value":"$create"},

{"name":"id", "value":"$graph"},
{"name":"completionQuantity", "value":"1"},
{"name":"isForCompensation", "value":"false"},
{"name": "startQuantity", "value":"1"},
{"name": "triggeredByEvent", "value":"false"}]},

{"name":"multiInstanceLoopCharacteristics",
"attributes":[{"name": "behavior", "value": "All"},

{"name":"isSequential", "value":"false"}]}]
},

{"name":"externalDataValidationWS",
"description": "A user defined pattern that identifies

data quality actions in an ETL flow
data input via a web service call",

"pattern":[
{"sequence":[

{"s1":
{"name": "optype","values": [{"value": "Router"}]}}]},

{"parallelFlows":[
{"flow1":[

{"repeat": "=1",
"sequence":[

{"s1":{"name":"$anyType","values": [{"value":"$anyValue"}]}},
{"s2":{"name":"optype","values": [{"value":"WSLookup"}]}},
{"s3":{"name":"$anyType",

"values":[{"value":"$anyValue"}]}}]}]}]},
{"sequence":[

{"s1":
{"name": "optype",
"values": [{"value": "Union"}]}}]}

],
"blackList": [

{"name": "optype",
"values": [{"value": "Union"}]}],

"bpmnElement":[
{"name":"subProcess",
"attributes":[

{"name":"name", "value":"$create"},
{"name":"id", "value":"$graph"},
{"name":"completionQuantity", "value":"1"},
{"name":"isForCompensation", "value":"false"},
{"name": "startQuantity", "value":"1"},
{"name": "triggeredByEvent", "value":"false"}]}]

}
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B Validation Process and Results

This survey evaluates the understanding of the ETL flow semantics first based on a
physical flow in Pentaho Kettle and then a conceptual representation of a similar flow
in BPMN.

B.1 Survey Questions

1. Are you able to identify any data cleaning/validation action in the ETL flow?
(Yes/No/Not Sure).
If yes, please point out every occurrence in the flow.

2. Can you identify if the flow contains a recovery point? (Yes/No/Not Sure).
(A recovery point is a checkpoint of the ETL state at a fixed point in the flow.)
If yes, please point out every occurrence in the flow.

3. Can you clearly see when two (or more) input flows are being merged? (Yes/No/Not
Sure).
If yes, please point out every occurrence in the flow.

4. Can you identify if any part of the flow is replicated? (Yes/No/Not Sure).
If yes, please point out every occurrence in the flow.

5. Do you wish to have a more clear view of the flow semantics? (Yes/No/Not Sure).
If yes, explain why.
– The model is burdened with technical details.
– I wish to see a more abstract model.
– I wish to see a more concise model.

6. How easy was it to follow the flow of data? (Easy/Moderate/Difficult).
7. How easy was it to understand the semantics of the ETL flow? (Easy/Moder-

ate/Difficult).
8. How much time did you spend evaluating the model in order to truthfully answer

the questionnaire? (Less than 5 minutes/ 5 minutes/ 5-10 minutes/ 10-15 minutes/
More than 15 minutes).

B.2 BPMN Model

The BPMN model depicted in Figure 8 was used during the evaluation process.

Fig. 8. BPMN Model Used for Validation
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B.3 Results Summary
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Chart 3. Identifying data quality actions

Pentaho BPMN

Yes 21

No 0

Not sure 0

Yes 19

No 0

Not sure 2100.0% 90.5%

9.5%

Chart 4. Identifying merged data inputs
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Chart 6. Ease of following the flow of data
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Chart 7. Model evaluation time


