
Multi-Objective Materialized
View Selection in

Data-Intensive Flows

Sergi Nadal

Supervised by: Petar Jovanovic, Oscar Romero
and Alberto Abelló
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Abstract. Data-intensive flows deploy a variety of complex data transformations to
build information pipelines from data sources to different end users. Materializing in-
termediate results of data and transformations shared by multiple users would clearly
provide benefits in terms of performance and reusability. The classical materialized
view selection problem has been tackled as the trade-off between query evaluation
and view maintenance costs, further constrained by space boundaries. However, in
modern BI applications a variety of other quality metrics, often captured by service
level agreements (SLAs), must be taken into account, like reliability, recoverability,
availability, and others.
In this thesis we present Forge, a tool for automating multi-objective materialization
of intermediate results in data-intensive flows, driven by a set of different quality ob-
jectives. We revisit the traditional problem of materialized view selection, extending it
for the case of data-intensive flows of BI 2.0. Forge can tackle multiple and conflicting
quality objectives when searching for the optimal data materialization. Moreover, for
assessing different objectives, we deploy efficient cost estimation techniques, leverag-
ing on different data flow statistics. We report initial evaluation results, showing the
feasibility and efficiency of our approach.

1 Introduction

Nowadays, it is widely accepted by business intelligence (BI) practitioners that the process
of designing a data warehouse (DW) consists of a set of clear and well-defined sequential
tasks. Altogether, it comprises a process of converting a set of coarse-grained business re-
quirements into a final DW solution capable of providing answers to such requirements. Two
core activities of such design process are multidimensional (MD) design of a DW schema
and design of an extract-transform-load (ETL) process, these two design tasks are typically
tackled sequentially in that order.

In early DW design approaches, where data warehouses were seen as sets of materialized
views, the phase of target schema creation was typically tackled via the materialized view
selection problem. For example, [50] presents a framework for materialized view selection
based on the minimization of a set of design goals, which can be seen as quality factors of a
DW design. Particularly, this framework aims at minimizing the operational cost, defined as
a linear combination of query evaluation cost and view maintenance cost. Afterwards, ETLs
were deployed in a form of refreshment processes, benefiting from efficient view maintenance
techniques.

However, such setting soon became unrealistic, as real-world DW applications required
more complex transformations over source data [46] (e.g., data cleaning). Lately, the rise
of BI 2.0 systems (or self-service BI) [1], that argue for more operational decision making
scenarios [11], brought back the idea of selecting the “right” materialization of input data
for optimizing user workloads. In such scenarios, the complete DW deployment is usually
avoided, and automatic tools are in charge of providing combined data flows to bring the
“right” data, at the “right” time to end-users. Moreover, [8] shows that user workloads have
high temporal locality, as 80% of them will be reused by different stakeholders on the range
of minutes to hours. Thus, providing a partial materialization of shared flows, would highly
increase the reusability and hence the performance of user workloads.
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Some recent tools have been tackling the issue of automating either solely an ETL process
design (e.g., Orchid [12]), or both ETL and DW schema designs (e.g., Quarry [22]). However,
these approaches overlook the potential gain from providing the partial materialization of
data, while leaving parts of user workloads to be executed at runtime.

However, we believe that the theoretical underpinnings for the problem of providing
the “right” materialization of data in BI 2.0 systems, should be searched in a traditional
materialized view selection framework (e.g., that of Theodoratos and Bouzeghoub [50]).
However, notice that such framework is not directly applicable here, as it assumes a relational
database environment and is therefore limited to the set of relational algebra operations.
Conversely, data-intensive flows considered in BI 2.0 systems go beyond this, and typically
require more complex transformations over data, such as data sampling, sentiment analysis,
or cluster detection. Moreover, the given framework only considers the operational cost
when selecting views for deploying a DW, while overlooking other important non-functional
requirements, typically expressed as Service Level Agreements (SLAs) [48].

To tackle this issue, in this thesis we revisit the traditional framework for materialized
view selection [50] and analyze its applicability and extensions for the context of data-
intensive flows in BI 2.0. As a result, we present Forge, our tool for automatically selecting
the optimal partial materialization of data, from a data-intensive flow, driven by multiple
quality objectives represented as SLAs. We apply well-known multi-objective optimization
techniques, proven to efficiently tackle multiple and conflicting objectives.

To assess different objectives considered by the system, we introduce efficient cost esti-
mation techniques, leveraging on different data flow statistics gathered from data sources
and propagated over the data-intensive flow. Forge currently considers an example set of
four quality objectives (i.e., query time, loading time, occupied space, and multidimension-
ality). Besides the first three objectives that are typically used when deciding an optimal
materialized view selection, we additionally analyzed multidimensionality, which shows to
which extent the proposed data materialization fits the target MD schema of a DW. How-
ever, notice that Forge in general can work agnostic from the target DW schema, and build
the partial materialization of data on the fly.

Lastly, we evaluate our approach using the flows based on the data integration benchmark
TPC-DI [39]. First experimental results have shown the efficiency of Forge in applying the
optimization techniques for finding the near optimal data materialization from an input
data-intensive flow.

In particular, our main contributions are as follows:

– We revisit the materialized view selection problem for the context of data-intensive flows
in BI 2.0 systems.

– We propose a novel system, called Forge, for multi-objective selection of the optimal
partial materialization of data from data-intensive flows.

– We introduce efficient techniques for assessing quality objectives of data-intensive flows.
– We adapt existing multi-objective optimization algorithms for solving the problem of

finding the optimal materialization of data-intensive flows.
– We finally show an initial set of experiments showing the effectiveness and quality of

Forge.

Outline. In section 2 we formalize our approach and introduce an illustrative running ex-
ample. In section 3 we describe the building blocks of Forge, i.e. statistics, metrics, and cost
functions. In section 4 we present our approach in the context of multi-objective optimiza-
tion. In section 5 we report on our experimental findings, while sections 6 and 7 discuss
related work and conclude the document, respectively.

Appendices. In appendix A we provide detail on the measurement of data-intensive flow
operators cost estimations to complete section 3. In appendix B we provide an overview of
Quarry, the system where Forge has been implemented in, and some of its implementation
details. Finally, appendix C extends the related work from section 6 is provided.
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2 Formalization

2.1 Multiquery AND/OR DAGs and Data-Intensive Flows

The general framework for materialized view selection [50] relies on multiquery AND/OR
DAGs. Widely used in the field of multiquery optimization, several works have used them
to tackle the materialized view selection problem (e.g., [50,52,53]). As defined in [54] query
AND/OR DAG is a bipartite graph G, where: AND nodes (or operational nodes) are labeled
by a relational algebra operator, and OR nodes (or view nodes) are labeled by a relational
algebra expression. Moreover, provided a set of queries Q defined over a set of source relations
R, a multiquery AND/OR DAG G is a query AND/OR DAG which may have multiple sink
(query) nodes. Roughly speaking, the view selection problem can be expressed as a search
space based problem over the multiquery AND/OR DAG G, where the design goals are
conditions over G.

Additionally, [52] formalizes the output of the view selection problem as a data warehouse
configuration C = 〈V,QV 〉, where QV is the set of queries in the query set Q rewritten
over the view set V . Note there exist two special DW configurations: 〈Q,QQ〉 and 〈R,Q〉.
The former represents a materialization of the query set Q, while the latter represents a
complete materialization of the source data stores R as data warehouse. Note that a DW
configuration C = 〈V,QV 〉 is composed of a set of views and a set of queries. For the sake
of simplicity, in the context of data-intensive flows, we represent a DW configuration as a
set of views to materialize C = {v1, . . . , vn}. From now on, we will interchangeably refer to
both representations of C.

On the other hand, [25] gives a formalization for general data-intensive flows (e.g., ETL
processes) where they capture both relational algebra and more complex data transforma-
tions. They are defined as parametrized DAGs, where vertices capture information such as:
semantics, implementation type and used engine.

Such flows are encoded using their own logical model [57], namely xLM. In order to
support the previously introduced specificities, they propose the concept of agnostic xLM
(a-xLM ) to encode logical flows, and specific xLM (s-xLM ) to encode physical flows.

Example 1. Figure 1 depicts an example data-intensive flow based on the TPC-DI domain.
Source nodes are labeled with S and query nodes (sinks) are labeled with Q. Specifically,
such flow outputs aggregated taxes per minute (Q1) and per hour (Q2).

Clearly, any multiquery AND/OR DAG G is representable using data-intensive flow notation
from [25]. The opposite does not hold, due to the fact that AND/OR DAGs are solely
based on relational operators, while data-intensive flows are extended with more complex
operations.

However, having the same problem context (i.e., the same inputs and outputs) as the
traditional view selection framework in [50], for generalizing the problem of materialized
view selection for data-intensive flows we revisit the given framework and analyze the new
components that should adapt the framework for the case of data-intensive flows.

2.2 Components

Data-Intensive Flow Based on the formalization from [25], in our context we define a
data-intensive flow DIF , as a DAG (V,E) where its nodes (V ) are either data stores (DS)
or operations (O), and its edges (E) represent the directed data flow. Operational nodes are
defined as o = 〈I,O,S〉, where:

– I and O are the sets of respectively the input and output schemata defined as a finite
set of attributes.

– S expresses the formalization of operator’s semantics in the form of a binary search tree.
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Fig. 1: Example data-intensive flow (based on TPC-DI)

Example 2. For the data-intensive flow depicted in example 1, an example of an operational
node in V is the one that performs a JOIN between Trade (TR) and Time (T), logically
represented as:

– I = {〈TR.tax, TR.timestamp〉, 〈T.hour, T.minute〉}
– O = {〈TR.tax, TR.timestamp, T.hour, T.minute〉}
– S = 〈minute(TR.timestamp) = T.minute〉

Design Goal DG represents a set of design goals, where each (DGi) characterizes a DW
quality objective. It can be specified as either a minimization or a maximization of an
objective cost function, or alternatively as a boundary that must not be surpassed in such
cost function. Formally:

– Min/Max :
DGmin(SC) = min

C∈SC
(CF (C))

From a set of DW configurations SC, it returns the minimal configuration C by means
of evaluating the cost function CF . Note that maximizing the cost function is equivalent
to the negation of minimization:

DGmax(SC) = max
C∈SC

(CF (C)) = min
C∈SC

(−CF (C))

– Constraints:
DG(C) = [CF (C) ≤ K]

For a DW configuration C, it checks whether the evaluation of the cost function CF ful-
fills the constraint K. Note that the constraint can express an arbitrary logical predicate
(e.g., <,>,≥).

Example 3. The design goal minimizing query time is DGQT (SC) = minC∈SC CFQT (C),
where CFQT is the cost function that computes the query cost in the DW configuration C.
The design goal that sets the space boundary is DGS(C) = CFS(C) ≤ Smax, where CFS

is the cost function that computes the space occupied by the views in C, and Smax denotes
the space threshold.

Cost Function Given a DW configuration C = 〈V,QV 〉, CF represents a set of cost func-
tions where each (CFi) is the estimation of a DW quality factor from one of the components
of C, either C.V or C.QV (here characterized as C.x). Formally:

CF (C) =
∑

x∈C.x

E(x)
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where E(x) is the cost estimator of parameter C.x.

Example 4. The cost function estimating the storage space needed for materializing the
views in V is CFS(C) =

∑
V ∈C.V Spaceestimator(V ).

Utility Function In the context of multi-objective optimization (MOO) [34], it is common
to aggregate all objectives DG1, . . . , DGn into a single value to obtain the global utility.
Such function, is known as the utility function U , and is formally defined as U(DG) =
U(CF1(C), . . . , CFn(C)). Each CFi(C) provides a quantitative evaluation of C (it can be
seen as individual utility functions for each cost function) for its associated DGi. In the case
of min/max design goals, or 0, +∞ for satisfied and non-satisfied constraints, respectively.
Generally in MOO higher utilities are always preferred to lower utilities. However, in our
context there are some CF where we aim for minimal utilities (i.e., query time).

Example 5. One of the most commonly used utility functions is the weighted sum. Provided
a DW configuration C and a set of weighting coefficients W, it is defined as:

U(DG) =

n∑
i=0

wi · CFi(C)

2.3 Problem Statement

In terms of the previously presented formalization, we now state the problem of multi-
objective materialized view selection in data-intensive flows as:

Input

– A data-intensive flow DIF .

– A set of design goals DG.

– A set of cost functions CF.

– A utility function U(DG).

– A cost model represented by a set of estimators over DIF and calculated by means of
statistical information from source relations.

Output

– A DW configuration C ′ = 〈V ′, Q′V 〉 such that U(DG) is minimal.

Note that such approach guarantees that all resulting configurations are self-maintainable,
which entails that a given solution 〈R,Q〉 is a replication of the source relations into a DW,
and the data sources are not queried.

3 Metrics and Cost Functions

3.1 Data-Intensive Flow Statistics

As previously mentioned, cost functions are computed from estimators. Every operational
node in a DIF might have several estimators, each assessing a single quality factor (e.g.
execution cost). They perform a cost based estimation according to the operator semantics
and additional characteristics present in the node, i.e. the encoded information in a DIF as
described in section 2.1.

In order to devise more accurate metrics, some essential statistics must be obtained from
the input data stores and propagated across the DIF . By traversing the DIF in topological
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order we are able to properly propagate such statistics at each node, based on specific
operator semantics. [16] describes a complete set of statistics necessary to perform cost
based estimations for ETL flows. Here we focus on the following subset: selectivity factor
selP (R), number of distinct values per attribute V (R.a), and cardinality T (R). R denotes
an input data store, while R.a is an attribute of R. Note that, as opposed to metrics, the
way in which the values of these statistics are obtained is independent of the underlying
engine where the flow is executed.

Example 6. Let us assume a JOIN operator R′ = R 1 S with semantics PR.a=S.b. Inspired
by the work in [13], we can measure the above-mentioned statistics as:

sel′P =


1

V (R.a)
, if dom(S.b) ⊆ dom(R.a)

V (R.a ∩ S.b)
V (R.a) · V (S.b)

, otherwise

V (R′.atti) = V (R.atti) · (1− selP )
T (R)

V (R.atti)

T (R′) = sel′P (R 1 S) · T (R) · T (S)

The selectivity factor is obtained as the fraction of the number of shared values in the
join attributes and the size of their cartesian product, while the number of distinct values is
estimated proportionally to the number of tuples that such selectivity factor selp reduces.

3.2 Metrics

Once statistics for a DIF have been calculated, they can act as building blocks to met-
rics. As previously said, metrics are the engine-dependent estimation of a quality factor
for a specific operational node in DIF . Here we focus on estimating both performance-
wise (Executionestimator) and space-wise (Spaceestimator) metrics, the former measured by
means of estimated disk I/O (in blocks) and the latter by number of disk blocks occupied
by the materialized view. It is worth noting that in terms of execution, as the CPU cost is
negligible as opposed to I/O cost, we ignore CPU cost and focus on the I/O cost of opera-
tors. Therefore, non-blocking operational nodes (acting as pipelines) will not incur any cost
for such Executionestimator.

In order to devise the aforementioned metrics, certain characteristics of the underlying
engine are required. We focus on the following subset: the size of a disk block B, the number
of main memory buffers available M and the size in bytes that each attribute occupies
sizeOf(atti). For instance, in the Oracle relational database the block size is approximately
8 KB, while in Hadoop’s HDFS it is 64 or 128 MB. Thus, the specific number of blocks for
an input R is measured as:

B(R) =


T (R)⌊
B∑

sizeOf(atti)

⌋


Example 7. Given the join operation from example 6, in a relational DB, one implementa-
tion of such operator is based on the block-nested loop algorithm, thus the estimation for
execution and space costs is as follows:

Executionestimator = B(S) +B(R) ·
⌈
B(S)

M − 2

⌉
Spaceestimator = B(R′)
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However, in a MapReduce environment, execution cost is dominated by data transfers
that occur during the data shuffling phase between mapper and reducer nodes, i.e. commu-
nication cost over the network [2]. Assuming a hash join, where the hash function maps keys
to k buckets, data is shipped to k reducers. Assuming no data skewness, each reducer re-

ceives a fraction of T (R)
k and T (S)

k . Having c as a constant representing the incurred network
overhead per transferred MapReduce block, the cost estimations of the join are:

Executionestimator =
B(R) +B(S)

k
· c

Spaceestimator = B(R′)

Note that the presented metrics can be highly variable within a DIF , this fact is depicted
in a logarithmic scale through heatmaps in figure 2 based on example 1. For instance, not
surprisingly, JOIN nodes are the most consuming operations in both time and space to
generate intermediate results. Finally, it is worth noting that other approaches exist to
measure such metrics, for example [47] propose a method based on microbenchmarking of
hybrid flows. On the contrary, our approach does not require to perform any execution of
the flow, however that impacts the quality of the estimation.

(a) log2Executionestimator (b) log2Spaceestimator

Fig. 2: Heatmaps for DIF metrics, blue-green-red in that order depict lower to higher values

3.3 Cost Functions

At this point, we are able to provide cost functions to evaluate a DW configuration C =
〈V,QV 〉, based on metrics from materialized operational nodes, i.e. those specified in V , for a
data-intensive flowDIF . First we must present some helper methods over DW configurations
on which cost functions are based on. Let I(C) =

⋃
v∈C Pre(v) and O(C) =

⋃
v∈C Suc(v)

be respectively the input and output subgraphs of C. Specifically, the former is a subgraph
where its source nodes are the sources in DIF and sink nodes all elements v in C, similarly
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the latter is a subgraph where its source nodes are all elements v in C and sink nodes the
sinks in DIF . Formally, they are computed as follows:

Pre(v) = v ∪ ∀vi∈predecessors(v)Pre(v)

Suc(v) = v ∪ ∀vi∈successors(v)Suc(v)

where Pre(v) and Post(v) are recurrences, ending when deg−(v) = 0 and deg+(v) = 0,
respectively.

Loading Cost The cost of loading a set of views, i.e., view maintenance cost, is the sum
of transforming source data and propagating them to the views in C. In a DW, this can be
seen as a cost of ETL processes to load such DW. Our approach is valid for both refreshment
and update of materialized views, as long as source statistics are properly updated.

From a DW configuration C, the estimated loading cost is intuitively the cost of executing
the parts of the DIF loading the materialized views for each node v ∈ C, i.e. I(C) and the
cost of writing such materialized views to a disk.

CFLT =
∑

v∈I(C)

Executionestimator(v) +
∑
v∈C

Spaceestimator(v)

Query Cost The query cost is the sum of querying the materialized views in the DW,
transform the data and deliver results to the user. From a DW configuration C, the estimated
query cost is computed as the sum of execution costs of successor nodes for each node v ∈ C,
i.e. O(C). However, note that the cost of processing the operations of the nodes in C should
not be taken into account, as it is already evaluated in CFLT . Therefore it is necessary to
consider only nodes in the set O(C) \C, denoted O+(C). Finally, it is necessary to consider
the cost of reading such views from a disk.

CFQT =
∑

v∈O+(C)

Executionestimator(v) +
∑
v∈C

Spaceestimator(v)

Space This cost function concerns the storage space needed to store materialized views. It
is computed as the sum of estimated space for storing the results of each node in C, and it
can be seen as the estimated space necessary to accomodate the deployed data warehouse.

CFS =
∑
v∈C

Spaceestimator(v)

Notice that Spaceestimator can be used for estimating the costs of reading and loading
materialized view, showed in CFLT and CFQT , as well as for estimating the occupied space
for the case of minimizing or constraining its value.

Multidimensionality In a typical DW environment, a target multidimensional schema
is generated in order to provide a conceptualization of the data warehouse in terms of
dimensions, facts and their relations. In this work, we assume the existence of a reference
MD schema (MDref ) generated from user requirements (queries). It is possible to evaluate
the multidimensionality of non-dimensional materialized views by comparing the output
schema of an operational node to the schema of factual and dimensional nodes in MDref .

To this end, we use Jaccard index, which is a simple, but powerful similarity measure
between two sets. Hence, multidimensionality is measured as the sum of Jaccard indices for
the most similar nodes in MDref . Note that we are interested in maximizing multidimen-
sionality as a design goal, thus in order to be combined with other (minimizing) objectives,
it should be converted to minimizing design goal, as explained in section 2.2.
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CFMD =
∑
v∈C

[max (Jaccard(v,MDref ))]

4 Proposed approach: Forge

As previously mentioned, the problem of materialized view selection in data-intensive flows
can be reduced to the general materialized view selection problem. In [15] it is shown that
such problem is NP-hard, hence we have to avoid exhaustive algorithms and rely on informed
search algorithms. Furthermore, in this particular case, purely greedy algorithms will not
provide near-optimal results as the proposed cost functions are not monotonic (e.g., see
heatmaps in figure 2). In classical AI, a state space search problem is usually represented
with the following five components:

1. Initial state where to start the search.

2. Set of actions available from a particular state.

3. Transition model describing what each action does and what are the derived results from
it.

4. Goal test which determines whether the evaluated state is the goal state, i.e. the optimal
state.

5. Path cost function to assign cost to the actions path.

In this work we follow such approach, in the following subsection we present the partic-
ularities of our specific problem in the context of a search state problem.

4.1 Multi-Objective Materialized View Selection as a State Space Search
Problem

In our context, we see a state as any DW configuration C = {v1, . . . , vn} over which action
functions are applied. It is noteworhy to mention that in such problem we are not interested
in the set of actions that have led to a solution, but in the solution itself, which is initially
unknown. Additionally, as any state C is a valid solution, therefore we drop the component of
goal state. Furthermore, the path cost is substituted by the definition of a heuristic function,
which will guide the search.

Actions For a DW configuration C, we can compute actions (navigations over the graph),
which will yield new DW configurations C ′. First, we define the generic navigation operation
C ′ = Nav(vorigin, vtarget), with vorigin, vtarget ∈ DIF and semantics defined as:

Nav(vorigin, vtarget) = (C \ vorigin)
⋃

(C ∪ vtarget)

We then define three specific operators, applied over nodes in C:

1. Materialize (M(v, v′) = Nav(v, v′)): characterizing a forward movement from v to v′ in
the DIF , applicable when v′ ∈ successors(v).

2. Unmaterialize (U(v, v′) = Nav(v′, v)): characterizing a backwards movement from v′ to
v in the DIF , applicable when v′ ∈ predecessors(v).

3. Stay (N(v) = ∅): always applicable, as it does not perform any movement. Such operator
is only useful when furtherly combined with operations M or U .

From the previous definitions, for each node v we define the set Actions(v) as the following
union:

∀vi∈successors(v)M(v, vi) ∪ ∀vi∈predecessors(v)U(v, vi) ∪N(v)
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Finally, we are able to obtain all possible actions from a DW configuration C = {v1, . . . , vn}
by computing the cartesian product of the power set of each Actions(vi) (for the sake of
readability it is not shown, however empty sets should be removed from each power set).

P(Actions(v1))× . . .× P(Actions(vn))

Note that such set can be extremely large for complex DIF s, but it can be clearly seen
that many of those actions do generate configurations that can be considered invalid. We
define the two essential conditions that a DW configuration must fulfil in order to be valid:

1. Answearability of all queries: this condition ensures that all queries (sink nodes) can be
answered from the materialized views. This can be checked for each path from source to
sink nodes, ensuring there is at least one materialized node.

∀v∈sources(DIF )∀pi∈Pathsv,sinks(DIF )
∃node∈pi : node ∈ C

Example 8. The green-colored configuration does not satisfy answearability as the path from
2 to 9 does not contain any materialized node.

2. Non-dominance of nodes: the purpose of our approach is to minimize the number of nodes
to materialize avoiding all unnecessary materializations, for instance if it is decided to
materialize all sink nodes there is no point in materializing any intermediate node. In
graph theory a node m dominates n if all paths from the source node to n must pass
through m. We extend this definition for the case of multiple nodes, and thus we test
non-dominance of a set of nodes by checking that for each path from a materialized node
v to sink nodes, there is at least one containing only v.

∀v∈C∃pi∈Pathsv,sinks(DIF )
: |{∀node∈pi

: node ∈ C}| = 1

Example 9. The green-colored configuration does not satisfy non-dominance as nodes 6 and
7 dominate 5.

Besides the two essential conditions, it is necessary to maintain a set of visited nodes to
check whether a state C has not been already visited, and thus avoid unnecessary expansions
in the search space. Experimenting with the example DIF depicted in 1 it has been observed
that on average eliminating states that do not fulfil such conditions make a reduction on the
search space by 88%.

Example 10. The following figure depicts all valid actions from C = {3, 4}, after pruning
those that do not fulfill the conditions.
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Initial States As shown in figure 2, the search space contains many local optimum points
due to non-monotonicity of cost functions, therefore the solution might be highly different
depending on the initial state. Four possible initial states have been found trying to cover
all search space varieties:

1. Sources: considering as materialized nodes all source nodes, it represents the DW con-
figuration C = 〈R,Q〉.

2. Queries: as opposite, here all sink nodes are materialized and represents the configuration
C = 〈Q,QQ〉.

3. Random: widely used in the field of artificial intelligence, random states surprisingly
yield decent results. We compute such states as shown in algorithm 1.

Algorithm 1 Random Initial State

Input DIF . Data-Intensive Flow
Output C . DW Configuration
1: . For each path p from source to sink nodes get a random node
2: C = ∅
3: r = ∅
4: for p ∈ Pathssources(DIF ),sinks(DIF ) do
5: r.add(randomNode(p))

6: . Check if any element in P(r) is a valid configuration (non-dominance)
7: for C ∈ P(r) do
8: if nonDominance(C) then return C

9: . Restart if none
10: restart

One might quickly see that the generation of a random state entails an exponential cost
(given that a power set is computed). However given the nature of a data-intensive flow, it
is highly likely that the same intermediate node will appear in many different paths, and in
accordance to the Central Limit Theorem (CLT) it is highly unlikely that such power set
outgrows the computational limits. Following the same idea, the random state is guaranteed
to be a balanced configuration betwixt both extremes 〈R,Q〉 and 〈Q,QQ〉.
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Heuristic Provided that values of the different objectives lay in very different ranges,
and in order to provide a consistent comparison, it is necessary to make use of a non-
dimensional utility function which normalizes all objectives. There exist a vast number of
different normalization strategies [14]. For our purpose, and given the nature of the problem,
we make use of the normalized weighted sum as utility function:

h(C) = U({CF1, . . . , CFn}, C) =

n∑
i=1

wi · CF trans
i (C)

CF trans
i (C) stands for the evaluation of the transformed cost function for DW configu-

ration C, defined as:

CF trans
i (C) =

CFi(C)− CF o
i

CFmax
i − CF o

i

, where :

– CFi(C): evaluation of cost function CFi (section 2.2).

– CF o
i : utopia point for CFi (a.k.a., ideal point), which refers to the DW configuration

where CFi is minimal.

– CFmax
i : maximum point for CFi refers to the maximal obtain value of CFi for given

DW configurations.

Such approach generally yields values between zero and one depending on the accuracy
of both CF o

i and CFmax
i computation. However, it is mostly unattainable to get the exact

values and we have to rely on estimations. To achieve so, we compute estimations of utopian
configurations for all cost functions as the union of all minimum nodes for each path from
source to sink nodes. Maximum points are obtained by following the similar approach, in
this case obtaining maximum nodes for each path from source to sink nodes. Note that, if
design goals stating constraints are present, it is possible to use such constraint value K as
maximum point dismissing the need of estimations.

4.2 Searching The Solution Space

Local search algorithms consist on the systematical modification of a given state, by means
of Action functions, in order to derive an improved solution state. Many complex techniques
do exist for such approach, e.g. simulated annealing or genetic algorithms. The intricacy
of these algorithms consists on their parametrization, which is at the same time their key
performance aspect.

We thus focus on hill-climbing, a non-parametrized search algorithm, which can be seen
as a greedy local search, always following the path that yields higher heuristic values.

Since the cost functions we are using are highly variable due to their non-monotonicity,
hill-climbing might provide different outputs depending on the initial state. In order to
overcome such problem, we adopt a variant named Shotgun hill-climbing which consists of
a hill-climbing with restarts (see Algorithm 2). After certain number of iterations, we can
obtain the most converging solution.

Such approach of hill-climbing with restarts is surprisingly effective, specially when con-
sidering random initial states. In the next section we scrutinize the performance and quality
of the algorithm with the components defined in section 4.1.

5 Evaluation

5.1 Experimental Scenario

The evaluation of our approach is based on the data-intensive flow depicted in figure 1. In
this section, we first provide a performance evaluation of the approach (i.e. the overhead
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Algorithm 2 Shotgun Hill-Climbing

Input i: . Number of Iterations
Output C′ . Solution DWConfiguration
1: solutions = ∅ . Here a multiset (i.e. bag)
2: do
3: C′ = initialState()

4: finished = false
5: while !finished do
6: neighbors = ResultsFromActions(C)

7: h′ = highestHeuristic(neighbors)
8: if h(C′) < h′value then
9: C′ = h′state

10: else
11: finished = true

12: solutions = solutions ∪ C′

13: −− i
14: while i > 0
15: return mostFrequentElementInMultiset(solutions)

of the multi-objective view selection), and then we evaluate the convergence and quality of
obtained solutions for the algorithm in section 4.

We experiment with 15 different combinations of weights for 4 considered objectives (see
table 1). These combinations aim at covering different cases of objective dominance, going
from a single objective weighted 100%, through all 4 objectives equally weighted 25%. To
evaluate the convergence of solutions, for each of these 15 combination, we systematically
execute independent executions of i iterations, with i in the range [1, 75], i.e. a total of
2850 for each combination. The appropriate number of iterations (i.e., 75) has been chosen
experimentally to guarantee that, for any combination of weights, the solution converges.

Each individual execution of the algorithm is measured in terms of execution time. Ad-
ditionally, for each batch of i executions, the obtained configurations are stored in a list with
associated heuristic values, and ordered by the number of value occurrences (i.e., frequen-
cies).

5.2 Performance Evaluation

One common problem in multi-objective algorithms is their scalability in terms of number
of objectives. Here we want to see how our approach scales, in other words how it behaves
for objectives with a given weight greater than 0%.

By evaluating all 15 combinations with the 4 considered objectives, we can observe if
there is any objective penalizing (dominating) the overall evaluation. Table 1 depicts, for
each combination of weights, the average time to execute the algorithm over a total number
of 2850 executions, resulted from the chosen number of iterations (see section 5.1).

For considering only one objective (i.e., weight being 100%; first 4 rows of table 1), the
average time goes between 1,82s for multidimensionality and 3,8s for query time. Notice
that this difference is cased by the manner in which the given objective is assessed, i.e.,
multidimensionality checks the Jaccard index only for the output of the considered operation
(Θ(|C|)), while load and query time check the costs of all the preceding (Θ(|I(C)|)) and
succeeding (Θ(|O+(C)|)) operations, respectively. Furthermore, the execution time raises to
6.82s, for equally weighed objectives (each weight being 25%). This is due to the fact that
more objectives require more cost function evaluations in order to calculate heuristic values,
plus the initial overhead for computing utopian and maximum points.

Such overhead is still tractable, especially taking into account that the materialization
is typically decided at the design time. However, further experiments with more objectives
should be performed to confirm that the times stay in tractable boundaries.
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Table 1: Average time with different weighted objectives
CFQT CFLT CFS CFMD Average Time (s)

100% 0% 0% 0% 3,80
0% 100% 0% 0% 3,16
0% 0% 100% 0% 2,50
0% 0% 0% 100% 1,82
50% 50% 0% 0% 2,66
0% 50% 50% 0% 2,77
50% 0% 50% 0% 2,70
50% 0% 0% 50% 2,94
0% 50% 0% 50% 4,26
0% 0% 50% 50% 3,26
33% 33% 33% 0% 2,59
33% 33% 0% 33% 3,06
33% 0% 33% 33% 3,21
0% 33% 33% 33% 3,44
25% 25% 25% 25% 6,82

5.3 Obtained Solutions

As shown in section 4, our approach relies on repeatedly generating random initial states and
executing the hill-climbing algorithm. Here we show an overview of the obtained solutions
for different combinations of objectives. In this subsection, we aim to study the quality of the
solutions obtained and how the number of iterations impact on the quality of such solutions.
In this subsection, we focus on the combination of 4 objectives all equally weighted to 25%.

Figure 3 depicts in the form of stacked barcharts the resulting DW configurations C.
For each batch of i iterations (x-axis) we count the frequency of resulting configurations
(y-axis), where each color depicts one solution. From such figure, we can see that as the
number of iterations increases few solutions tend to appear most of the times, however we
cannot conclude that the most appearing solution is the optimal one.

Fig. 3: Solutions obtained across 75 iterations for CFQT = 25%, CFLT = 25%, CFS = 25%,
CFMD = 25%

In order to study the evolution of the optimal configuration, i.e., that with the lowest
heuristic value with respect to the number of iterations, we depict the set of solutions
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C1, . . . , Cn ordered by heuristic value, i.e., C1 being the optimal. Then, equation (1) measures
the probability to obtain solution at position K (1 ≤ K ≤ n) running i iterations.

P (K, i) = P (K, i− 1) · P (K, 1) + P (K, i− 1)

n∑
j=K+1

P (j, 1) + P (K, 1)

n∑
j=K+1

P (j, i− 1) (1)

Such formula, which can be easily implemented using dynamic programming techniques,
considers the results obtained in previous iterations and combines them taking into account
that after each iteration the solution with the lowest heuristic value is kept. Note that such
formula is recursive, and therefore it needs a base case, i.e., i = 1. It is defined as the
probability to obtain the solution at position K running 1 iterations, it is computed as the
frequency of K over the total, as depicted in equation (2).

P (K, 1) =
freq(K)
n∑

j=1

freq(j)
(2)

In table 2 we show, for the complete set of 15 solutions (obtained across 2850 executions),
the probabilities to obtain each configuration CK ordered by heuristic value h(CK). Note
that the optimal configuration C1 has been confirmed to be the optimal after performing a
full BFS search. Furthermore, figure 4 depicts the evolution of such probabilities applying
the aforementioned formula.

C h(C) P (K, 1) P (K, 2) P (K, 3) . . . P (K, 74) P (K, 75)

C1 0,038 1.18× 10−2 2.35× 10−2 3.50× 10−2 . . . 5.85× 10−1 5.90× 10−1

C2 0,046 4.53× 10−2 8.74× 10−2 1.27× 10−1 . . . 4.02× 10−1 3.98× 10−1

C3 0,046 7.48× 10−2 1.35× 10−1 1.84× 10−1 . . . 1.29× 10−2 1.21× 10−2

C4 0,049 1.06× 10−1 1.73× 10−1 2.12× 10−1 . . . 2.85× 10−5 2.47× 10−5

C5 0,051 2.95× 10−2 4.41× 10−2 4.94× 10−2 . . . 1.71× 10−9 1.30× 10−9

C6 0,052 5.91× 10−3 8.61× 10−3 9.42× 10−3 . . . 4.37× 10−11 3.23× 10−11

C7 0,053 2.60× 10−1 3.10× 10−1 2.82× 10−1 . . . 5.32× 10−11 3.87× 10−11

C8 0,053 3.74× 10−2 3.35× 10−2 2.25× 10−2 . . . 3.14× 10−25 1.46× 10−25

C9 0,053 3.46× 10−1 1.77× 10−1 7.85× 10−2 . . . 6.48× 10−28 2.78× 10−28

C10 0,059 4.33× 10−2 5.29× 10−3 5.04× 10−4 . . . 7.70× 10−81 6.37× 10−82

C11 0,059 1.97× 10−2 1.16× 10−3 5.34× 10−5 . . . 1.10× 10−104 4.34× 10−106

C12 0,06 3.94× 10−3 1.40× 10−4 3.72× 10−6 . . . 5.84× 10−127 1.15× 10−128

C13 0,063 1.97× 10−3 5.81× 10−5 1.29× 10−6 . . . 3.93× 10−134 6.19× 10−136

C14 0,065 3.94× 10−3 9.30× 10−5 1.66× 10−6 . . . 2.01× 10−138 2.77× 10−140

C15 0,07 9.84× 10−3 9.69× 10−5 9.53× 10−7 . . . 3.09× 10−149 3.04× 10−151∑
- 1 1 1 . . . 1 1

Table 2: Probability to obtain each solution Ck per number of iterations. C1 depicts the
optimal configuration.

From such results, we conclude that the problem of finding optimal solutions using hill-
climbing indicates the issues with local optimums, known for greedy multi-objective opti-
mization algorithms, and opens the challenge of applying more complex, i.e. parametrized,
solutions (see section 4.2). However, the approach of shotgun hill-climbing, i.e., with restarts,
quickly yields near-optimal results after few iterations (i.e., around 10) with high probability,
and furthermore, as shown in table 4 with about 50 iterations with 50% of probability, the
optimal solution will be obtained. This is clearly, due to the fact that in every iteration the
one with the lowest value is kept, so configurations with high probability to appear with few
iterations (see C7 in table 2) rapidly have a decrease in such probability.
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Fig. 4: Evolution of probabilities per number of iterations for each different configuration

Finally, we aim to study the evolution of the error associated to the probability P (K, i),
i.e., E(K, i) as defined in equation (3). The base case is computed as the normalized error
for each configuration CK . Note that Cw depicts the worst possible configuration, i.e., that
with the greatest heuristic value, obtained with a full BFS search.

E(K, i) =


h(CK)− h(C1)

h(Cw)− h(C1)
, i = 1

P (K, i) · E(K, 1), otherwise

(3)

Figure 5, in blue and left axis, depicts the evolution of E(K, i). In green and right axis
it is depicted the average error obtained calculating the heuristic of random configurations,
i.e., average hill-depth, as before with respect to the worst configuration Cw. We can con-
clude that our approach improves the solution in one order of magnitude to that randomly
obtained, and that the error decreases exponentially w.r.t. i. To improve such validation we
should implement some existing approach, e.g., the one in [17] and make the comparison
w.r.t. their associated heuristics instead of h(Cw).

Fig. 5: Evolution of total error per number of iteration
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6 Related Work 1

The materialized view selection problem has been widely studied in the context of data ware-
houses. According to the survey in [32], most view selection methods follow the approach
of balancing the trade-off between query processing and view maintenance cost. Addition-
ally, and even though the problem has been extensively studied, most approaches rely on
few frameworks, namely multiquery DAG, syntactical analysis of the workload or query
rewriting.

Approaches based on multiquery DAGs are the most popular and they can be categorized
in:

– Multiquery AND/OR DAGs: introduced in [42] as expression DAGs, all possible execu-
tion plans are coded in the form of an AND/OR DAG.

– Multi-view processing plan (MVPP): proposed in [58], a MVPP is very similar to a mul-
tiquery AND/OR DAG but restricted to have only operational nodes in the intermediate
nodes

– Data cube lattice: proposed in [17], this approach relies on dimensional attributes and
OLAP queries. Each node in the DAG represents a particular group-by set in the roll-up
lattice.

Approaches based on query rewriting do not start from a multiquery DAG but from the
query definitions. Conversion rules might be applied to the queries in order to find common
subexpressions [51]. More complex approaches do exist, such as: syntactical analysis of the
workload [3], which analyzes candidate materialized views on basis of the workload in the
database and interesting subsets of tables in terms of query time; [33] where a method is
proposed based on resource constraints (e.g. space); or [5] where clusters of similar queries
are merged to generate a set of candidate views to materialize. [30] proposes the use of
multi-objective genetic algorithms (MOEAs) for the view selection problem dismissing the
need of aggregating multiple objectives.

Finally, it is worth mentioning that there exist similar lines of work to ours such as [7]
and [40]. The former approach is purely based on workload queries, while we benefit from
more inputs, such as data-intensive flows and a reference MD schema. The latter one benefits
from having as input the data flows, but focuses on a performance-oriented approach aimed
to cloud environments.

7 Conclusions and Future Work

In this thesis we have presented an approach for the selection of materialized views from data-
intensive flows. We have built upon the general framework for materialized view selection
giving it additionally a multi-objective perspective. Moreover we have provided a set of 4 cost
functions with its building blocks (i.e. engine-independent statistics and engine-dependent
metrics), and a representation of the approach as a state space search problem. Experimental
results show that our approach is highly efficient in terms of performance, while providing
near-optimal results.

As future work, we plan to explore more complex multi-objective algorithms, for instance
multi-objective evolutionary algorithms as done in [30], with the goal of improving the
reliability of the approach in terms of its quality. Precisely, more exhaustive theoretical
and experimental validation should be addressed, for instance by comparing the proposed
approach to those presented in related work (section 6) in terms of heuristic values.

We want to additionally provide a comparison study of the solutions provided by Forge.
Comparing the results obtained in an automatical manner with those generated from domain
experts, we will be able to get a subjective evaluation in the quality of the approach.

1 Appendix C presents an extended version of this section with further research areas.
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Finally, more objectives should be taken into account besides the ones presented. Eco-
nomical cost models for cloud environments are presented in [26, 36], which could be inte-
grated in our approach.
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Appendix A Data-Intensive Flow Operators Cost

In this appendix we provide the complete set of statistics and metrics for data-intensive flows,
introduced in section 3, considered in this thesis. The considered operators are depicted in
table 3, and they are based on those presented in [35], where the formalized semantics can be
found. Furthermore, throughout this appendix we assume an underlying relational engine.

Data-Intensive Flow Operators

Aggregation Intersect
Attribute Addition Join
Attribute Alteration Left Outer Join
Attribute Renaming Projection
Cross Join Right Outer Join
Dataset Copy Sampling
Datatype Conversion Sort
Difference Union
Duplicate Removal Union All
Filter -

Table 3: Considered data-intensive flow operators

The statistics and metrics presented in the following subsections are inspired by [13]. The
used notation is akin to the relational algebra, although it has been extended for the non
present operators. Note that initially the statistics must be retrieved from each input source,
however those will be propagated after the evaluation of each operator’s semantics in a
topological order manner. Intermediate operators’ input are depicted with capital letters, i.e.
R, while outputs are depicted with a primed letter, i.e. R′. Lower capitals depict attributes
within the schema of R, i.e. a1, . . . , an.

A.1 Statistics

As described in section 3.1, statistics are properties of the data and do not depend on the
underlying execution engine where the operator is being executed. The following list presents
the required statistics on which the calculation of metrics rely on.

– V (R.a): number of distinct values for attribute a in relation R.
– T (R): cardinality of relation R, i.e. the number of tuples.
– selP (R): selectivity factor of filter predicate P in relation R.

Distinct values is generally estimated as the proportion of the number of tuples that the
selectivity factor specifided by the operator selp reduces. As presented in example 6, it is

measured as V (R′.atti) = V (R.atti) · (1− selP )
T (R)

V (R.atti)

For the sake of simplicity, cardinality of relations per operator is depicted in subsection
A.2. It is only required to consider such values without applying the function that performs
the conversion to blocks. The following subsection presents the details on how selectivity
factors are computed.

Selectivity Factors The estimation of the selectivity factor of a selection will vary de-
pending on the selection predicate. It is important to precise that the following major as-
sumptions are made: a) equi-probability of values; b) statistical independence of attributes;
and c) R.a ∈ [min,max] .

Additionally, as the required statistics for some cases would be too difficult to maintain,
some values are provided by rule of thumb.
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– selR.a=c(R) =
1

V (R.a)

– selR.a>c(R) =


0, if c ≥ max
1, if c < min
max− c

max−min
, otherwise

– selR.a>v(R)2 = 1
2

– selR.a<c(R) =


1, if c > max

0, if c ≤ min
c−min

max−min
, otherwise

– selR.a<v(R) = 1
2

– selR.a≤c(R) ' selR.a<c(R), assuming V (R.a) is big enough.

– selR.a≥c(R) ' selR.a>c(R), assuming V (R.a) is big enough.

– selP∧Q(R) = selP (R) · selQ(R), assuming P and Q are statistically independent.

– selP∨Q(R) = selP (R) + selQ(R)− selP (R) · selQ(R), assuming P and Q are statistically
independent.

– selNOT P (R) = 1− selP (R)

– selR.a IN (c1,...,cn)(R) = min(1,
n

V (R.a)
)

– selR.a BETWEEN (c1,c2)(R) =
min(c2,max)−max(c1,min)

max−min
– selR.a BETWEEN (v1,v2)(R) = 1

4

– selR.a BETWEEN (c1,v2)(R) = 1
2 · selR.a>c1(R)

– selR.a BETWEEN (v1,c2)(R) = 1
2 · selR.a<c2(R)

The case of joins When computing selectivity factors for the join of two relations R[AθB]S,
it is necessary to distinguish the used comparison operator:

– sel(R× S) = 1

– selR.a 6=S.b(R 1 S) = 1

– selR.a=S.b(R 1 S) =


1

V (R.a)
, if dom(S.b) ⊆ dom(R.a)

V (R.a ∩ S.b)
V (R.a) · V (S.b)

, otherwise

– selR.a<S.b(R 1 S) = 1
2

– selR.a≤S.b(R 1 S) = 1
2

A.2 Metrics

In section 3.2 we described metrics, the engine-dependent estimation of quality factors for
operational nodes in a data-intensive flow. In this thesis, we focus in performance-wise
(Executionestimator) and space-wise (Spaceestimator) metrics, the former measured by means

2 Note the difference between c constant value and v variable value, i.e. coming from intermediate
results or a parametrized statement.
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of estimated disk I/O (in blocks) and the latter by number of disk blocks occupied by the
materialized view. We thus need to keep track of the following properties of the underlying
engine:

– B(R): number of blocks that R occupies on disk.
– M : number of main memory buffers available.
– B: size of a disk block.

The incurred space of intermediate results is measured by means of the estimated number
of blocks generated. However, this will vary according to the underlying schema that such
results have, therefore we need to make this calculation based on the record length, that is∑
sizeof(atti) (including the corresponding control information).
From the previous definition, we define the number of blocks of an intermediate result

R as B(R) =


T (R)⌊
B∑

sizeof(atti)

⌋


Families of Algorithms Most of the operators presented in table 3 can be implemented
as a set of patterns, those are:

One-pass Algorithms When one of the operator’s components can entirely fit into the mem-
ory buffers (M), then data just needs to be read once which yields linear cost for such
algorithms. There is a clear restriction on the size of M which varies according to the se-
mantics of each operator.

Sorting-based Algorithms Those algorithms in most cases rely on the same structure, this is
(for relations R and S):

1. Sort R
2. Sort S
3. Iterate synchronously over R and S outputting the appropiate value depending on the

semantics.

Sorting can be done by any suitable algorithm, but it is usually performed by Multiway
Merge-Sort, sometimes referred as the two-pass algorithm, as the size of the generated sublists
grows exponentially in each iteration, and in many cases sublists of M2 blocks suffice. It is
important to remark that such algorithms provide a sorted output, therefore this can be an
additional optimization aspect on which consequent operators can leverage.

Hash-based Algorithms As for the case of sorting-based, hash-based algorithms also follow
an essential structure (again for relations R and S), however as contrary to the previous
algorithms, the output of hash-based algorithms is unsorted.

– Partition R in k buckets of at most M − 1 blocks each by means of hash function h.
– Partition S in k buckets by means of hash function h.
– Perform the one-pass algorithm for every bucket in R and S.

Note that index-based methods have not been taken into account, as we are mainly
focusing on computing the cost for intermediate results and therefore we do not assume that
such access structures exist.

Metrics per Operator Metrics per operator are categorized according to the aforemen-
tioned performance-wise or space-wise aspects. The provided formulas do not consider the
worst case scenario, as those would be usually be too costly and a poor heuristic, but a
conservative trade-off for the average case is used.
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Aggregation (γa1,...,an,f(an+1)→b(R)) Groups by attributes a1, . . . , an and applies function f
(e.g., SUM) to attribute an+1 which is renamed to b. This operator requires accessing the
complete input relation and thus cannot be pipelined.

– Executionestimator =


B (T (R)) , one-pass

3B (T (R)) , sort-based

3B (T (R)) , hash-based

– Spaceestimator = B

(
min

(
T (R)

2
,
∏
V (R, ai)

))
Attribute Addition (AAa1,...,an,f(a1,...,an)→b(R)) Adds a new attribute b by means of applying
function f over a subset of the attributes in the input schema a1, . . . , an. Such operation
modifies the schema for each tuple, therefore it can be pipelined3.

– Executionestimator = 0

– Spaceestimator = B
(
T
(
Ra1,...,an,f(a1,...,an)

))
Attribute Alteration (AMa1,...,an,f(a1,...,an)→ai

(R)) Similar to attribute addition however in-
stead of adding to the schema a new attribute it modifies an existing one ai.

– Executionestimator = 0

– Spaceestimator = B (T (Ra1,...,an
))

Attribute Renaming (ρa1→b1,...,an→bn(R)) Renames attributes a1, . . . , an in the schema to
b1, . . . , bn. This operation works at the schema level, therefore does not need to access the
input data and incurs no execution cost.

– Executionestimator = 0

– Spaceestimator = B (T (R))

Cross Join (R × S) Generates all combinations of elements by applying cartesian product
over the input relations R and S. Although it incurs a very high cost in both performance and
space, it is useful for instance to generate a date dimension by applying Y ears×Months×
Days. This operation cannot be pipelined as it requires the complete input relations to be
present.

– Executionestimator =


B (T (R)) , one-pass

B(S) + T (S) ·B(R), tuple-based nested loop

B(S) +B(R) · dB(S)
M−1e, block-based nested loop

– Spaceestimator = B (T (R) · T (S))

Dataset Copy (D(R)) Generates a duplicate dataset for input R, it can be pipelined.

– Executionestimator = 0

– Spaceestimator = B (2T (R))

Datatype Conversion (Ca1t→a1t′,...,ant→ant′
(R)) Modifies the datatype for input attributes

a1, . . . , an. This operation works at the schema level, therefore does not need to access the
input data and incurs no execution cost.

– Executionestimator = 0

– Spaceestimator = B
(
T
(
Ra1t′,...,ant′

))
3 Remember that pipeline operators are considered to have Executionestimator = 0
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Difference (R \ S) Performs the set difference for input relations R and S.

– Executionestimator
4

• One-pass: B (T (R) + (S))

• Sort-based: 2B (T (R)) dlogMB (T (R))e+ 2B (T (S)) dlogMB (T (S))e+B (T (R)) +
B (T (S))

• Hash-based: 2B(T (R))dlogM−1B(T (R))−1e+2B(T (S))dlogM−1B(R)−1e+B(R)+
B(S)

– Spaceestimator = B (T (R)− selr=s(R) · T (R) · T (S))

Duplicate Removal (δ(Ra1,...,an
)) Eliminates all duplicate tuples by means of grouping at-

tributes a1, . . . , an. Its implementation is the same as for the Aggregation operation.

– Executionestimator =


B (T (R)) , one-pass

3B (T (R)) , sort-based

3B (T (R)) , hash-based

– Spaceestimator = B

(
min

(
T (R)

2
,
∏
V (R, ai)

))
Filter (σP (R)) Outputs a subset of tuples from R, precisely those that satisfy the selection
predicate P .

– Executionestimator = B(T (R))

– Spaceestimator = B(selP (R) · T (R))

Intersect (R ∩ S) Performs the set intersection for input relations R and S.

– Executionestimator

• One-pass: B (T (R) + (T (S)))

• Sort-based: 2B(T (R))dlogMB(T (R))e+2B(T (S))dlogMB(T (S))e+B(T (R))+B(T (S))

• Hash-based: 2B(T (R))dlogM−1B(T (R)) − 1e + 2B(T (S))dlogM−1B(T (R)) − 1e +
B(T (R)) +B(T (S))

– Spaceestimator = B

(
max(T (R), T (S))

2

)
Join (R 1P S) Natural join of the two relations R and S, which outputs those tuples where
both relations agree by means of selection predicate P .

– Executionestimator

• One-pass: B(T (R)) +B(T (S))

• Tuple-based Nested Loop: B(T (S)) + T (S) ·B(T (R))

• Block-based Nested Loop: B(T (S)) +B(T (R)) · dB(T (S))
M−1 e

• Sort-merge join: 2B(T (R))dlogMB(T (R))e+2B(T (S))dlogMB(T (S))e−B(T (R))−
B(T (S))

• Hash-Join: 2B(T (R))dlogM−1B(T (S))−1e+2B(T (S))dlogM−1B(T (S))−1e+B(T (R))+
B(T (S))

– Spaceestimator = B (selP (R 1 S) · T (R) · T (S))

4 For the sake of readability, format has been changed in the case of long formulas
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Left Outer Join (R d|><| S) Natural join of the two relations R and S, which outputs those
tuples from R where both relations agree by means of selection predicate P .

– Executionestimator

• One-pass: B(T (R)) +B(T (S))

• Tuple-based Nested Loop: B(T (S)) + T (S) ·B(T (R))

• Block-based Nested Loop: B(T (S)) +B(T (R)) · dB(T (S))
M−1 e

• Sort-merge join: 2B(T (R))dlogMB(T (R))e+2B(T (S))dlogMB(T (S))e−B(T (R))−
B(T (S))

• Hash-Join: 2B(T (R))dlogM−1B(T (S))−1e+2B(T (S))dlogM−1B(T (S))−1e+B(T (R))+
B(T (S))

– Spaceestimator = B (selP (R 1 S) · T (R))

Projection (πa1,...,an(R)) Outputs only the attibutes specified in a1, . . . , an. It can be pipelined.

– Executionestimator = 0

– Spaceestimator = B (T (πa1,...,am
(R)))

Right Outer Join (R |><|d S) Natural join of the two relations R and S, which outputs those
tuples from S where both relations agree by means of selection predicate P .

– Executionestimator

• One-pass: B(T (R)) +B(T (S))

• Tuple-based Nested Loop: B(T (S)) + T (S) ·B(T (R))

• Block-based Nested Loop: B(T (S)) +B(T (R)) · dB(T (S))
M−1 e

• Sort-merge join: 2B(T (R))dlogMB(T (R))e+2B(T (S))dlogMB(T (S))e−B(T (R))−
B(T (S))

• Hash-Join: 2B(T (R))dlogM−1B(T (S))−1e+2B(T (S))dlogM−1B(T (S))−1e+B(T (R))+
B(T (S))

– Spaceestimator = B (selP (R 1 S) · T (S))

Sampling s%(R) Reduces the input relation R to the specified percentage by means of
sampling techniques. Streaming sampling techniques can be applied here such as sticky
sampling and thus it acts as a pipeline.

– Executionestimator = 0

– Spaceestimator = B (%T (R))

Sort (τ(Ra1,...,an
)) Sorts relation of R by means of attributes a1, . . . , an. It requires the

complete relation as input and thus it cannot be pipelined.

– Executionestimator =

{
B (T (R)) , one-pass

3B (T (R)) , sort-based

– Spaceestimator = B(T (R))
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Union (R ∪S S) Set-based union (i.e., without repetitions) for input relations R and S.

– Executionestimator

• One-pass: B(T (R)) +B(T (S))

• Sort-based: 2B(T (R))dlogMB(T (R))e+2B(T (S))dlogMB(T (S))e+B(T (R))+B(T (S))

• Hash-based: 2B(T (R))dlogM−1B(T (R)) − 1e + 2B(T (S))dlogM−1B(T (R)) − 1e +
B(T (R)) +B(T (S))

– Spaceestimator = B

(
max (T (R) , T (S)) +

min (T (R) , T (S))

2

)
Union All (R ∪ S) Bag-based union (i.e., with repetitions) for input relations R and S.

– Executionestimator

• One-pass: B(T (R)) +B(T (S))

• Sort-based: 2B(T (R))dlogMB(T (R))e+2B(T (S))dlogMB(T (S))e+B(T (R))+B(T (S))

• Hash-based: 2B(T (R))dlogM−1B(T (R)) − 1e + 2B(T (S))dlogM−1B(T (R)) − 1e +
B(T (R)) +B(T (S))

– Spaceestimator = B(T (R)) +B(T (S))
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Appendix B Forge in Quarry

B.1 Introduction to Quarry

Next generation BI systems (or self-service BI) [1] are devoted to enable non-expert users to
search, extract and integrate situational data [31], all this achieved via a direct interaction
with the system, dismissing the need of additional support or intervention. An example
of such system is Quarry, a self-service BI platform developed by the MPI research group
at UPC. The core of Quarry is a semi-automatic tool that for a set of input information
requirements generates a multidimensional (MD) schema and an ETL process design (data-
intensive flow). This thesis revolves around the Quarry platform and thus, Forge has been
integrated as a new module of it.

Besides implementing Forge, the beginning of this thesis was devoted to design and
implement a robust and extensible architecture for Quarry, by making it service-oriented,
see figure 7. Besides that, the front-end had to be completely rewritten which helped to
complete the work presented in [23].

Fig. 6: High level overview of Quarry

Taking a look into the internals of the Quarry platform, depicted in figure 6, the first
module we encounter is Requirements Elicitor, i.e., MineDigger. That is a high-level GUI
that enables user interaction with the platform. User input is appropriately converted to
information requirements and sent to Requirement Interpreter, i.e., GEM [41]. Its input is a
set of data sources, whose semantics are captured by means of an OWL ontology, and a set
of information requirements expressed in xRQ, a proprietary XML-based format. Each of
the aforementioned requirements is processed individually in order to generate a MD schema
and a data-intensive flow flow design that will satisfy the requirements at hand.

The outputs of GEM are further sent to the inputs of Design Integrator modules, i.e.,
ORE [24] and CoAl [21]. MD Schema Integrator, i.e., ORE, in an incremental and iterative
way, generates a unified MD schema design from the set of individual MD schema designs
resulted from the aforementioned (GEM) module, providing answers for each of the informa-
tion requirements specified. ORE is configurable to use different non-functional requirements
to drive the unified MD schema design, and as mentioned in [24], minimizing the structural
complexity is the only one being used so far.

On the other hand, ETL Process Integrator, i.e., CoAl, is ORE’s counterpart for data-
intensive flow integration. Starting from individual flows, one for each information require-
ment, CoAl consolidates these, as before in an incremental and iterative way, into a unified
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flow that answers the current set of information requirements. The consolidation process is
driven by the non-functional requirement of minimizing the overall execution time of the
unified flow. This is achieved by maximizing overlapping among input flows, by detecting
potential duplicates in data sources and operations.

Fig. 7: Service-oriented architecture of Quarry with technological details

B.2 Forge: Implementation details

Forge is a mid-size project with a total of 52 Java classes. Figure 8 depicts a simplified
version of the UML class diagram where the most important classes are shown, note they
are clustered by type.

However, in order to simplify coding we reuse on some existing libraries throughout the
project, some of the most used and relevant are:

– JGraphT5, a graph library that provides mathematical graph-theory objects and algo-
rithms

– ETLFlowGraph, developed as part of the work in [25], it enhances the graph structure
to convert it to an ETL graph with all components presented in section 2.2.

– AIMA6, which provides implementation for all algorithms described in the book Artificial
Intelligence - A Modern Approach [43].

– Google Guava7, several of Google’s core libraries. Mostly used for complex data struc-
tures and set operations.

Besides selecting a DW configuration C, within Quarry the task of Forge is to deploy
a DW solution and to divide the input data-intensive flow into 2 parts, loading and query

5 http://jgrapht.org/
6 http://aima.cs.berkeley.edu/
7 https://github.com/google/guava
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Fig. 8: Simplified UML class diagram of Forge

parts. Deploying a data warehouse is achieved by creating tables in a database with the
output schema of all selected nodes in the DW configuration.

Once the schema of the data warehouse is created, nodes to insert the output of the
selected nodes to the tables are created. On the other hand, a separate DIF is created,
which reads the inputs from the populated tables and continues the logics of the original
DIF .
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Appendix C Extended Related Work

In section 6 we presented related work on materialized view selection, however this work
additionally deals with two major research areas, namely: measurement non-functional re-
quirements in data warehouses and estimation of ETL operators cost. In this appendix we
present related work concerning those two areas.

C.1 Measuring Non-functional Requirements in Data Warehouses

Sometimes referred as quality factors, non-functional requirements have been extensively
studied in software engineering [9]. Probably, one of the most applied techniques to measure
such quality factors is the goal-question-metric method (GQM) [6]. This method is based
on the fact that quality goals are usually hard to assess, however it is possible to validate
those by answering a set of questions. In a similar manner, such quality questions are hard
to be directly assessed, but they can be measured by a set of metrics which can quantify
their degree of compliance.

The work in [20] defines a broad set of quality dimensions for data warehouses relying on
the GQM method. Additionally, a meta model and architecture is proposed where queries
representing quality measurements can be issued. In [37], the NFR framework [10] is adopted
and extended with metrics for data warehouses. This framework specifies non-functional re-
quirements as a graph of softgoals that can be conflicting or harmonious.

On the other hand, as previously said, ETL processes are the most error-prone and
time-consuming tasks, which some estimations quantify in 70%. Therefore, this fact has led
extensive research in quality-oriented design of ETL processes. [48] proposes a set of quality
metrics, named QoX, which can be tracked throughout the design process. Such metrics are
used in [44] in order to define a generic benchmark for ETL processes. In [55], a clear set of
quantifiable metrics are defined for such quality factors. Further works focus on optimizing
some particular requirements such as [49], where they target performance, fault-tolerancy
and data freshness; or [38] for maintenance and evolution.

C.2 Estimating ETL Operators Cost

Optimization in ETL processes has been usually pushed down to the underlying DBMS in
order to take advantage of the extensive optimization techniques that exist for such sys-
tems. It is clear though that the elements contained in an ETL process are not restricted
to those offered in DBMS, i.e. those inherited from the relational algebra [11]. Therefore,
this highlights the need for specific optimization techniques tailored to such processes. Many
works [45,46,49] rely on the reordering of the ETL workflow, for instance to move restrictive
operations such as selections or aggregations in the early stages of the process. However,
most of those works overlook the problem of estimating the cost of each operator and tend
to follow a black-box approach.

In [46], the problem of optimizing ETL workflows is tackled with a simple cost model
where only the number of processed rows is considered. Extending the work, [49] proposes
a set of cost functions for the complete ETL design, where each represents an ETL quality
metric. The cost of each operation is calculated by means of a generic function paremetrized
with the number of input and output tuples. Recent works are moving towards a cost-based
approach for optimizing ETL workflows [27–29], albeit it is not clear the used cost function
per operator, or they rely on its previous execution to infer the that cost.

In the past, different approaches dealing with ETL optimization [12,56] have considered
UDFs as black boxes, as they support arbitrary code written in any programming or database
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query language. That clearly yields difficulties when evaluating its complexity. However,
recent systems [4] are considering UDFs are first class citizens in order to broaden their
processing capabilities. Some works [19] are trying to tackle the issue estimating the cost of
UDFs by means of static code analysis techniques. In [18] a method for calculating the cost
of a UDF function is proposed by means of a recursive formula, it evaluates and aggregates
different CPU usage parameters for the tree representation of the UDF.
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