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• Text S1 (Appendix A) is a summary review of aerosol-pattern correlation models 
in the literature. 

• Text S2 (Appendix B) reviews and discusses the limitations of the classic wind-
retrieval approach based on time/space maximization of the correlation function. 

• Text S3 lists the additional references mentioned in the texts S1 and S2. 

 

 

 

 

 

 

                                                 

 



 

 

Text S1. Aerosol-pattern correlation models 

The spatial-correlation model of Eq.(3) consists of a quadratic function, q, describing the 

spatial anisotropy (Eq.(5)) composed with a monotonically-decaying even (i.e., 

symmetric) function, ( )f q . Two common models for f  are the Booker-Gordon 

exponential model, ( ) ( )expf q q= − , and the Gaussian one, ( ) ( )expf q q= −  

(Ishimaru, 1978). The Gaussian model is widely used in the statistical description of 

aerosol structures in the ABL, where they can be spatially modeled as three-dimensional 

Gaussian fields or “puffs”. For an advected aerosol concentration field, the space-time 

correlation function (Eq.(8)) can be expressed as 

 ( ) ( ), expR qτ τ= − −  ρ ρ U . (A.1) 

In Eq.(A.1), the locus of constant correlation is a four-dimension ellipsoid. 

A more complete model of the aerosol concentration field includes the diffusion 

caused by turbulent wind eddies that decorrelate the inhomogeneous structures during 

transport. First applied by Little and Ekers (1971), and later by Kunkel et al. (1980) 

especially for an aerosol case, this model can explicitly be formulated for an isotropic, 

Gaussian medium as  
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is a Lorentzian function modelling eddy diffusion, 2σ  is the turbulence variance 

(assumed isotropic), and 
c

ρ  is the characteristic correlation length (Sect. 2.2.1.1). 



 

 

Other more accurate models based on power-law spectral modelling have been 

considered by Doviak et al. (1996) (study of the refractive index from ground-based 

antennas) and by Astafurov et al. (1992) (lidar aerosol-concentration sensing). 

 

Text S2. Relationship with classical methods: Correlation-function maximization 

In order to compare the method presented in Sect. 3 with previously published results, we 

discuss two well-known “classical methods” where the cross-correlation function, 

( ),
z
R τr , is maximized by finding the optimum time delay, 

opt
τ τ=  (observations 

continuous in time, and made at two points) or, alternatively, the optimum spatial lag 

opt
=r r  (observations continuous in space, and made at two times). For historical 

reference, the reader can follow Briggs (1968). 

(i) Time optimization 

Statement 1. - “The approach in which the wind vector is inverted by finding the time 

delay where the correlation function has a maximum 
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given lidar observations made at two points separated by 
0
r  is not valid for the turbulent 

atmosphere case. The non-turbulent case requires isotropic media or, alternatively, a 

velocity- inversion volume densely sampled in all directions.”  

 

1. For the turbulent case of Eq.(A.2), is it obvious that the derivative of the correlation 

function (Eq.(B.1)) involves the “turbulent” diffusion function ( )2
K τ  and its derivative, 



 

 

which cannot be determined unless ( )2
K τ  is known “a priori”. As a result, the statement 

fails. 

2. For the non-turbulent (frozen-atmosphere) case, we return to Eq.(8)) and recall that the 

model function f (Eq.(3)) is by definition monotonically decreasing. As a result, 

0df dq <  and maximizing the correlation function ( ( ), 0
z

dR dτ τ =ρ ) is equivalent to  

 0 0
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dR df dq dq

d dq d dτ τ τ
= = ⇒ = . (B.2) 

That is, maximising the quadratic form q for 
opt

τ τ= . Departing from Eq.(12), the 

condition (B.2) under the most general case of anisotropic media is equivalent to 
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By interpreting this equation as the dot product, 0
T

C D
=V V , between vector 

C opt
τ= −V r V  and vector 

D
=V VA , Eq.(B.3) has two possible solutions:  

2.1) The general solution, 
C D

⊥V V , implies that C optτ= −V r V  is orthogonal to the 

anisotropy-rotated wind vector 
D

=V VA . 

If (as is always the case) the anisotropy matrix, A, is not known “a priori”, 

assuming isotropic media when in fact it is not, Eq.(B.4), next, yields a “false” apparent 

direction of drift that combines the contributions of true wind direction and the 

anisotropy-dominant direction of the aerosol pattern. 

For the isotropic case (A = I, 
D

=V V ), 
opt

τ−r V  is orthogonal to the true wind 

vector, V ,  and Eq.(B.3) can also be written as 
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τ
=
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where r  is a user-given baseline, r = r , V = V , and the relative direction of wind and 

baseline appear explicitly ( ( )Vr,cos ). 

If A is known (be it via the wind-retrieval method outlined in Sect. 3.2, or any 

other means, including, obviously, the isotropic case A = I), direct solution of Eq.(B.3) is 

cumbersome, for it involves quadratic and cross-product terms of the wind components 

( ), ,
x y z
V V V . This is a main argument in favour of the linear approach presented in Sect. 

3.3. 

 

2.2) The particular solution of Eq.(B.3), 
C

=V 0  (equivalently, Eq.(B.4) for the isotropic 

case), occurs when the chosen baseline, 
p
r , and the wind vector, V , are parallel. In that 

case, the particular solution 
,p p opt

τ=r V  (yielding the wind vector solution, 
,p p opt

τ=V r ) 

indicates that only for the wind-parallel baseline, 
p
r , there is a time shift, 

,p opt
τ , giving 

the absolute maximum correlation. However, this particular solution cannot be found 

when the set of baselines is very limited, as in the case of a few scanning LOS (e.g., the 

three-angle azimuth scan). That is, unless the high resolution and the radial extension of 

the velocity-inversion volume permit very dense sampling and hence the possibility of 

finding in the volume data lattice such a wind-parallel baseline. 

(ii) Spatial optimization 

Statement 2.- “The space shift 
opt
r  giving the maximum correlation value,  
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for lidar observations separated by a time interval 
0

τ  gives the mean wind velocity (drift 

velocity) as 
0opt

τ=V r  provided that the velocity-inversion volume is densely sampled 

in virtually all directions.” 

Departing from any of the correlation models discussed so far (the non-turbulent 

“advective” of Eq.(8), the Little-Ekers’ turbulent one of Eq.(A.2)), it is straightforward to 

show that Eq.(B.5) (i.e., the directional derivative of the correlation function in the 
opt
r  

direction) is equivalent to that of the quadratic form, q  (compare with Eq.(B.2) above). 

Formally, 
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where ˆh∆ =r u  and û  is a unit vector in the direction of interest ( ˆ
opt opt

r=u r ). Since this 

direction is not known “a priori” the user must search for it in all baseline directions of 

the volume.    

Substitution of Eq.(12) into Eq.(B.6) above and considering lidar observations 

separated by a time, 
0

τ , yields 
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Eq.(B.7) means that there is one baseline, 
opt

=r r , that maximizes the correlation 

function (among any other direction) for the atmospheric wind vector, V. Therefore, the 

wind vector is obtained as 
0opt

τ=V r , which is a vector parallel to the baseline vector 

opt
r . In the multiple-angle azimuth technique, because all baselines and LOS are nearly 



 

 

parallel, if the gradient of a large-scale aerosol feature is not parallel to the LOS (or more 

generally, if ≠A I ) then a “false apparent motion” is retrieved.  

Again, while this result is feasible for area scanning schemes and horizontal wind 

retrievals, it is not for scanning schemes based on a few scanning LOS (e.g., the three-

angle-azimuth scan). This is because of the limited number of baselines available from 

the lattice of measurements in the velocity-inversion volume. 
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