
Bellot et al. BMC Bioinformatics (2015) 16:312
DOI 10.1186/s12859-015-0728-4

SOFTWARE Open Access

NetBenchmark: a bioconductor package
for reproducible benchmarks of gene
regulatory network inference
Pau Bellot1,2*, Catharina Olsen3,4, Philippe Salembier1, Albert Oliveras-Vergés1 and Patrick E. Meyer2

Abstract

Background: In the last decade, a great number of methods for reconstructing gene regulatory networks from
expression data have been proposed. However, very few tools and datasets allow to evaluate accurately and
reproducibly those methods. Hence, we propose here a new tool, able to perform a systematic, yet fully reproducible,
evaluation of transcriptional network inference methods.

Results: Our open-source and freely available Bioconductor package aggregates a large set of tools to assess the
robustness of network inference algorithms against different simulators, topologies, sample sizes and noise intensities.

Conclusions: The benchmarking framework that uses various datasets highlights the specialization of some
methods toward network types and data. As a result, it is possible to identify the techniques that have broad overall
performances.

Keywords: Bioconductor package, Gene regulatory networks, Gene expression, Gene regulation network
reconstruction, Synthetic genetic networks, Benchmark

Background
Despite extensive knowledge of individual genes, we are
still far from understanding the regulation mechanisms
happening inside biological cells. In order to gain a
system-level understanding, it is necessary to examine
how genes interact on a large-scale level.
Some specific genes called transcription factors (TF)

bind to the promoter regions of target genes (TG) and
can activate or inhibit a TG’s expression. Therefore, genes
do not work in isolation; they are connected in highly
structured networks. Gene Regulatory Networks (GRNs)
represent this set of relationships.
Reconstructing gene regulatory networks from expres-

sion data is a very difficult problem that has seen a contin-
uously rising interest in the past decade, and presumably
this trend will continue in the years to come due to the

*Correspondence: pau.bellot@upc.edu
1Universitat Politecnica de Catalunya BarcelonaTECH, Department of Signal
Theory and Communications, UPC-Campus Nord, C/ Jordi Girona, 1-3, 08034
Barcelona, Spain
2Bioinformatics and Systems Biology (BioSys), Faculty of Sciences, Université
de Liège (ULg), 27 Blvd du Rectorat, 4000 Liège, Belgium
Full list of author information is available at the end of the article

rich set of applications in biotechnological fields (biofuel,
food, etc.) as well as in the biomedical field (drug design,
cancer signatures, etc.). Several papers have compared
and evaluated different network reconstruction methods
[1–5]. However, a free open-source tool providing a fully
reproducible benchmark is yet missing. Furthermore, in
each state-of-the-art study, only one synthetic data gen-
erator has been used: either the GeneNetWeaver (GNW)
simulator [3] in [4] and [5] or the SynTReN simulator [1]
in [2]. As a result, different conclusions about the best
performing methods have been obtained in each study.
Finally, most reviews do not evaluate the changes of per-
formances of the methods as a function of the number of
genes, of the number of experiments or of the intensity
of noise for multiple simulators and topologies (SynTReN,
GNW, E.coli, S. cerevisae, etc.).
Hence, we propose a new extensive benchmarking

framework that is fully reproducible with just one line
of code and can also be easily modified to change the
experimental setting or introduce a new inference algo-
rithm. Our benchmarking strategy clearly shows that
some methods perform very well on one of these artificial

© 2015 Bellot et al.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41822615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0728-4-x&domain=pdf
mailto: pau.bellot@upc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 2 of 15

generators but can have poor results on another. This
strongly suggests the importance of a tool that is able to
test, both simply and broadly, any new proposed method.
Some reviews such as [6] and [7] evaluate the behavior of
different GRN reconstruction methods in real data cor-
responding to well known microbes in [6] and to ovarian
cancer cells in [7]. Although real data represents a the-
oretically more interesting challenge than artificial data,
they suffer from several drawbacks. First, the different
algorithms are tested based on only partial knowledge
of the underlying network [8], where a false positive
could be a still undiscovered true positive. Second, the
intensity of noise is uncontrollable. Hence, assessing a
method’s robustness to varying intensities of noise can-
not be done easily with real data. However, different noise
intensities and distributions are observed from different
measurement platforms (i.e. microarray vs RNAseq) as
well as from different organisms. As a result, assessing
the performance of any reverse-engineering algorithm on
a few real datasets gives little information on its per-
formance on other type of organisms and measurement
platforms.
For this reason, we provide a Bioconductor package

that, by default, compares 10 variations of 5 datasets
having more than 100 expression-measurements each.
In other words, the package compares methods on 50
datasets, each with very different samples and even differ-
ent amounts of noise. Using realistic artificial data allows
for large number of samples that in turn, allows for reli-
able statistical measures indicative of performances and
robustness. So far, no consortium nor database focus-
ing on real data has assembled several thousands of
homogeneous expression samples (coming from the same
experimental platform), that would allow for a similar
benchmark. In this paper, we argue that a first step to sup-
port a new network inference method is to demonstrate
its ability to recover regulatory networks from a broad set
of realistic artificial datasets, where the truth is known and

where the noise is controlled. Then, of course, a second
step would be the analysis of the algorithms on real data
(for example, coming from model organisms).
In this study we will show that our benchmarking strat-

egy is highly informative for evaluating the performance
and robustness of network reconstruction methods.
Indeed, in this paper, we evaluate more than ten state-
of-the-art reconstruction techniques using more than 50
datasets from different simulators in a high number of
genes and low number of experiments scenario.
With this study we found that no single method is the

best across different sources of data, but at the same time
this study also shows that some techniques, such as CLR
[9], are rather good in average. We also tested the sensitiv-
ity of these methods with regard to different kinds of noise
and to the number of experiments. Those experiments
highlight which methods are more adapted to the com-
mon scenario (i.e. few samples and high noise). Although
often overlooked, reproducibility is an important issue
in the field of benchmarking. Hence, in order to pro-
vide the scientific community with tools allowing the full
reproduction of the tests as well as their extension ormod-
ification, we provide our benchmarking tools in a Biocon-
ductor package. Table 1 summarizes the most important
aspects concerning benchmarking and compares the fea-
tures included in previously published reviews and the one
described here.

Materials andmethods
Benchmarking process
In order to provide a sound and fair comparison of the
different methods, the use of various simulators is essen-
tial. A large set of gene expressions generated by vari-
ous simulators is collected in what we call “Datasource”
(see Fig. 1).
At this stage, the data generated by the simulators is

free of noise. The noise will be added later so that it
is possible to control its properties independently of the

Table 1 Reviews of GRN reconstruction methods and their characteristics

Review [2] [4] [5] This study

Number of variables 100 ∈ [1643, 5950] ∈ [10, 100] ∈ [300, 2000]

Topologies Yeast E. coli & S. cerevisiae & S. aureus Yeast & E. coli Synthetic & Yeast & E. coli

Number of methods compared 4 37 29 10

Simulators SynTReN GNW GNW Rogers & GNW & SynTReN

Number of experiments ∈ [20, 200] ∈ [160, 805] ∈ [10, 100] ∼150

Impact of number of experiments – – � �
Impact of noise – – – �
Dataset availability – � – �
Benchmark extension – � – �
Possibility to change parameters – – – �

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 3 of 15

Fig. 1Workflow of the network evaluation process

simulators and also to provide fully reproducible tests.
This study involves data generated by three different GRN
simulators:

GNW The GNW simulator [3] generates network struc-
tures by extracting parts of known real GRN structures
capturing several of their important structural proper-
ties. To produce gene expression data, the simulator relies
on a system of non-linear ordinary differential equations
(ODEs).

SynTReN The SynTReN simulator [1] generates the
underlying networks by selecting sub-networks from
E. coli and Yeast organisms. Then the experiments are
obtained by simulating equations based on Michaelis-
Menten and Hill kinetics under different conditions.

Rogers The data generator described in [10] that will be
referred as Rogers (as in [11]) relies on a power-law dis-
tribution on the number of connections of the genes to
generate the underlying network. The steady state of the
system is obtained by integrating a system of differential
equations simulating only knockout data.

Data generation process Using these simulators, five
large datasources involving many noise-free experiments
have been generated.
The characteristics of these datasources are detailed

in Table 2. In order to generate these datasources we
have simulated multifactorial data with SynTReN and
GNW, which provides less information than than exten-
sive knockout, knockdown or time series experiments
[12]. However, multifactorial data are the most com-
mon type of expression datasets because of experimental
constraints.
The next step of the benchmarking process is to ran-

domly subsample those datasources in order to generate
a large set of different but homogeneous datasets. Each

Table 2 Datasources used in this study and their characteristics

Datasource Name Topology Experiments Genes Edges

Rogers1000 R1 Power-law 1000 1000 1350
tail topology

SynTReN300 S1 E. coli 800 300 468

SynTReN1000 S2 E. coli 1000 1000 4695

GNW1565 G1 E. coli 1565 1565 7264

GNW2000 G2 Yeast 2000 2000 10392

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 4 of 15

dataset has a different number of experiments extracted
from one of the five datasources. In the design we pre-
vent the same experiment to be used several times in the
same dataset, but it can appear in different datasets (it is
worth noting that because of the high number of samples
provided in the datasource, the probability of many identi-
cal samples in several datasets is very low in all our tested
setups). Each dataset is then contaminated with noise
with a slightly different signal-to-noise ratio; this aims to
reproduce the variability in the real microarray generation
process within the same laboratory or between different
ones. In the present study, we have chosen to add a mix-
ture of Gaussian noise and lognormal noise to resemble
to characteristics of the experimental noise observed in
microarrays [13]. The first noise, called “local” noise is an
additive Gaussian noise with zero mean and a standard
deviation (σLocal(g)) that is around a percentage (κ%) of
the gene standard deviation (σg). Therefore, the Signal-to-
Noise-Ratio (SNR) of each gene is similar. The local noise
standard deviation can be formulated as follows:

σLocal(g);κ% = σg
U(0.8κ , 1.2κ)

100
, (1)

where U(a, b) denotes the uniform distribution between a
and b. This kind of noise will be referred to as local noise.
Additionally, we add an independent lognormal noise

called “global” noise in the sequel. The standard deviation
of this noise (σGlobal) is the same for the whole dataset and
is a percentage (κg%) of the mean variance of all the genes
in the dataset (σg). It is defined as follows:

σGlobal;κg% = σg
U(0.8κg , 1.2κg)

100
. (2)

We have chosen to add a range of 40% around κ and
κg in order to add some variability to the different gen-
erated datasets. This range allows the various datasets
to have some heterogeneity in noise but ensures at the
same time that they are not too different from the origi-
nally specified values κ and κg . We have chosen this value
to reflect our experience with real data. Nevertheless, in
addition to this range (40%), we also tested bigger and
smaller ranges (60%, 20% and 10%) around κ and κg , and
the conclusions reached by the benchmark are equiva-
lent. In Fig. 1, a flowchart illustrates the process. In our
implementation, the various datasources have previously
been generated with the in silico simulators and stored.
As a result, the process is fast as no ODEs have to be
computed.Moreover, this makes the reproducibility of the
tests much easier, as it is not necessary to interact and
parametrize the various simulators (with some of them
being quite complex). Although no artificial generator is
really equivalent to real data, an in silico analysis gives reli-
able guidelines on algorithms’ performance in line with
the results obtained on real data sets [14]. Additionally, the

use of several different datasources coming from differ-
ent simulators renders the subsequent analysis of methods
more credible before any use on real data.

ImplementationinNetBenchmarkpackage The different
datasets are automatically loaded with the package, and
are listed in character vector named Availabledata,
which contains the names of the datasources. For each of
these, we provide the simulated data and the underlying
network. The former is a data.frame containing a sim-
ulated microarray experiment, where each row contains
an experiment and each column contains the gene expres-
sion. The true underlying network is in the form of an
adjacency matrix.
The dataset generation process is implemented in the

function datasource.subsample, that returns a list
with datasets.num number of elements. Each element
of the list contains a data.frame of the subsampled
datasource with the same number of genes and differ-
ent numbers of experiments. The user could also specify
the number of experiments. Moreover, the amount of
local noise and global noise are controlled by parameters
local.noise and global.noise, respectively. The
distribution of noise with the variable noiseType that
can be (“normal” or “lognormal”).

Evaluation protocol
A network reconstruction problem can be seen as a binary
decision problem. After thresholding the edge list pro-
vided by the GRN algorithm, the final decision can be
seen as a classification. For each possible pair of nodes,
the algorithm either infers an edge or not. As a result,
we get correct connections and misclassified connections.
Therefore, the performance evaluation can be done with
the usual metrics of machine learning like Receiver Oper-
ating Characteristic (ROC) and Precision and Recall (PR)
curves. ROC curves display the relative frequencies of true
positives to false negatives for every predicted link of the
edge list. Whereas the PR curves shows the relative pre-
cision (the fraction of correct predictions) versus recall
(also called sensitivity) that is equivalent to the true pos-
itive ratio. These relative frequencies are also computed
for every link. For a discussion of the relation between PR
and ROC curves, we refer the reader to [15].
Note that since the provided expression datasets do not

contain temporal information, predicting self-interactions
is irrelevant. Moreover, most of the state-of-the-art meth-
ods do not attempt to recover this kind of relationships.
So, we do not consider self-interactions to compute those
evaluation metrics.
The DREAM5 challenge [4] and its previous editions

[12] have established a de-facto protocol to evaluate an
inferred network. The protocol consists in computing the
PR or ROC curves, and in measuring the Area Under the

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 5 of 15

Precision Recall curve (AUPR) or Area Under ROC curve
(AUROC). This approach gives an estimation of the global
behavior of the method. However, other papers have eval-
uated the inferred networks using only the most reliable
inferred connections [8, 16].
We have adopted the latter approach, evaluating the

inferred networks using only the top best x% of the total
number of possible connections (if the network has G
genes, then the total number of possible connections is
G2 − G). This leads to a total of t evaluated connections
that will be different for each datasource.
We use as performance measures the mean preci-

sion, the AUPR and the AUROC in the top best t
inferred connections. These measures could be obtained
from a directed or undirected evaluation. The former
evaluates the existence of an edge and its direction
while the latter only evaluates the existence of an
edge.

Implementation in NetBenchmark package The eval-
uation is performed by the function evaluate(inf.
net,true.net,sym) which compares the inferred
network (inf.net) with the true underlying network
(true.net). It returns the resulting confusion matrices
for each threshold value. This could be obtained from
a directed or undirected evaluation (specified with the
logical argument sym).

GRN inference methods In this section, we provide a
brief overview of the different GRN Inference approaches:
algorithms based on co-expression, information-theoretic
approaches, and feature selection approaches.
We use the following notation: Xi denotes the expres-

sion levels of the ith gene in every experiment. It is a vector
with N observations corresponding to the various exper-
iments. Finally, the particular gene expression level of the
kth experiment of the ith gene is denoted by xik .

1) Co-expression algorithms These methods assume
that similar patterns in gene expression profiles under dif-
ferent conditions are evidence of relationships between
genes. Since the coordinated co-expression of genes
encodes interacting proteins, studying co-expression pat-
terns can provide insight into the underlying cellular
processes.
Co-expression algorithms reconstruct a network by

computing a similarity score for each pair of genes. The
most simple co-expression method uses the correlation
between genes as similarity measure. If the correlation is
greater than a threshold, then the genes are connected in
the graph in an undirected way (because the correlation is
symmetric).
But, in practice these methods are not used for tran-

scriptional network reconstruction because they recover

indirect regulatory relationships. For example, if gene A
regulates gene B and this last one regulates gene C. Co-
expression algorithms will find a relationship between
gene A and gene C even though it is an indirect effect. To
avoid the inclusion of these indirect effects in the recov-
ered network, a post-processing step should be carried
on.

GeneNet In [17], the authors propose a heuristic for
statistically learning a causal network. It relies on the con-
version of a network inferred through correlation into a
partial correlation graph. Then, a partial ordering of the
nodes is assigned bymeans of a multiple testing of the log-
ratio of standardized partial variances. This allows identi-
fying a directed acyclic causal network as a sub-graph of
the partial correlation network.

MutRank MutRank [18] ranks the correlation between
every pair of genes and this rank is taken as the score that
describes the similarity between genes. For every gene i,
the Pearson’s correlation (corr) with all other genes l is
computed and ranked:

rij = rank
j

(corr(Xi,Xl),∀i �= l). (3)

As this expression is not symmetric, the final confidence
score assigned between genes i and j is computed as the
geometric mean of the scores obtained between gene i and
j and vice versa:

sij = rij · rji
2

. (4)

Zscore Zscore [19] is a method that assumes interven-
tional data, more concretely knockout experiments that
lead to a change in other genes. The assumption is that
the knocked-out gene i in the experiment k affects more
strongly the genes that it regulates than the others. The
effect of the gene i over gene j is captured with the Zscore
zij:

zij =
∣∣∣∣∣xjk − μXj

σXj

∣∣∣∣∣ , (5)

assuming that the kth experiment is a knockout of gene i,
μXj and σXj are respectively the mean and standard devi-
ation of the empirical distribution of the gene j. To apply
the original method, one needs to know which knock-
outs are done in each experiment. However, in practice,
one can assume that the knocked-out gene is the one cor-
responding to the minimum value in the experiment k:
argminl(xlk) = i. With this generalization, the method
can be applied to any type of data like multifactorial
or knockdown data. If the same gene is detected to be

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 6 of 15

knocked-out in various experiments, then the final Zscore
is the mean of the individual Zscore values.

2) Information-theoretic approaches These approaches
use a generalization of the pairwise correlation coefficient
that is called mutual information (Mij) [20]. It measures
the degree of dependence between two genes Xi and Xj.

Mij =
∑
Xi

∑
Xj

p(Xi,Xj) log2
p(Xi,Xj)

p(Xi)p(Xj)
, (6)

where p(Xi,Xj) is the joint probability distribution
function of Xi and Xj, and p(Xi) and p(Xj) are the
marginal probability distribution functions of Xi and Xj
respectively [20].

Relevance network The RELNET [21] is the simplest
method based on mutual information. For each pair of
genes, the mutual information Mij is estimated and the
edge between genes i and j is created if the mutual
information is above a threshold. Despite that mutual
information is more general than the Pearson correlation
coefficient, in practice thresholding the Mij or Pearson
correlation produces similar results [22].

CLR The Context Likelihood or Relatedness network
(CLR) method [9] is an extension of the previous method.
The method derives a score that is associated to the
empirical distribution of the mutual information values.
In practice, the score between gene i and gene j is defined
as follows:

cij =
√
c2i + c2j , with ci = max

(
0,

Mij − μMi

σMi

)
and

cj = max
(
0,

Mji − μMj

σMj

)
.

(7)

The mean and standard deviation of the empirical dis-
tribution of the mutual information between both genes
are denoted by μMi and σMi , which are defined as:

μMi = 1
G

G∑
l=1

Mil, σMi =
√√√√ 1

G − 1

G∑
l=1

(Mil − μMi)
2 .

(8)

This process can be seen as a normalization of the
mutual information [23].

ARACNE The motivation of the Algorithm for
the Reconstruction of Accurate Cellular NEtworks
(ARACNE) [24] is that many similar measures between
variables may be the result of indirect effects. In order to
avoid the indirect effect, the algorithm relies on the “Data

Processing Inequality” (DPI) which removes the weakest
edge, that is the one with the lowest mutual information,
in every triplet of genes.

PCIT The Partial Correlation coefficient with Informa-
tion Theory (PCIT) [25] algorithm combines the concept
of partial correlation coefficient with information theory
to identify significant gene-to-gene associations.
Similarly to ARACNE, PCIT extracts all possible inter-

action triangles and applies DPI to filter indirect connec-
tions, but instead of mutual information it uses first-order
partial correlation as interaction weights. The partial cor-
relation tries to eliminate the effect of a third gene l on the
correlation of genes i and j.

C3NET The Conservative Causal Core NETwork (C3NET)
[26] consists of two main steps. In the first step pairwise
mutual information is computed. Then, non-significant
connections are eliminated, according to a chosen signifi-
cance level α, between gene pairs. But the main difference
is the second step, where only the most significant edge
for each gene is selected. This edge corresponds also to the
highest mutual information value among the neighboring
connections for each gene.
The consequence of the second step is that the highest

possible number of connections that can be reconstructed
by C3NET is equal to the number of genes under consid-
eration. C3NET does not aim at reconstructing the entire
network underlying gene regulation but mainly tries to
recover the core structure.

3) Feature selection approaches A GRN reconstruc-
tion problem can also be seen as a feature selection
problem. For every gene, the goal is to discover its
true regulators among all other genes or candidate reg-
ulators. This approach can integrate knowledge about
genes that are not TFs and therefore reduce the search
space.
Typically, this approach only focuses on designing a sig-

nificance score s(i, j) that leads to a good ranking of the
candidate regulations, such that true regulations tend to
be at the top of the list since an edge is assigned between i
and j if the evidence s(i, j) is larger than a threshold.
With the feature selection approach, the scores s(i, j) for

all the genes are jointly estimated with a method that is
able to capture the fact that a large score for a link (i, j)
is not needed if the apparent relationship between i and j
is already explained by another andmore likely regulation.

MRNET TheMinimumRedundancyNETworks (MRNET)
[27] method reconstructs a network using the feature

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 7 of 15

Table 3 Evaluation of the computational complexity. Mean CPU time in seconds of each reconstruction method on the different
datasources in a 2 x Intel Xeon E5 2670 8C (2.6 GHz)

Datasource ARACNE C3NET CLR GeneNet Genie3 MRNET MutRank MRNETB PCIT Zscore

R1 2.483 2.367 0.409 9.377 1310.486 7.200 0.638 11.195 11.352 0.086

S1 0.106 0.215 0.059 0.917 183.266 0.120 0.056 0.406 0.333 0.010

S2 1.775 1.904 0.349 9.504 950.648 7.101 0.585 10.907 10.898 0.091

G1 10.442 6.795 1.079 29.612 2839.319 31.385 1.865 46.255 47.106 0.260

G2 25.551 12.189 1.750 53.792 4115.408 60.143 3.431 100.375 103.085 0.418

selection technique known as Minimum Redundancy
Maximum Relevance (MRMR) [28], which is based on a
mutual information measure. In order to get a network,
the algorithm performs a feature selection for each gene
(i ∈ [1,G]) on the set of remaining genes (j ∈ [1,G] \i).
The MRMR procedure returns a ranked list of features

that maximize the mutual information with the target
gene (maximum relevance) and, at the same time, such
that the selected genes are mutually dissimilar (minimum
redundancy). For every gene, the MRMR feature selection
provides a score of potential connections where the higher
scores should correspond to direct interactions. The indi-
rect interactions should have a lower scores because they
are redundant with the direct ones. Then, a threshold is
computed as in the RELNET method.
The MRNET reconstructs a network using a forward

selection strategy, which leads to subset selection that is
strongly conditioned by the first selected variables. The
Minimum Redundancy NETworks using Backward elim-
ination (MRNETB), uses instead a backward selection
strategy followed by a sequential replacement [29].

Genie3 The GEne Network Inference with Ensemble of
trees (Genie3) [30] algorithm uses the random forests [31]
feature selection technique to solve a regression problem
for each of the genes in the network. In each of the regres-
sion problems, the expression pattern of the target gene
should be predicted from the expression patterns of all
transcription factors.
The importance of each transcription factor in the pre-

diction of the target gene is taken as an indication of an
apparent regulatory edge. Then these candidate regula-
tory connections are aggregated over all genes to generate
a ranking for the whole network.

How to benchmark amethod These previously presented
methods are implemented or imported with the pack-
age. We have developed a wrapper with the with the
parameters recommended in the original publications
of each method. The only exception is the Genie3, for
which we reduced the number of trees from 1000 to
500 in order to limit the computation time required for

this method. Table 3 shows the computation time in
seconds needed by the various methods for each data-
source. The names of the wrappers of the GRN infer-
ence algorithms that are currently available are listed in
Table 4.
The package allows the user to reproduce as well as

to modify the experiments reported in this paper. How-
ever, an important additional functionality is that it also
allows new methods to be evaluated. In the current ver-
sion of the netbenchmark package (1.0), it is possible to
evaluate new unsupervised network inference methods.
The method should infer the network from steady-state
expression data, and should be able to perform this task
with a number of experiments much lower than the num-
ber of genes. The last requirement is that the provided
method is and be able to infer networks with thousands
of genes. In order to benchmark a new method, a new
wrapper has to be defined: fun(data). This function
receives a numeric data.frame with the gene expres-
sion data in the argument data where the columns con-
tain the genes and the rows the experiments. The function
should return a matrix which is the weighted adjacency
matrix of the network inferred by the algorithm. In order
to benchmark this method against all the other algo-
rithms of the package the following procedure should be
followed:

Table 4 Included GRN algorithms. GRN algorithms included in
the current version (1.0) of the netbenchmark Bioconductor
package

GRN Algorithms Wrapper function

ARACNE [24] aracne.wrap

C3NET [26] c3net.wrap

CLR [9] clr.wrap

GeneNet [17] genenet.wrap

Genie3 [30] genie3.wrap

MutRank [18] mutrank.wrap

MRNET/B [27, 29] mrnet.wrap & mrnetb.wrap

PCIT [25] pcit.wrap

Zscore [19] zscore.wrap

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 8 of 15

Table 5 Performances of the various GRN inference methods on the datasources. AUPR in the top 20% of the possible connections
with a undirected evaluation for each GRN inference method on the different datasources of the benchmark with a 20% local Gaussian
noise and 10% of global lognormal noise. The best statistically significant results tested with a Wilcoxon test are highlighted for each
datasource. Results obtained with current version (1.0) of the package and are updated online

Datasource ARACNE C3NET CLR GeneNet Genie3 MRNET MutRank MRNETB PCIT Zscore Random

R1
mean 0.004 0.002 0.005 0.140 0.024 0.005 0.042 0.005 0.177 0.140 < 0.001

σ(×10−3) 1.1 0.789 1.22 16 2.97 1.26 7.27 1.26 16.1 13.6 0.0265

S1
mean 0.039 0.032 0.139 0.062 0.134 0.109 0.063 0.118 0.060 0.028 0.001

σ(×10−3) 8.02 7.92 1.98 8.25 3.51 9.45 2.25 5.83 1.44 13.8 0.211

S2
mean 0.006 0.006 0.042 0.013 0.036 0.021 0.021 0.021 0.01 0.003 < 0.001

σ(×10−3) 1.19 1.63 1.55 1.56 1 2.76 0.959 2.01 0.522 1.46 0.1

G1
mean 0.106 0.100 0.139 0.085 0.108 0.134 0.034 0.084 0.063 0.001 < 0.001

σ(×10−3) 7.46 7.58 7.83 2.91 6.66 9.48 2.26 3.27 2.69 0.15 0.0141

G2
mean 0.101 0.095 0.106 0.037 0.069 0.126 0.025 0.058 0.044 < 0.001 < 0.001

σ(×10−3) 11.4 9.95 4.49 1.62 3.44 9.49 1.43 2.23 2.16 0.0917 0.0265

p < 0.05

Listing 1 Roadmap to compare a new method with the
state-of-the-art ones with netbenchmark

Def ine a wrapper f unc t i on (as an
i l l u s t r a t i v e example)

fun ← f unc t i on (da ta) { cor (da ta) }
Compare i t wi th the s ta te−of− the−ar t :
t op20 . aupr ← netbenchmark (methods=c (" a l l " ,"

fun")) ; p r i n t (t op20 . aupr [[1]])

For more information on this topic, we refer the inter-
ested reader to the vignette of the package where an
example is provided.

Implementation
NetBenchmark is a Bioconductor [32] package. As a
results, the code is written primarily in R [*]. However,
time-critical functions are written in C++ for greater

Fig. 2 Boxplots of performance. Each box represents the statistics of a method with the ranking performance across all datasources, the smaller the
rank the better. The white dot represents the median of the distribution, the box goes form the first to third quartile, while whiskers are lines drawn
from the ends of the box to the maximum and minimum of the data excluding outliers that are represented with a mark outside the whiskers

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 9 of 15

speed. The package imports several CRAN and Biocon-
ductor packages. Most of those provide competitive net-
work inference methods that are used in our benchmark.
The pipeline starts with a set of noise-free datasources
coming from different GRN simulators that have been
pregenerated for this package. The datasources are stored
in grndata package [**] and are loaded automatically as
input. These datasources are subsampled and contami-
nated with noise in order to generate datasets with enough
variability to provide an informative and thorough com-
parison of GRN inference methods. This benchmarking
process is detailed throughout the subsequents sections
of the paper. A helper vignette and a webpage (see
“Availability and requirements”) are also provided in order
to unlock the full set of functionalities of the pack-
age including the ability of adding new methods in the
benchmark.

[*] R Core Team: R: A Language and Environment
for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria (2015). R Foundation for Sta-
tistical Computing. https://www.R-project.org.
[**] Bellot, P., Olsen, C., Meyer, P.E.: grndata: Synthetic

Expression Data for Gene Regulatory Network Inference.
(2014). R package version 1.0.0.

Results
In this section, we present the results of the bench-
mark with the presented methodology and obtained
with version 1.0 of the package (see “Availability and
requirements”). For each datasource of Table 2, we gener-
ate ten datasets with around 150 experiments. We aim to
reproduce common real microarray datasets that are typi-
cally constituted of much less experiments than genes. As
explained in section “Benchmarking process”, we add two

Table 6 Results of the study on noise sensitivity. Mean AUPR in the top 20% of the possible connetions with a undirected evaluation
with respect to intensity (κ%) of Gaussian local noise (σLocal(g);κ%). The best results are highlighted. Results obtained with current
version (1.0) of the package and are updated online

Datasource κ ARACNE C3NET CLR GeneNet Genie3 MRNET MutRank MRNETB PCIT Zscore Random

R1 0 0.008 0.004 0.010 0.140 0.025 0.010 0.040 0.010 0.174 0.133 0.001

25 0.004 0.002 0.006 0.134 0.022 0.006 0.038 0.005 0.167 0.132 0.001

50 0.002 0.001 0.003 0.121 0.020 0.003 0.031 0.003 0.150 0.130 0.001

75 0.001 0.001 0.002 0.086 0.018 0.002 0.025 0.002 0.126 0.127 0.001

100 0.001 0.001 0.001 0.006 0.015 0.001 0.017 0.001 0.097 0.125 0.001

S1 0 0.091 0.140 0.132 0.114 0.137 0.199 0.060 0.120 0.023 0.072 0.002

25 0.040 0.033 0.140 0.059 0.133 0.112 0.062 0.126 0.059 0.035 0.002

50 0.027 0.021 0.139 0.031 0.121 0.097 0.067 0.121 0.066 0.022 0.002

75 0.021 0.014 0.126 0.024 0.104 0.076 0.066 0.098 0.063 0.011 0.003

100 0.023 0.017 0.119 0.013 0.095 0.072 0.066 0.089 0.063 0.010 0.001

S2 0 0.014 0.039 0.046 0.025 0.044 0.060 0.021 0.039 0.008 0.001 0.001

25 0.006 0.006 0.044 0.020 0.038 0.022 0.021 0.028 0.012 0.005 0.001

50 0.004 0.003 0.044 0.016 0.033 0.016 0.020 0.026 0.012 0.002 0.001

75 0.003 0.002 0.040 0.012 0.028 0.013 0.019 0.021 0.011 0.002 0.001

100 0.003 0.002 0.034 0.008 0.022 0.011 0.017 0.015 0.010 0.001 0.001

G1 0 0.195 0.145 0.199 0.084 0.129 0.218 0.036 0.111 0.061 0.001 0.001

25 0.113 0.107 0.144 0.082 0.111 0.142 0.035 0.086 0.060 < 0.001 0.001

50 0.069 0.065 0.115 0.074 0.091 0.096 0.031 0.073 0.057 0.001 0.001

75 0.041 0.038 0.082 0.055 0.068 0.061 0.024 0.059 0.049 < 0.001 0.001

100 0.024 0.020 0.048 0.031 0.045 0.034 0.017 0.042 0.038 0.001 0.001

G2 0 0.163 0.147 0.131 0.038 0.077 0.177 0.025 0.062 0.045 0.002 0.001

25 0.097 0.092 0.103 0.036 0.067 0.124 0.024 0.059 0.043 < 0.001 0.001

50 0.042 0.040 0.079 0.030 0.052 0.071 0.021 0.046 0.041 < 0.001 < 0.001

75 0.019 0.018 0.054 0.019 0.038 0.038 0.016 0.034 0.034 < 0.001 0.001

100 0.011 0.009 0.032 0.008 0.025 0.021 0.011 0.026 0.025 < 0.001 0.001

p < 0.05

https://www.R-project.org

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 10 of 15

different types of noise: local and global. We perform a
benchmark of the methods listed in Table 4 adding local
Gaussian noise around 20% of the standard deviation
(σLocal(g);20%, see Eq. 1) and global lognormal noise around
10% (σGlobal;10%, see Eq 2). Additionally to this bench-
mark, we also analyze the different algorithms according
to two different aspects: the impact of the noise and the
influence of the number of experiments included in the
datasets.
Table 5 presents the Area Under Precision Recall curve

obtained in an undirected evaluation on the top 20%
(AUPR20%) of the total possible connections for each
datasource. The table also gives the mean and variance
across the 10 different datasets.
In order to assess the statistical significance of the

results, we perform a Wilcoxon Rank sum test with Bon-
ferroni correction [33] on AUPR20% values for each data-
source. Then, the best result is highlighted in bold if its
metric is statistically different from the remaining values.
Note that several results may be highlighted for the same
datasource if they are not statistically different from each
other.
In order to assess the overall behavior of each technique,

we need to aggregate the different performances obtained
on the different datasources. But as can be seen in Table 5,
the AUPR20% values have different ranges for each data-
source. Therefore, instead of aggregatingAUPR20% values,
we aggregate the rank of each method, the smaller the
rank the better the algorithm. Figure 2 presents a boxplot
of the rank of the different algorithms across all data-
sources. Formore information on the boxplot, we refer the
reader to [34].
Additionally, Table 3 shows the time needed by the

various methods for each datasource (in seconds). This
information allows to estimate the scalability of each
method.

Implementation in NetBenchmark package In order
to generate these results we use the main function
netbenchmark. In listing 2 we present the different
commands used in the netbenchmark function to gen-
erate the previously presented results, note that the ran-
dom seed could be used to compare a new method on the
same data than those used in the present study. Results
are also available at online (see Project home page in
section “Availability and requirements”) where the results
of the benchmark will be updated (with most recent ver-
sion of the package) with new methods or updates of the
presented algorithms.

Noise sensitivity
Here we present a procedure in order to test the stability of
the different algorithms in the presence of local Gaussian

Fig. 3 Plots of performance with different noise intensities. Each line
represents a method (color coded), the mean performance over the
ten runs is presented

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 11 of 15

noise. To do so, we use all datasources in Table 2 increas-
ing gradually the local noise intensity (increasing κ value
of σn;κ%), therefore decreasing the SNR. In this study we
also use subsampled datasources of 150 experiments in
order to derive the effect of noise on the various GRN
reconstruction methods and being able to compare them
with the results obtained at the previous study. In Table 6
we present the mean values of the AUPR in an undi-
rected evaluation on the top 20% of the total possible
connections at each dataset. For each σn;κ% value, we
perform ten different trials and the performance metrics
(AUPR20%) are the average of the different trials. In Fig. 3
the results of the datasources that have around 1000 genes
are presented.

Sensitivity to number of experiments
The aim of this procedure is to measure the robustness of
the different reconstruction methods in terms of number
of available experiments. In a real world scenario, one has
budgetary limitations and therefore there is a restriction
on the number of different experiments that can be done.
Here, we want to address this issue by identifying the
best methods in several scenarios with different number
of experiments. To do so, we subsample the experiments

of the datasources of Table 2 with different number of
experiments and then add local noise of 20% of intensity.
As in the noise sensitivity study, this process is repeated
ten times and the performance metrics (AUPR20%) are
averaged over the different trials.
The results are presented in Table 7. Figure 4 presents

the results for one datasource of each simulator; to have
a realistic setting we have chosen datasources that have
more than 800 genes and one datasource for each
simulator.

Discussion
The results reveal that the studied methods exhibit dif-
ferent behavior across different simulators (and data-
sources), and none of the methods is the best one for
all datasources. We also find large variations in terms
of AUPR20% across datasources: Better results can be
expected for smaller networks and for simpler simula-
tors such as Rogers. It is worth noting that PCIT and
Zscore almost reach a 100% precision over their most
confident connections in the Rogers datasets (see aver-
age precision-recall curves in supplemental material from
Additional file 1: Figure S1, Additional file 2: Figure S2,
Additional file 3: Figure S3, Additional file 4: Figure S4 and

Table 7 Results of the study on the sensitivity with respect to the number of experiments. Mean AUPR in the top 20% of the possible
connetions with a undirected evaluation with respect to number of experiments (# exp). The best results are highlighted. Results
obtained with current version (1.0) of the package and are updated online

Datasource # exp ARACNE C3NET CLR GeneNet Genie3 MRNET MutRank MRNETB PCIT Zscore Random

R1 20 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.018 0.018 0.001

50 0.001 0.001 0.001 0.001 0.004 0.001 0.007 0.001 0.056 0.046 < 0.001

200 0.008 0.004 0.010 0.181 0.035 0.010 0.060 0.010 0.226 0.179 0.001

800 0.160 0.114 0.166 0.723 0.249 0.166 0.306 0.167 0.764 0.726 < 0.001

S1 20 0.021 0.016 0.113 0.096 0.097 0.077 0.058 0.089 0.055 0.005 0.002

50 0.027 0.020 0.129 0.099 0.122 0.091 0.060 0.110 0.057 0.017 0.002

200 0.036 0.030 0.138 0.066 0.135 0.108 0.064 0.122 0.059 0.034 0.002

800 0.064 0.054 0.141 0.053 0.144 0.139 0.065 0.130 0.059 0.058 0.003

S2 20 0.003 0.003 0.033 0.025 0.026 0.014 0.019 0.019 0.011 0.003 0.001

50 0.005 0.004 0.040 0.025 0.033 0.018 0.021 0.025 0.013 0.002 0.001

200 0.007 0.006 0.044 0.018 0.040 0.024 0.022 0.028 0.013 0.004 0.001

800 0.011 0.010 0.045 0.010 0.044 0.028 0.022 0.027 0.012 0.013 0.001

G1 20 0.014 0.012 0.020 0.001 0.015 0.017 0.009 0.024 0.029 0.001 0.001

50 0.051 0.047 0.078 0.056 0.065 0.064 0.020 0.063 0.048 < 0.001 0.001

200 0.136 0.127 0.160 0.083 0.122 0.164 0.038 0.090 0.061 0.001 0.001

800 0.242 0.215 0.222 0.091 0.156 0.238 0.049 0.105 0.071 0.001 0.001

G2 20 0.012 0.010 0.022 0.001 0.012 0.017 0.007 0.025 0.023 0.001 0.001

50 0.040 0.038 0.064 0.026 0.042 0.059 0.015 0.047 0.034 < 0.001 0.001

200 0.137 0.127 0.120 0.037 0.079 0.157 0.028 0.063 0.046 < 0.001 0.001

800 0.246 0.214 0.157 0.036 0.100 0.218 0.034 0.070 0.051 < 0.001 0.001

p < 0.05

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 12 of 15

Fig. 4 Plots of performance with different number of experiments.
Each line represents a method (color coded), the mean performance
over the ten runs is presented

Additional file 5: Figure S5. This could be easily explained
because both methods assume knockout experiments and
normally distributed samples, in phase with how the data
have been generated (by the Rogers simulator). As men-
tioned, none of themethods obtains the best results across
the different datasources. But, as a general overview (see
Fig. 2), we can observe that CLR is the best on the major-
ity of the datasets. It is also one of the fastest methods in
terms of computation time (see Table 3).
Differently from [5], we do not find the Zscore method

as the best-performing method. However, there are sev-
eral aspects to take into account. Our analysis evaluates
only the most confident connections returned by the
different methods whereas the study reported in [5] eval-
uates all the connections. The authors use the AUROC
measure that could benefit the sparse recovered networks
[15], as is the case of Zscore method. Furthermore, the
analysis of [5] is based on simulation of the fully interven-
tional data, knockouts and knockdowns, of the DREAM4
[12], and only involves the GNW simulator. Nevertheless,
we also have evaluated the different reconstruction meth-
ods with the same setup as in [5] and also found that the
Zscore is one of the best-performing methods when using
knockout data.

Effect of noise
We have studied the effect of noise on the performance
using an additive Gaussian noise with different noise
intensities, and we have found that the majority of the
methods are quite robust to the noise effects. Also, the
improvement of the performance on the datasets without
noise is almost negligible. Even in the absence of noise,
the AUPR20% values remain low, which highlights the
difficulty of the task at hand. Still, we observe a trend
of decreasing performance when the noise increases.
However, we can see how the performances of ARACNE,
C3NET and GeneNet are the most affected by increas-
ing noises. The other methods appear less sensible to the
noise addition.

Effect of number of experiments
We also have studied the effect of the number of exper-
iments on the performances. On one extreme, we have
included a setup involving more experiments than genes
and, on the other extreme, a setup where the number of
experiments is around 1% of the number of genes. We
found that increasing the number of samples seems ben-
eficial in most of the methods; it is worth noting that
on datasource R1 the performance is outstanding for the
Zscore, PCIT and GeneNet methods. These results are
coherent with a similar study presented at [5]. Note that
C3NET and ARACNE methods are the methods that suf-
fer more the effects of a low number of experiments
scenario. When few experiments are available the mutual

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 13 of 15

information values between genes is more difficult to be
estimated. The C3NET extracts the maximum value of
MI per gene, while ARACNE eliminates the edge with
minimum value of MI at every triangle.

Review reproducibility
As previously stated, the present review is fully repro-
ducible, with one function call of the Bioconductor
package NetBenchmark. With this package, the differ-
ent datasources are automatically loaded and the pre-
sented methods are implemented or imported with the
package.
R is a broadly used open source language and environ-

ment for statistical computing and graphics [35]. Nowa-
days, it is a standard in statistical modeling, data analysis,
bio-statistics and machine learning. There is a very active
R community developing R packages implementing the
latest advances in computational statistics. Moreover,
platforms like Bioconductor host a huge amount of algo-
rithms whose aim is the analysis and comprehension of
genomic data mainly based on the R programming lan-
guage [32]. Therefore, many GRN methods are imple-
mented in an R package. This is why we chose to develop
an R package to perform the benchmarking process in a
fast and easy way.
We have developed several wrappers with the default

parameters for most methods. The names of the wrappers
of the GRN reconstruction algorithms that are currently
available in the package are listed in Table 4. In order
to reproduce the presented results, the user can run the
commands provided in listing 2 after the download and
installation of the package. Thanks to the seed of the
random number generators of the different studies, the
results are replicable.

Listing 2 Commands used to generate the various benchmarks

To gene r a t e r e s u l t s o f the main s tudy :
t op20 . aupr ← netbenchmark (methods=" a l l " ,

l o c a l . n o i s e =20 , g l o b a l . n o i s e =10 ,
da t a s e t s . num = 10 , noiseType=c ("normal" ,
" lognormal") , seed =1108)

To gene r a t e r e s u l t s o f the no i s e s tudy :
n o i s e . a u p r ← no i s e . b ench (methods=" a l l " ,

l o c a l . n o i s e =seq (0 , 1 00 , l =5) , da t a s e t s . num
=10 , seed =2629)

To gene r a t e r e s u l t s o f the number o f
exper iments s tudy :

e xpe r imen t s . aup r ← exper iment s .bench
(methods=" a l l " , exper iments .num=c
(20 , 50 , 2 00 , 800) , da t a s e t s . num =10 ,
seed =4677)

In the present study we made a set of choices such as
the evaluation measure or the number of datasets per
datasource, but thanks to the Bioconductor package Net-
Benchmark, the user can make a different sets of choices,

and the package can also be used for a deeper analysis of
the methods. We refer the interested reader to the help
files of the package for further information.
Additionally, the Bioconductor package NetBenchmark

allows testing new methods with the benchmark in the
same conditions that we presented in this review. The
presented results are available online (https://imatge.upc.
edu/netbenchmark/) that allows following research and
comparison of new methods within the same conditions.

Conclusions
In this paper, we have presented a new benchmark pro-
cess for network reconstruction algorithms that relies on
several in silico generators and a subsampling strategy
to generate an environment for evaluating the different
methods, in a fast and robust way. This benchmark is
focused on (but not limited to) a GRN reconstruction
task and therefore we have taken into account the goals
of the community such as the evaluation of the most
confident connections. We have also developed a Bio-
conductor package and webpage to allow future research
and comparison of new methods under the same condi-
tions and to provide the possibility to change them. The
present paper has assessed the different GRN methods in
a high-heterogeneity data scenario and has highlighted the
specialization of methods for the different network types
and data.
As a general conclusion, we can observe that CLR is

the best on the majority of the datasets, but it does not
obtain the best results across all the different datasources
and kinds of data. In the case of complete knockout
data, the best-performing methods are the Zscore fol-
lowed by PCIT and GeneNet. Let us note also that Genie3
and MRNET exhibit competitive performances, however,
these methods are not as fast as CLR in terms of compu-
tation time.

Additional files

Additional file 1: Figure S1.Mean Precision Recall curves for the
different GNR reconstruction methods at datasource R1. Each line is the
mean curve over ten datasets. (EPS 242 kb)

Additional file 2: Figure S2.Mean Precision Recall curves for the
different GNR reconstruction methods at datasource S1. Each line is the
mean curve over ten datasets. (EPS 260 kb)

Additional file 3: Figure S3.Mean Precision Recall curves for the
different GNR reconstruction methods at datasource S2. Each line is the
mean curve over ten datasets. (EPS 266 kb)

Additional file 4: Figure S4.Mean Precision Recall curves for the
different GNR reconstruction methods at datasource G1. Each line is the
mean curve over ten datasets. (EPS 268 kb)

Additional file 5: Figure S5.Mean Precision Recall curves for the
different GNR reconstruction methods at datasource G2. Each line is the
mean curve over ten datasets. (EPS 268 kb)

https://imatge.upc.edu/netbenchmark/
https://imatge.upc.edu/netbenchmark/
http://www.biomedcentral.com/content/supplementary/s12859-015-0728-4-s1.eps
http://www.biomedcentral.com/content/supplementary/s12859-015-0728-4-s1.eps
http://www.biomedcentral.com/content/supplementary/s12859-015-0728-4-s2.eps
http://www.biomedcentral.com/content/supplementary/s12859-015-0728-4-s2.eps
http://www.biomedcentral.com/content/supplementary/s12859-015-0728-4-s3.eps
http://www.biomedcentral.com/content/supplementary/s12859-015-0728-4-s3.eps
http://www.biomedcentral.com/content/supplementary/s12859-015-0728-4-s4.eps
http://www.biomedcentral.com/content/supplementary/s12859-015-0728-4-s4.eps
http://www.biomedcentral.com/content/supplementary/s12859-015-0728-4-s5.eps
http://www.biomedcentral.com/content/supplementary/s12859-015-0728-4-s5.eps

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 14 of 15

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PEM proposed and supervised the setup of the study. All authors participated
in the improvement of the design of the study and the experimental setup. The
package and coding has been implemented by PB, CO and PEM. PB wrote the
first draft of the manuscript. PS, AOV, CO and PEM have revised the manuscript
critically for important intellectual content. All authors helped to improve the
draft of the manuscript. All authors read and approved the final manuscript.

Authors’ information
Not applicable.

Availability and requirements
The R package is available for free from Bioconductor [32]. It is most easily
obtained by starting R and running source("http://bioconductor.
org/biocLite.R");biocLite("netbenchmark") in the console
window.

• Project name: NetBenchmark
• Project home page: https://imatge.upc.edu/netbenchmark/
• Version: 1.0.0
• Operating systems: Platform independent
• Programming language: R
• Other requirements: R packages dependencies which are free and

automatically downloaded
• License: CC BY-NC-SA 4.0

Acknowledgements
PB is supported by the Spanish “Ministerio de Educación, Cultura y Deporte”
FPU Research Fellowship, and the Cellex foundation. CO was supported by the
Innoviris EHealth platform project BridgeIris and a ULB postdoctoral position.
This work has been developed in the framework of the project
BIGGRAPH-TEC2013-43935-R, funded by the Spanish Ministerio de Economía y
Competitividad and the European Regional Development Fund (ERDF). The
present research also benefited from the use of high performance computing
resources (“durandal” grid computer) funded by three grants from the
University of Liège: (SFRD-12/03, SFRD-12/04, C-14/73) as well as a Crédit de
Recherche of the FNRS under award number nr 23678785.

Author details
1Universitat Politecnica de Catalunya BarcelonaTECH, Department of Signal
Theory and Communications, UPC-Campus Nord, C/ Jordi Girona, 1-3, 08034
Barcelona, Spain. 2Bioinformatics and Systems Biology (BioSys), Faculty of
Sciences, Université de Liège (ULg), 27 Blvd du Rectorat, 4000 Liège, Belgium.
3Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium.
4Interuniversity Institute of Bioinformatics Brussels, (IB)2, Brussels, Belgium.

Received: 18 March 2015 Accepted: 6 September 2015

References
1. Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H,

Verschoren A, et al. Syntren: a generator of synthetic gene expression
data for design and analysis of structure learning algorithms. BMC
Bioinformatics. 2006;7(1):43.

2. Altay G, Emmert-Streib F. Revealing differences in gene network
inference algorithms on the network level by ensemble methods.
Bioinformatics. 2010;26(14):1738–44.

3. Schaffter T, Marbach D, Floreano D. Genenetweaver: in silico benchmark
generation and performance profiling of network inference methods.
Bioinformatics. 2011;27(16):2263–70.

4. Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, et al.
Wisdom of crowds for robust gene network inference. Nat Methods.
2012;9(8):796–804.

5. Maetschke SR, Madhamshettiwar PB, Davis MJ, Ragan MA. Supervised,
semi-supervised and unsupervised inference of gene regulatory
networks. Briefings Bioinformatics. 2014;15(2):195–211.

6. De Smet R, Marchal K. Advantages and limitations of current network
inference methods. Nat Rev Microbiol. 2010;8(10):717–29.

7. Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA.
Gene regulatory network inference: evaluation and application to ovarian
cancer allows the prioritization of drug targets. Genome Med. 2012;4(5):
1–16.

8. Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, et al.
Identification of functional elements and regulatory circuits by drosophila
modencode. Science. 2010;330(6012):1787–97.

9. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al.
Large-scale mapping and validation of escherichia coli transcriptional
regulation from a compendium of expression profiles. PLoS Biol.
2007;5(1):8.

10. Rogers S, Girolami M. A bayesian regression approach to the inference of
regulatory networks from gene expression data. Bioinformatics.
2005;21(14):3131–7.

11. Olsen C, Meyer PE, Bontempi G. On the impact of entropy estimation on
transcriptional regulatory network inference based on mutual
information. EURASIP J Bioinform Syst Biol. 2009;2009(1):308959.

12. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G.
Revealing strengths and weaknesses of methods for gene network
inference. Proc Natl Acad Sci. 2010;107(14):6286–91.

13. Stolovitzky G, Kundaje A, Held G, Duggar K, Haudenschild C, Zhou D,
et al. Statistical analysis of mpss measurements: application to the study
of lps-activated macrophage gene expression. Proc Natl Acad Sci U S A.
2005;102(5):1402–7.

14. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D. How to
infer gene networks from expression profiles. Mol Syst Biol. 2007;3(1):1–10.

15. Davis J, Goadrich M. The relationship between precision-recall and roc
curves. In: Proceedings of the 23rd International Conference on Machine
Learning. ICML ’06. New York, NY, USA: ACM; 2006. p. 233–40.

16. Marbach D, Roy S, Ay F, Meyer PE, Candeias R, Kahveci T, et al.
Predictive regulatory models in drosophila melanogaster by integrative
inference of transcriptional networks. Genome Res. 2012;22(7):1334–49.

17. Opgen-Rhein R, Strimmer K. From correlation to causation networks: a
simple approximate learning algorithm and its application to
high-dimensional plant gene expression data. BMC Syst Biol. 2007;1(1):37.

18. Obayashi T, Kinoshita K. Rank of correlation coefficient as a comparable
measure for biological significance of gene coexpression. DNA Res.
2009;16(5):249–60.

19. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X,
et al. Towards a rigorous assessment of systems biology models: the
dream3 challenges. PloS ONE. 2010;5(2):9202.

20. Cover TM, Thomas JA. Elements of Information Theory. Hoboken, New
Jersey: John Wiley & Sons; 2006.

21. Butte AJ, Kohane IS. Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. Pac Symp
Biocomput. 2000;5:418–29.

22. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information:
detecting and evaluating dependencies between variables.
Bioinformatics. 2002;18(suppl 2):231–40.

23. Bellot P, Meyer PE. Efficient combination of pairwise feature networks. In:
JMLR: Workshop and Conference Proceedings, Connectomics (ECML
2014). vol. 11, pp. 93–100 (2014).

24. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera
RD, et al. Aracne: an algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinformatics.
2006;7(Suppl 1):7.

25. Reverter A, Chan EK. Combining partial correlation and an information
theory approach to the reversed engineering of gene co-expression
networks. Bioinformatics. 2008;24(21):2491–7.

26. Altay G, Emmert-Streib F. Inferring the conservative causal core of gene
regulatory networks. BMC Syst Biol. 2010;4(1):132.

27. Meyer PE, Kontos K, Lafitte F, Bontempi G. Information-theoretic
inference of large transcriptional regulatory networks. EURASIP
J Bioinform Syst Biol. 2007;2007:1–9.

28. Ding C, Peng H. Minimum redundancy feature selection from microarray
gene expression data. J Bioinformatics Comput Biol. 2005;3(02):185–205.

29. Meyer PE, Marbach D, Roy S, Kellis M. Information-theoretic inference of
gene networks using backward elimination. In: BIOCOMP, International
Conference on Bioinformatics and Computational Biology; 2010. p. 700–5.

30. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory
networks from expression data using tree-based methods. PloS ONE.
2010;5(9):12776.

http://bioconductor.org/ biocLite.R
http://bioconductor.org/ biocLite.R
https://imatge.upc.edu/netbenchmark/

Bellot et al. BMC Bioinformatics (2015) 16:312 Page 15 of 15

31. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
32. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.

Bioconductor: open software development for computational biology
and bioinformatics. Genome Biol. 2004;5(10):80.

33. Conover WJ, Conover W. Practical nonparametric statistics. 1980.
34. Chambers JM. Graphical Methods for Data Analysis. California, USA:

Wadsworth International Group; 1983.
35. Ihaka R, Gentleman R. R: a language for data analysis and graphics.

J Computat Graph Stat. 1996;5(3):299–314.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Materials and methods
	Benchmarking process
	GNW
	SynTReN
	Rogers
	Data generation process
	Implementation in NetBenchmark package

	Evaluation protocol
	Implementation in NetBenchmark package
	GRN inference methods
	1) Co-expression algorithms
	GeneNet
	MutRank
	Zscore
	2) Information-theoretic approaches
	Relevance network
	CLR
	ARACNE
	PCIT
	C3NET
	3) Feature selection approaches
	MRNET
	Genie3
	How to benchmark a method

	Implementation
	Results
	Implementation in NetBenchmark package
	Noise sensitivity
	Sensitivity to number of experiments

	Discussion
	Effect of noise
	Effect of number of experiments

	Review reproducibility
	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5

	Competing interests
	Authors' contributions
	Authors' information
	Availability and requirements
	Acknowledgements
	Author details
	References

