
MSc in Photonics   PHOTONICSBCN  

 

Universitat Politècnica de Catalunya (UPC) 
Universitat Autònoma de Barcelona (UAB) 
Universitat de Barcelona (UB) 
Institut de Ciències Fotòniques (ICFO) 

 
http://www.photonicsbcn.eu  

 

 

Master in Photonics 

 

MASTER THESIS WORK 

 
 

Detection of nonlocality with two-body 
correlation functions 

 
 
 
 

Albert Aloy López 
 
 

Supervised by Prof. Dr. Antonio Acín, (ICFO) and  
Dr. Remigiusz Augusiak (ICFO) 

 
 
 
 
 
 
 
 
 
 
 
 Presented on date 10th September 2015 
 
 
 

 Registered at  

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41822507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Abstract. Nonlocality detection in multipartite quantum systems is of great interest.

The most popular tool to detect nonlocality in quantum systems are Bell inequalities.

Most of the provided constructions of multipartite Bell inequalities involve correlations

between all parties which quickly becomes computationally intractable and hard to test

experimentally in many-body quantum systems. Recently, J. Tura and collaborators

have shown in Ref. [1] that detection of nonlocality in multipartite systems is

possible with Bell inequalities involving only one- and two- body correlation functions.

However, it is uncertain how efficient these new inequalities are. One of the objectives of

the present work is to address this question by numerical means. The other objective

is to show that these inequalities can also serve as device independent witnesses of

different forms of entanglement such as genuine multipartite entanglement.

Keywords: Bell inequalities, nonlocality detection, GME, 2-body Bell correlators

1. Introduction

Entanglement can give rise to counter-intuitive phenomena like correlations between

remote quantum systems that cannot be simulated with a local hiden variable (LHV)

model, meaning that these correlations cannot be simulated by any local strategy

assisted by shared randomness. This phenomenon is known as nonlocality. It comes

as no surprise that efforts have been put into the study of nonlocality. Apart from its

philosophical and fundamental interest, these nonlocal correlations have been turned

into a powerful resource for groundbreaking tasks such as quantum key distribution [2].

In order to detect nonlocality in quantum systems the usual tools are Bell

inequalities [3]. These are linear inequalities constructed from expectation values of

tensor products of measurements performed by the local observers. Thus, if a Bell

inequality is violated by some quantum state, then this state is nonlocal. Many

constructions of multipartite Bell inequalities have been provided, but most of them

involve correlations between all the parties. This makes them hard to test experimentally

in multipartite quantum systems and also theoretical characterization quickly becomes
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computationally intractable for larger N . Recently, it has been shown in [1] that

detection of nonlocality in multipartite systems is possible with Bell inequalities

involving only 1- and 2-body correlation functions (we name such inequalities 2-body

Bell inequalities), opening a new possibility of experimental nonlocality detection in

many-body quantum systems and to perform numerical tests to study its properties.

It is nevertheless uncertain how efficient these new inequalities are, that is, how much

of all multipartite nonlocal states they are capable to detect. The first goal of the

present work is to address this question in multipartite quantum systems for which

all two-body Bell inequalities can be determined using computer algorithms, that is,

systems consisting of three, four and five parties. The second goal of the present

work is, following an approach of [4, 5], to show that two-body Bell inequalities can be

used as Device Independent Entanglement Witnesses (DIEW) that guarantee N -partite

entanglement. In other words, these inequalities not only detect entanglement but

are also capable of distinguishing different types of entanglement multipartite scenario

features. In particular we will show that they are able to detect genuine multipartite

entanglement (GME).

2. Preliminaries

In this section we summarize some known results and set up the notation we will use

throughout the present work.

2.1. Multipartite entanglement

Here we introduce the notions of separability in the multipartite case. For this purpose,

let us consider N parties A1 . . . AN sharing an N -partite quantum state ρA that acts on

a Hilbert space HA = HA1 ⊗ . . .⊗HAN . Let us divide the set A = {A1, . . . , AN} into k

pairwise disjoint groups Si such that by adding them one recovers the set
⋃k
i=1 Si = A.

Denoting by Sk the set of k-partitions and calling it a k-partiion of A, we say that ρA
is k-separable if it admits

ρA =
∑
S∈Sk

pS
∑
i

qS,i

K⊗
k=1

∣∣ψSk,i〉〈ψSk,i∣∣ (1)

with pS and qS,i are probability distributions and
∣∣ψSk,i〉 are pure states defined on the

Sk subsystem. This k-separability in the multipartite case opens the door to distinguish

different types of entanglement. On one extreme, a state can be N -separable (i.e.,

full separability) meaning no entanglement. On the other extreme, there are states

that do not admit any k-separability implying what is called Genuinely Multipartite

Entanglement (GME). In between these extremes there will be all the possible k-

separability. Take as illustrative examples the bipartite case where two parties AB

can only be separated in one way (e.g. A − B) and the 3-partite case ABC where it

can be: fully separable (e.g. A−B − C); biseparable (e.g. A−BC, AB − C, C −AB
and also their convex combinations); or non-separable providing GME.
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2.2. Nonlocality in many-body systems

Consider the standard Bell-type experiment (N,m, d) in which N spatially separated

parties A1, . . . , AN share some N -partite quantum state ρ and each party can perform

m different measurements with d outcomes on their share of ρ. We are interested

in the simplest scenario, (N, 2, 2), where each party Ai freely chooses one out of two

dichotomic measurements M(i)
xi (xi = 0, 1) each having two outcomes ai = ±1. The

correlations that arise in such an experiment are described by a collection of conditional

probabilities p(a1, . . . , aN |x1, . . . , xN) of obtaining results a1, . . . , aN upon measuring

M(1)
x1 , . . . ,M

(N)
xN . Since we stick with the case where each party chooses between two

dichotomic observables, it is more comfortable to work with a collection of correlation

functions that we will refer to as correlators{
〈M(i1)

xi1
. . .M(ik)

xik
〉
}
i1,...,ik;xi1 ,...,xik ;k

, (2)

where xi1 , . . . , xik = 0, 1, ik = 1, . . . , N and k = 1, . . . , N . In particular we will be

interested in the lowest order correlators, that is, one- and two-body correlators

〈Mxi1
〉 := P (ai = 1|xi1)− P (ai = −1|xi1), (3.1)

〈M(i)
xi1
M(j)

xj1
〉 := P (ai = aj|xi1xj1)− P (ai 6= aj|xi1xj1). (3.2)

It is known that the set of quantum correlations Q is convex [6] and that the

classical (or local) correlations define a polytope IP whose vertices correspond to the

vectors constructed from (2) in which every correlator factorizes

〈M(i1)
xi1

. . .M(ik)
xik
〉 = 〈M(i1)

xi1
〉 · . . . · 〈M(ik)

xik
〉 , (4)

where every local mean value is ±1. This means that any vertex from this polytope

IP represents correlations in which each local measurement has a perfectly determined

outcome. Bell was the first to recognize that the set of classical correlations can be

constrained by certain inequalities, referred to as Bell inequalities [3]. In fact, classical

correlations form a polytope IP that can be fully determined by a finite number of tight

Bell inequalities, i.e., those corresponding to the facets of IP. Thus, correlations that

violate these inequalities are called nonlocal. The problem of finding the facets of the

polytope IP can be fully solved for the simplest scenarios using computer algorithms

such as the CDD algorithm [7]. However, since the dimension of IP and the number of

its vertices grow exponentially with N , it quickly becomes computationally intractable

for larger N .

3. Bell inequalities from 2-body correlators

In order to simplify the computational complexity of the polytope IP, we are particularly

interested in Bell inequalities involving only 1- and 2-body correlators (3.1) (3.2). We
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will refer to them as 2-body Bell inequalities and they take the general form

I :=
n−1∑
i=0

(
αi 〈M(i)

0 〉+ βi 〈M(i)
1 〉
)

+
∑

0≤i<j<n

γij 〈M(i)
0 M

(j)
0 〉+

+
∑

0≤i 6=j<n

δij 〈M(i)
0 M

(j)
0 〉+

∑
0≤i<j<n

εij 〈M(i)
0 M

(j)
0 〉 ≤ βc

(5)

for some αi, βi, γij, δij, εij ∈ IR and the constant term βc = max
c∈IP

I ∈ IR is the so-called

classical bound, where we have denoted by c the vertices (4). Accordingly, βQ = max
Q

I

will be denoting the maximal quantum violation. Clearly, since any local correlation can

be obtained from a separable state, βC ≤ βQ. If we get the case where βQ = βC , then

the Bell inequality does not have quantum violation and we will call such an inequality

to be trivial.

3.1. The symmetric polytope of 2-body correlations

Even having got rid of highest-order correlators and thus reducing the polytope IP, it

is still computationally complex. Another way to simplify the problem and make it

tractable is by taking the inequalities that obey a certain symmetries.

Here, following Refs. [1, 8] we will shortly introduce the Permutationally Invariant

(PI) and Translationally Invariant (TI) 2-body Bell inequalities which are the subject

of study in Section 5.

3.1.1. Permutationally invariant Bell inequalities Let us first define the symmetric

correlators for the PI case built from 1- and 2-body expectation values

Sk :=
n−1∑
i=0

〈M(i)
k 〉 , Skl :=

n−1∑
i=0

n−1∑
j=0

〈M(i)
k M

(j)
l 〉 (6)

for j 6= i, 0 ≤ k ≤ 1 and 0 ≤ k ≤ l ≤ 1. Then, any 2-body Bell inequality obeying the

permutational invariant symmetry, that is, one that is invariant under a permutation of

any pair of parties, can be written as

αS0 + βS1 +
γ

2
S00 + δS01 +

ε

2
S11 ≤ βc, (7)

with α, β, γ, δ, ε ∈ IR and βc ∈ IR being the corresponding classical bound. The PI

2-body Bell inequalities in (N, 2, 2) scenario were derived and classified in equivalent

classes for the 3-, 4- ,5- and 6-partite cases in Ref. [1] where they are listed. From now

on, when referring to a specific class of inequality we will refer to those.

3.1.2. Translationally invariant Bell inequalities Now we will look at 2-body Bell

inequalities that obey a less restrictive symmetry: translational invariance. This

symmetry is the one generated by the full cycle: the permutation τ such that τ :

0 7→ 1 7→ 2 7→ . . . 7→ n − 1 7→ 0. J. Tura and collaborators checked in Ref. [8]
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their quantum violation and fully classified into equivalent classes all 3- and 4- partite

Bell inequalities of this kind for the (N, 2, 2) scenario. In this case the translationally

invariant correlators are

Sk :=
n−1∑
i=0

〈M(i)
k 〉 , T (r)

kl :=
n−1∑
i=0

〈M(i)
k M

(i+r)
l 〉 , (8)

with k ∈ {0, 1}, k ≤ l ∈ {0, 1}, r = 1, . . . , bn/2c for k = l and r = 1, . . . , n − 1 for

k < l. The parameter r can be seen as an interaction range. The party indices are taken

modulo n. Hence, any 2-body translationally invariant Bell inequality reads

αS0 + βS1 +

bn/2c∑
r=1

(
γrT (r)

00 + εrT (r)
11

)
+

n−1∑
r=1

δrT (r)
01 ≤ βc. (9)

4. Methodology

Before jumping into the main findings, here we present some of the tools and reasoning

used to achieve the results. The numerical techniques follow the next procedures:

Efficiency: In order to know how efficient 2-body Bell inequalities are, first a

random pure state is generated (see Section 4.1); then the 2-body Bell operator is built

(see Section 4.2); and finally the expectation value of the Bell operator with the state

is computed and optimized over measurements to see if the corresponding inequality is

violated or not.

Quantum Bound: In order to find the quantum bounds βQ of the inequalities,

the 2-body Bell operator is built for the corresponding inequalities and this time the

expectation value of the Bell operator is optimized over a generalized quantum state

and over measurements.

4.1. Generating random pure states

For simplicity we consider only pure states. We sample them from (C2)⊗N according

to the unique unitary invariant measure induced by the Haar measure on the unitary

group U(2N). To be more precise we generate a random unitary and our random state

is its first row (or column) [9, 10, 11].

Since we are dealing with 2-body correlators, which limits the efficiency nonlocality

detection, we will also consider some subclasses of states such as the W states, denoted

W , and 2 excitation Dicke states, denotedD, whose general form is given by, respectively,

|W〉 = α100...0 |100 . . . 0〉+ α010...0 |010 . . . 0〉+ . . .+ . . . α00...01 |00 . . . 01〉 , (10.1)

|D〉 = α110...0 |110 . . . 0〉+ α101...0 |101 . . . 0〉+ . . .+ . . . α0...011 |0 . . . 011〉 . (10.2)

The reason behind choosing the subclass W is that it has been proven in Ref. [12]

that W-states are uniquely determined among all states by their 2-body reduction. In
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particular, there are no other fully-separable states compatible with these reductions.

In contrast, we expect no detection of GHZ-states-like |GHZ〉 = α |0〉⊗N +β |1〉⊗N with

α, β ∈ C, |α|2 + |β|2 = 1 since its 2-body reduction coincides with the 2-body reduction

of fully-separable states |α|2 |0〉〈0|⊗N + |β|2 |1〉〈1|⊗N with α, β ∈ C, |α|2 + |β|2 = 1. We

take the subclass D out of curiosity.

4.2. Quantum violation

Let us denote by B̂ the so-called Bell operator corresponding to the operators that form

the corresponding Bell inequalities (7) or (9) in which the measurements are now one-

qubit operators given by M̂(i)
xi = ~n

(i)
xi · σ(i), where ~σ := (σx, σy, σz) denotes the vector

of Pauli matrices, and n̂ := (x, y, z) is a unit vector; n̂ · ~σ = xσx + yσy + zσz, with

x2 + y2 + z2 = 1. Equivalently, x, y and z can be expressed in spherical coordinates in

terms of sine and cosine functions. Also since each party can choose a measurement, we

indicate that they act on the i -th subsystem. Then, in order to detect if a state violates

an inequality the expression 〈ψ|B̂|ψ〉 will be optimized by finding the best angles that

each party can choose in order to detect nonlocality in that state and then check if the

resulting expectation value violates the corresponding inequality.

5. Results

Here we present the efficiency of 2-body Bell inequalities and then we show that 2-body

Bell inequalities can be used as Device Independent Entanglement Witnesses and detect

genuine multipartite entanglement in multipartite quantum states.

5.1. Efficiency of nonlocality detection of two-body Bell inequalities

We generate random entangled pure states consisting of 3, 4 and 5 qubits, check if they

violate the 2-body Bell Inequalities and make statistics to see how efficient they are at

detecting quantum nonlocality (see Section 4).

The main results are summarized in Table 1. The efficiency shown is taking into

account all classes of each case, e.g., if for a given sample the TI 4-partite case inequality

(#3) does not detect nonlocality, we will look for another class in TI 4-partite case that

does violate. Efficiencies for all the classes have also been looked at individually but the

results are too large to show in the present work. The number of samples generated for

each inequality are: more than 10000 for the 3-partite cases; between 500-1000 for the

4-partite cases; and 500 for the 5-partite cases.

5.1.1. 3-partite case Taking a look at the classical βc and quantum bounds βQ (Secion

4.2), tells us that for both PI and TI cases there is only one inequality that is non-trivial

(that is, βc < βQ) and thus can detect quantum nonlocality. We have tested with trivial

Bell inequalities (i.e., those with βc = βQ) and, as expected, efficiency is 0%. Therefore,
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Table 1. Efficiencies of nonlocality detection with 2-body Bell inequalities for the 3-,

4- and 5 partite cases in PI and TI symmetries. The number of class # is indicated

when there is only one non trivial inequality for that particular case.

Efficiency (%)

N = 3 N = 4 N = 5

State Form PIa(#2) TIb(#6) PI TI PI

General 47.75 53.70 0.00 2.19 12.29

W state 90.30 98.20 85.07 100.00 72.50

Dicke State (2) ” ” 75.11 92.50 83.33

a Permutationally Invariant
b Translationally Invariant

we make use of the non trivial inequalities for the 3-partite case which we present in

what follows as an illustrative example

−2S0 + 6S1 − S00 − 3S01 + 3S11 ≤ 18 (11.1)

−S0 − 3S1 − T (1)
00 + T (1)

01 + 2T (2)
01 + 3T (1)

11 ≤ 9 (11.2)

corresponding to PI class #2 from Ref. [1] and TI class #6 from Ref. [8] respectively.

Inequality (11.1) has a classical bound βC = 18.00 and allows for maximal quantum

violation βQ = 20.03 while inequality (11.2) has βC = 9 and βQ = 10.02.

Looking at the results obtained for N = 3 shown in Table 1, we observe that in

both cases almost half of the states are detected. As we have said in Section 4.1, we

should expect high efficiency coming from W states and indeed there is a noticeable

increase reaching almost 100% detection. In this case, the W states are not taken into

account since they are the same as the W states up to a unitary transformation and it

would be redundant. An overall observation is that the efficiency is higher in general

for the TI inequality which coincides with the fact that it is built from a less restrictive

symmetry than the PI.

Since the 3-partite case is the less expensive computationally we have used it to

do some tests that might be of interest. First we have checked GHZ-states-like and, as

expected in Section 4.1, the efficiency obtained is 0%. Up until now we have been using

the general set of measurements mentioned in Section 4.2. We explored what happens

when applying restrictions to the set of measurements. For instance, if we force parties

to choose the same measurement —that is M(i)
k = Mk, for i = 1, 2, 3 indicating the

party and k = 0, 1 indicating one of the two measurements— in the PI tripartite with

W , we see a drop from 90.30% efficiency to 22.10% with the restriction. Restricting to

use only real measurements the drop goes from 90.30% to 46.50% forcing parties to use

the same real measurement results on a drop from 90.30% to 20.00%.

5.1.2. 4-partite case We first notice is that there are more non-trivial Bell inequalities

that we can use. Precisely, looking at the quantum and classical bounds we see that for
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the PI case there are 2 classes of Bell inequalities that are non trivial (and thus provide

detection of quantum nonlocality) while for the TI there are 78 classes of non trivial

Bell inequalities.

The main results obtained for N = 4 are collected and summarized in Table 1.

A general drop when increasing N is expected since higher-order correlators come into

play while we stick with 2-body correlators. We see that the tendencies in N = 3 are

repeated here, that is, in general TI efficiency is higher and selecting the particular

subclasses W states and D states offer very high efficiency. In this case it makes more

sense to look at particular subclasses of states since the looking at the whole vector space

|ψ〉 ∈ (C2)⊗N provides an efficiency close to 0%. Again the TI with W states offers the

highest efficiency even reaching 100%. Out of curiosity, if instead of looking at the all

the non-trivial inequalities available we look at the behavior of specific classes, we notice

a new tendency: when an inequality provides high efficiency of detecting W states then

it will provide low efficiency of detecting D states and the contrary is also true. This

tendency persists for all non-trivial classes of PI and TI 2-body Bell inequalities.

5.1.3. 5-partite case Here we just consider the PI case because the TI is already

too computationally expensive. There are 22 non-trivial 2-body Bell inequalities.

Remarkably, looking at the results from Table 1, we see that for N = 5 the whole

vector space |ψ〉 ∈ (C2)⊗N offers more efficiency of detection than N = 4 which goes

against the expected drop. This fact rises a lot of questions, some speculation could be

that due to 2-body Bell correlators acting on pairs maybe we should compare between

even and odd parties cases. Another speculation could be that for this particular case the

inequalities obtained are better and counters the fact of increasing party. When looking

at W states or D states, though, we experience the expected drop due to increasing the

number of parties.

5.2. 2-body Bell inequalities as DIEW

Here we show that 2-body Bell inequalities can serve as DIEW. To simplify, we will

study the 3-partite case where, as explained in Section 2.1, a state can be: fully

separable, biseparable or GME. Our aim is to find a biseparable bound βBS such that

βC < βBS < βQ. To simplify more, in order to find the biseparable and quantum bounds

we use qubit states since Ref. [13] proofs that in the (N ,2,2) scenario they are sufficient

to find the maximum quantum value of a Bell inequality.

When detecting nonlocality of a given state, if the 2-body Bell inequality with

bound βBS is violated we will know that the state carries GME. So in this way, 2-body

Bell inequalities are capable to serve as DIEW and detect GME. On the other hand, if

the 2-body Bell inequality with the bound βC is violated, but not with bound βBS, we

will know that the state carries entanglement but not which kind.

Taking the Bell operator from Section 4.2, this bounds can be found by numerically
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optimizing the Bell operator over states and measurements, i.e.,

βC = max
IP

I = max
|ψprod〉,B̂

〈ψprod|B̂|ψprod〉

βBS = max
BS

I = max
|ψBS〉,B̂

〈ψBS|B̂|ψBS〉

βQ = max
Q

I = max
|ψQ〉,B̂

〈ψQ|B̂|ψQ〉 ,

(12)

where |ψprod〉 denotes the product state, |ψBS〉 denotes a biseparable state and |ψQ〉
denotes a nonseparable state.

Notice that, in the 3-partite case, the product and the GME state have only

one combination possible, but for the biseparable state there are several combinations

depending on which partition we choose. Since we use inequalities that obey PI

symmetries or TI symmetries, this partitions will be equivalent (e.g., we could choose

some partition like A−BC or B−AC and they would turn out to be equivalent due to

PI and TI symmetries). As we increase the number of parties more combinations have

to be taken into account.

Taking inequality (11.1) and inequality (11.2), the bounds found for the 3-partite

case are:

βC = 18.00 < βBS = 19.10 < βQ = 20.03 (13.1)

βC = 9.00 < βBS = 9.19 < βQ = 10.02 (13.2)

for PI and TI respectively. We have generated random pure states in order to test

them and for the PI case 8.60% were confirmed to be GME (i.e., those states that its

correlation surpassed the bound βBS in the inequality) and for the TI case 33.27% were

confirmed to be GME for the last.

This procedure can be generalized by N parties taking into account the k-

separations mentioned in Section 2.1. We have done it for the 4-partite case and from

the 80 non-trivial inequalities, at least 32 appear to be good candidates to serve as

DIEW and detect GME.

6. Conclusions and outlook

In the present work we have addressed two questions supported by the research started

in [1]. First we have determined how efficient the Bell inequalities involving only 1 and

2-body correlation functions are at detecting nonlocality coming from quantum pure

states. And second we have explored the question that if the mentioned Bell inequalities

can be used as DIEW to detect GME. By numerically generating random pure states

we have found the efficiencies of nonlocality detection in the 3-, 4- and 5- partite cases

obeying permutational and translational symmetries. We have studied some of their

properties and tendencies detecting nonlocality in the different cases like a general drop

in efficiency by increasing the number of parties. Noticeably, the efficiency is very high
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by some specific class of vectors which led us into find which subclasses of vectors were a

smart choice. Finally, we have shown that 2-body Bell inequalities can be used as DIEW

and certify if a quantum state with nonlocal correlations carries genuine multipartite

entanglement.

For further development, since now we know that 2-body Bell inequalities are

capable of detecting GME, it would be of interest to give an analytical proof and expand

it to the general case. It could also be of interest to expand the efficiency study to more

parties or to study the case with mixed states.

Acknowledgements
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