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(UPC), Rambla de Sant Nebridi, 11, 08222 Terrassa, Spain.

∗∗ Institute of Robotics and Industrial Informatics, Edifici U, Pau Gargallo, 5,
08028-Barcelona, Spain

Abstract:
This paper proposes a fault tolerant control (FTC) strategy based on the use of quasi-linear parameter
varying (qLPV) virtual actuators approach for proton exchange membrane (PEM) fuel cells. The overall
solution relies on adding a virtual actuator in the control loop to hide the fault from the controller point
of view, allowing it to see the same plant as before the fault, in this way keeping the stability and some
desired performances. The proposed methodology is based on the use of a reference model, where the
resulting nonlinear error model is brought to a qLPV form that is used for control design by means
of linear matrix inequalities (LMI)-based techniques. The resulting closed-loop error system is stable
with poles placed in some desired region of the complex plane. Simulation results are used to show the
effectiveness of the proposed approach.

Keywords: LPV model, Virtual actuator, Reference model based control, Gain-scheduling, PEM Fuel
Cell, LMIs.

1. INTRODUCTION

Fuel cells supply electricity to a load by converting chemi-
cal energy into a silent, lower-emission, high-efficiency power
source. Many control loops are included in the system to take
care of fuel/air feeding, humidity, pressure and temperature
(lower control level), as well as integrating the electrical condi-
tioning, storage and reformer (upper control level).

Fuel cells are very complex systems, which may be affected
by component faults, that can cause serious damage, leading
to their stop (Feroldi, 2012). Hence, it is important to include
some fault tolerant mechanisms into the control system, such
that the fuel cell can still operate under fault occurrence (Puig
et al., 2007). Fault tolerant control (FTC) techniques allow to
maintain stability and acceptable performances in the event of
such faults (Blanke et al., 2006; Noura et al., 2009).

Among the paradigms proposed in the recent literature, the
fault-hiding one has attracted some attention as an active strat-
egy to obtain fault tolerance (Steffen, 2005). The goal of this
paradigm is to reconfigure the faulty plant instead of the con-
troller/observer. Thus, a reconfiguration block is inserted be-
tween the faulty plant and the nominal controller/observer un-
der fault occurrence, such that the nominal controller can be
kept in the control loop without the need of retuning it. When
the reconfiguration block aims at tolerating actuator faults, it is
named virtual actuator. Initially proposed in a state space form
for LTI systems (Lunze and Steffen, 2006), this paradigm has
been successfully extended to other system structures (Rotondo
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et al., 2014; Dziekan et al., 2011; Richter et al., 2011; Blesa
et al., 2014).

In order to deal with the nonlinear dynamics of fuel cells,
described in detail in Pukrushpan et al. (2004), linear parameter
varying (LPV) design techniques have been investigated, not
only for control (Bianchi et al., 2014), but also for model-based
fault diagnosis (de Lira et al., 2011).

This paper proposes an FTC strategy for proton exchange
membrane (PEM) fuel cells based on a combination of the
virtual actuator and LPV paradigms. The proposed solution
relies on a reconfigured reference model that provides the
reference signals to be tracked. The resulting nonlinear error
model is transformed into a quasi-LPV one using a gridding
approach. Then, using linear matrix inequalities (LMIs)-based
design techniques, a controller can be designed for the quasi-
LPV error model in order to guarantee stability of the resulting
closed-loop system, while attaining some desired properties,
e.g. pole clustering in a desired region of the complex plane.
The effectiveness of the proposed approach is demonstrated
using simulation results.

The structure of the paper is the following. The PEM Fuel
Cell description and nonlinear model, as well as its quasi-LPV
representation, are presented in Section 2. It is also shown how,
using a reference model, an error model that will be used for
designing an error-feedback controller can be obtained. Section
3 describes the error-feedback controller design using LMI-
based techniques. Section 4 presents the proposed FTC strategy
based on virtual actuators. The application to a PEM Fuel Cell
case study and the simulation results are presented in Section 5.
Finally, Section 6 outlines the main conclusions.
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2. PEM FUEL CELL LPV MODELLING

The basic physical structure of a fuel cell consists of an elec-
trolyte layer in contact with a porous anode and cathode elec-
trode plates. There are different kinds of electrolyte layers. Here
a PEM (Polymer Electrolyte Membrane or Proton Exchange
Membrane) fuel cell is used. The PEM has a special property:
it conducts protons but is impermeable to gas (the electrons are
blocked through the membrane). Auxiliary devices are required
to ensure the proper operation of the fuel cell stack: an air
compressor, a hydrogen tank, a supply manifold and a return
manifold.

2.1 Non-linear and quasi-LPV modeling of PEM Fuel Cell

The control model used in this work is derived from the one
presented in Pukrushpan et al. (2004), and has three state
variables: the pressure in the supply manifold psm (Pa), the
pressure in the return manifold prm (Pa) and the mass of oxygen
in the cathode mO2 (kg). The compressor mass flow Wcp (kg/s)
and the return manifold outlet orifice constant krm,out (ms) are
considered control variables while the current in the stack Ist
(A) represents a third input variable, that can be considered as
a disturbance input to be included in the reference model, in
order to generate an appropriate feedforward action, and make
the feedback loop insensitive to its variation:

ṗsm =
γRa

Vsm
Wcp

Tatm +
Tatm

ηcp

( psm

patm

) γ−1
γ

−1


−γRa

Vsm
ksm,out

(
psm−

mO2RO2Tst

Vca

)
Tsm

(1)

ṗrm =
RaTrm

Vrm
kca,out

(
mO2RO2Tst

Vca
− prm

)
−RaTrm

Vrm
krm,out (prm− patm)

(2)

ṁO2 = ksm,out psm−
mO2RO2Tst

Vca
(ksm,out + kca,out)

+kca,out prm−MO2

nIst

4F

(3)

The nonlinear model (1)-(3) can be expressed in a quasi-linear
parameter varying 1 (qLPV) representation using the nonlinear
embedding in the parameters approach (Kwiatkowski et al.,
2006), as follows:

ẋ = Ax(t)+B(θ(t))u(t)+ cw(t) (4)

with x(t)= [psm(t), prm(t),mO2(t)]
T , u(t)= [Wcp(t),krm,out(t)]

T ,
w(t) = Ist(t), and state-space matrices as follows:

A=

( a11 0 a13
0 a22 a23

a31 a32 a33

)
B(θ) =

(
θ1 0
0 θ2
0 0

)
c=−

MO2n
4F

(5)

a11 =−
γRa

Vsm
ksm,outTsm a13 =−a11

RO2Tst

Vca

a22 =−
RaTrm

Vrm
kca,out a23 =−a22

RO2Tst

Vca

a31 = ksm,out a32 = kca,out a33 =−(a31 +a32)
RO2Tst

Vca
1 The term quasi refers to the fact that the varying parameters are functions of
some endogenous signals, i.e. state variables.

θ1(t) =
γRa

Vsm

Tatm +
Tatm

ηcp

( psm(t)
patm

) γ−1
γ

−1


θ2(t) =−

RaTrm

Vrm
krm,out (prm(t)− patm)

It is assumed that the vector θ(t) = [θ1(t),θ2(t)]T belongs to a
bounded set Θ, known a priori.

2.2 Reference and error quasi-LPV models

The reference model provides the state trajectory to be tracked
by the PEM fuel cell, starting from the reference inputs W re f

cp (t)
and kre f

rm,out(t). The values of the reference inputs to be fed to
the reference model (feedforward actions) are obtained from
steady-state considerations about the fuel cell system, so as to
keep the supply manifold pressure and the oxygen stoichiome-
try, defined as follows:

λO2(t) =
ksm,out

(
psm(t)−

mO2 (t)RO2 Tst
Vca

)
MO2

nIst (t)
4F

(6)

at some desired values p∞
sm and λ

re f
O2

.

In this work, the reference model is chosen as follows:
ẋre f (t) = Axre f (t)+B(θ(t))ure f (t)+ cw(t) (7)

with xre f (t)=
[

pre f
sm (t), pre f

rm (t),mre f
O2

(t)
]T

and ure f (t)= [W re f
cp (t),

kre f
rm,out(t)]T .

Then, by subtracting the reference model equations (7) and
the corresponding system equations (4), and by defining the
tracking error vector e(t) , xre f (t)− x(t) and the new input
vector ∆u(t), ure f (t)−u(t), the following qLPV error system
is obtained:

ė(t) = Ae(t)+B(θ(t))∆u(t) (8)
that can be discretized using an Euler approach with sampling
time Ts, leading to the following discrete-time model:

e(k+1) = Ade(k)+Bd (θ(k))∆u(k) (9)
with Ad = I +ATs and Bd (θ(k)) = B(θ(k))Ts.

3. CONTROLLER DESIGN USING LMI-BASED
TECHNIQUES

The following error-feedback controller is proposed for the
discrete-time error system (9):

∆uc(k) = K (θ(k))e(k) (10)

The controller (10) is designed using an LMI-based approach,
where the desired specifications are guaranteed using the results
from the quadratic Lyapunov framework (Tanaka and Wang,
2001). Despite the introduction of conservativeness with re-
spect to other existing approaches, the quadratic approach has
undeniable advantages in terms of computational complexity.

For the synthesis of the controller, N operating points are
considered for the error system (9), such that for each of them,
a local LTI model is obtained 2 :
2 This approach is usually referred to as gridding approach. Even though the
stability and desired performance are strictly guaranteed only at the design
points, when the gridding is sufficiently dense, it is reasonable to assume that
stability and performance will still hold at operating points different from the
design ones.



e(k+1) = Ade(k)+Bi∆u(k) i = 1, . . . ,N (11)
such that the following holds:

Bd (θ(k)) =
N

∑
i=1

µi (θ(k))Bi (12)

with:
N

∑
i=1

µi (θ) = 1, µi (θ)≥ 0 ∀i = 1, . . . ,N
∀θ ∈Θ

(13)

Then, the qLPV error system (9) with input matrix as in (12),
with the error-feedback controller (10) with gain chosen as:

K (θ(k)) =
N

∑
i=1

αi (θ(k))Ki (14)

is quadratically stable if there exist X > 0 and Ki, i = 1, . . . ,N
such that:(

−X (Ad +BiKi)X
X (Ad +BiKi)

T −X

)
< 0 ∀i = 1, . . . ,N (15)

On the other hand, pole clustering is based on the results
obtained by Chilali and Gahinet (1996), where subsets D of
the complex plane, referred to as LMI regions, are defined as:

D = {z ∈ C : fD (z)< 0} (16)
where fD is the characteristic function, defined as:

fD (z) = α + zβ + z̄β
T = [αhl +βhlz+βlhz̄]h,l∈[1,m] (17)

with α = αT ∈ Rm×m and β ∈ Rm×m.

Hence, the qLPV error system (9) with an input matrix as
in (12), with the error-feedback controller (10) with a gain
chosen as in (14), has poles in D if there exist XD > 0 and
Ki, i = 1, . . . ,N, such that:[

αhlXD +βhl (Ad +BiKi)XD +βlhXD (Ad +BiKi)
T
]

< 0
h,l∈[1,m]

(18)
for i = 1, . . . ,N.

Conditions (15) and (18) are bilinear matrix inequalities (BMIs)
that can be brought to linear matrix inequalities (LMIs) form
by using a single Lyapunov matrix X = XD > 0 and through the
change of variables Γi , KiX :(

−X AdX +BiΓi

(AdX +BiΓi)
T −X

)
< 0 (19)

[
αhlX +βhl (AdX +BiΓi)+βlh (AdX +BiΓi)

T
]

< 0
h,l∈[1,m]

(20)

that can be solved using available software, e.g. the YALMIP
toolbox (Löfberg, 2004) with SeDuMi solver (Sturm, 1999).

4. FAULT TOLERANT CONTROL USING LPV VIRTUAL
ACTUATORS

4.1 Including faults in the model

Two types of actuator faults are considered: changes in the
effectiveness of the faulty actuators, and stuck faults, where the
inputs delivered by the faulty actuators are blocked to constant
values. In the first case, the faulty model is as follows:

ẋ(t) = Ax(t)+B f (θ(t),φ(t))u(t)+ cw(t) (21)

with:
B f (θ(t),φ(t)) = B(θ(t))diag(φ1(t), . . . ,φnu(t)) (22)

where φ j(t) ∈]0,1] represents the effectiveness of the jth actu-
ator, such that the value φ j = 1 represents the healthy situation.

In the second case, the faulty model is:
ẋ(t)=Ax(t)+B∗ (θ(t))u(t)+[B(θ(t))−B∗ (θ(t))] ū(t)+cw(t)

(23)
where ū(t) is the vector containing the values of the stuck con-
trol inputs and B∗ (θ(t)) is the matrix obtained from B(θ(t))
by replacing the columns corresponding to the stuck actuators
with zero vectors.

Then, in the case of multiplicative faults, the reference model is
changed as follows:

ẋre f (t) = Axre f (t)+B f
(
θ(t), φ̂(t)

)
ure f (t)+ cw(t) (24)

where φ̂(t) is an estimation of the multiplicative actuator faults,
while in the case of stuck faults, it becomes:

ẋre f (t) = Axre f (t)+B∗ (θ(t))ure f (t)
+[B(θ(t))−B∗ (θ(t))] ˆ̄u(t)+ cw(t) (25)

where ˆ̄u(t) is an estimation of the stuck actuator faults.

Then, under the assumption that φ̂(t) ∼= φ(t) and ˆ̄u(t) ∼= ū(t)
(the case where such an assumption does not hold, i.e. when
there is uncertainty in the fault estimation, will be addressed by
future research), the error model takes the form:

ė(t) = Ae(t)+B f
(
θ(t), φ̂(t)

)
∆u(t) (26)

or:
ė(t) = Ae(t)+B∗(θ(t))∆u(t) (27)

for multiplicative or stuck faults, respectively.

Then, using an Euler approach with sampling time Ts, discrete-
time versions of (26) and (27) can be obtained as:

e(k+1) = Ade(k)+B f d
(
θ(k), φ̂(k)

)
∆u(k) (28)

and:
e(k+1) = Ade(k)+B∗d (θ(k))∆u(k) (29)

respectively, with:

B f d
(
θ(k), φ̂(k)

)
= B f

(
θ(k), φ̂(k)

)
Ts (30)

and:
B∗d (θ(k)) = B∗ (θ(k))Ts (31)

4.2 Virtual actuator design

The main idea of the virtual actuator FTC method, first in-
troduced in Lunze and Steffen (2006), is to reconfigure the
faulty plant such that the nominal controller could still be used
without need of retuning it. The plant with the faulty actuators is
modified adding the virtual actuator block that masks the fault
and allows the controller to see the same plant as before the
fault.

In the case of multiplicative faults, the virtual actuator is static
since the following condition is satisfied:

rank(B f d(θ(k), φ̂(k))) = rank
(
Bd(θ(k)) B f d(θ(k), φ̂(k))

)
(32)

and it can be expressed as:

∆u(k) = Nv(θ(k), φ̂(k))∆uc(k) (33)
where ∆uc(k) is the controller output provided by (10) and:

Nv(θ(k), φ̂(k)) = B†
f d(θ(k), φ̂(k))Bd(θ(k)) (34)



where the symbol † denotes the Moore-Penrose pseudoinverse.
In this case, the fault-hiding property is achieved thanks to the
multiplicative faults effects compensation brought by (34).

On the other hand, in the case of stuck faults, the fault tolerance
is achieved using the reconfiguration structure expressed by:

∆u(k) = Nv(θ(k), φ̂(k))(∆uc(k)−Mv(θ(k))xv(k)) (35)
where the virtual actuator state xv(k) is obtained through:

xv(k+1) = [Ad (θ(k))+B∗d (θ(k))Mv (θ(k))]xv(k)
+[Bd (θ(k))−B∗d (θ(k))]∆uc(k)

(36)

Moreover, in order to achieve the fault-hiding property, the
signal entering into the controller is slightly modified, such that
the outputs of the controller become as follows:

∆uc(k) = K (θ(k))(e(k)+ xv(k)) (37)

When the stuck fault occurs, the virtual actuator reconstructs
the vector ∆u(k) from the outputs of the nominal controller
∆uc(k), taking into account the fault occurrence. The faulty
plant and the virtual actuator are called the reconfigured plant,
which is connected to the nominal controller. If the reconfigured
plant behaves like the nominal plant, the loop consisting of the
reconfigured plant and the controller behaves like the nominal
closed-loop system.

4.3 Reconfiguration Analysis

In the following, it is shown that thanks to the introduction of
the virtual actuator block, the augmented system can be brought
to a block-triangular form.
Theorem 1. Consider the augmented system made up by the
faulty error system (29), the reconfiguration structure (35), the
virtual actuator state equation (36) and the control law (37) 3 :(

e(k+1)
xv(k+1)

)
=

(
Ad +B∗dK B∗d (K−Mv)
(Bd −B∗d)K Ad +B∗dMv +(Bd −B∗d)K

)(
e(k)
xv(k)

)
(38)

Then, there exists a similarity transformation such that the state
matrix of the augmented system in the new state variables is
block-triangular, as follows:

Aaug =

(
Ad +BdK 0
(Bd−B∗d)K Ad +B∗dMv

)
(39)

Proof: The proof is straightforward, and comes from introduc-
ing the new state variable x1(k), e(k)+ xv(k) and considering
the state ( x1(k) xv(k) )

T . �

Looking at (39), it can be seen that the state x1(k) is affected by
K through the matrix Ad +BdK, while the state xv(k) is affected
by Mv through the matrix Ad +B∗dMv. Hence, the controller and
the virtual actuator can be designed independently.

The design conditions presented in Section 3 can be applied
to the case of virtual actuator design by making the changes
Bd → B∗d and K→Mv.

5. RESULTS

The values used in this work have been taken from Aitouche
et al. (2011), and are listed in Table 1.
3 The dependence of the matrices Ad , Bd , B∗d , K and Mv on the varying
parameter vector θ(k) has been omitted for lack of space.

Table 1. List of parameters and values

Variable Description Value and Unit
ηcp Compressor efficiency 0.8
γ Specific heat capacity of gas 1.4

Ra Air gas constant 286.9J/(kgK)
RO2 Oxygen gas constant 259.8J/(kgK)
Vsm Supply manifold volume 0.02m3

Vca Cathode volume 0.01m3

Vrm Return manifold volume 0.005m3

Tatm Air temperature 298.15K
Tst Temperature in the stack 350K
Tsm Supply manifold temperature 300K
Trm Return manifold temperature 300K
patm Air pressure 101325Pa

Supply manifold
ksm,out outlet 0.3629 ·10−5 kg/sPa

flow constant
kca,out Cathode outlet flow constant 0.2177 ·10−5 kg/sPa
MO2 Oxygen molar mass 32 ·10−3 kg/mol

n Cells in the FCS 381
F Faraday constant 96485C/mol

The nominal controller has been designed to assure stability and
pole clustering in a circle of radius 0.4 and center (0.599,0).
Moreover, since it is assumed that only psm and prm are mea-
sured, a state observer has been added to the control loop to
obtain an estimation of mO2.

The results shown in this paper refer to simulations that last
200s, where the current in the stack Ist and the desired oxygen
stoichiometry λ

re f
O2

(t) are varying in time as follows:

(
Ist(t),λ

re f
O2

(t)
)
=


(150,2) t ≤ 40s
(250,2.5) 40s < t ≤ 80s
(200,3) 80s < t ≤ 120s
(350,2.5) 120s < t ≤ 160s
(300,2) 160s < t ≤ 200s

(40)

and the desired supply manifold pressure is set to p∞
sm = 1.5Pa.

In this work, three possible faults are considered.

5.1 Fault Scenario 1: loss of effectiveness of Wcp

In fault scenario 1, a loss of effectiveness φcp = 0.5 appearing
at time t = 100s has been considered.

By including this fault in the dynamic model of the PEM fuel
cell, (1) becomes:

ṗsm =
γRa

Vsm
φcpWcp

Tatm +
Tatm

ηcp

( psm

patm

) γ−1
γ

−1


−γRa

Vsm
ksm,out

(
psm−

mO2RO2Tst

Vca

)
Tsm

(41)

where φcp denotes the multiplicative fault of the air compressor
flow.

Fig. 1 shows a comparison of the response of the oxygen
excess ratio λO2 without the proposed FTC strategy and with
the proposed FTC strategy. It can be seen that the loss of
effectiveness of the actuator Wcp leads to an undesired offset
between the desired λ

re f
O2

and the real one. On the other hand,
by calculating Wcp using the virtual actuator (blue line in Fig.
2), the fault is hidden and the real input after the loss of



effectiveness (red line in Fig. 2) equals the one obtained in
nominal situation (black dots in Fig. 2).

5.2 Fault Scenario 2: loss of effectiveness of krm,out

In fault scenario 2, a loss of effectiveness φrm,out = 0.5 appear-
ing at time t = 100s has been considered.

By including this fault, (2) changes to:

ṗrm =
RaTrm

Vrm
kca,out

(
mO2RO2Tst

Vca
− prm

)
−RaTrm

Vrm
φrm,outkrm,out (prm− patm)

(42)

where φrm,out denotes the multiplicative fault of the return
manifold outlet orifice.

Similarly to the case of fault scenario 1, an offset appears in the
response of λO2 when no FTC strategy is applied (red line in
Fig. 3). The reconfiguration of the control input brought by the
virtual actuator (see Fig. 4) allows to eliminate the offset (blue
line in Fig. 3).

5.3 Fault Scenario 3: stuck of krm,out

In fault scenario 3, the return manifold outlet is stuck starting
from time t = 100s.

In this case, krm,out is stuck to k̄rm,out , such that (2) becomes:

ṗrm =
RaTrm

Vrm
kca,out

(
mO2RO2Tst

Vca
− prm

)
−RaTrm

Vrm
k̄rm,out (prm− patm)

(43)

As shown in Fig. 5, no effect is visible in the oxygen excess
ratio response until a change in the reference λ

re f
O2

occurs at
time t = 120s. This fact is reasonable, because in the interval
between the fault occurrence and the reference change, the
return manifold outlet is stuck near the correct position that
assures an error approximately zero. After the reference change,
it can be seen that, although the stuck fault is not so critical as
the multiplicative faults, the transient has become slower. The
proposed virtual actuator strategy allows to improve the overall
performance.

6. CONCLUSIONS

In this paper, an LPV virtual actuator FTC strategy for PEM
fuel cells has been proposed. The overall solution relies on
adapting the controller in order to keep the stability and some
desired performances. The proposed methodology is based on
the use of a reference model, where the resulting nonlinear error
model is brought to a qLPV form for designing a controller
using LMI-based techniques. Simulation results have shown
that if no FTC strategy is applied, undesired offsets would
appear in the case of multiplicative faults, and the transient
would become slower in the case of the considered stuck fault.
On the other hand, the proposed FTC strategy allows to improve
the overall performance in both cases.

Future research will aim at increasing the robustness of the pro-
posed strategy against exogenous disturbances and parametric
uncertainty, with the goal of testing it using a real PEM fuel cell
setup.
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Fig. 1. Oxygen excess ratio with and without FTC in fault
scenario 1 (Loss of effectiveness of Wcp).

0 50 100 150 200
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time (s)

W
cp

 (
kg

/s
)

 

nominal
with FTC (calculated)
with FTC (real)

Fig. 2. Compressor mass flow with and without FTC in fault
scenario 1 (Loss of effectiveness of Wcp).
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Fig. 3. Oxygen excess ratio with and without FTC in fault
scenario 2 (Loss of effectiveness of krm,out ).
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FTC in fault scenario 2 (Loss of effectiveness of krm,out ).
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