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Abstract

The use of water distribution network (WDN) models is an extended practice [13]. Confidence on decisions taken upon such

models depends highly on their accuracy [11]. The parameters uncertainty has to be defined in order to include it in the model.

Some of the parameters in a network (e.g. pipes lengths and diameters) can be easily measured and their uncertainty can be

calculated on a statistical basis [4]. Demands cannot be measured directly and they have to be estimated using other measurements

[10][8]. The uncertainty in the measurements used for that estimation is propagated to the parameters [1]. Besides, demands have

their own stochastic nature that induces uncertainty. This paper describes how the pressure measurements are used to infer the

uncertainty model in demands for a real network. The real data are treated in order to avoid the effect of boundary conditions. An

uncertainty model for demands is calculated to justify the observed behaviour of the measurements. Montecarlo simulations are

used for the validation.
c© 2015 The Authors. Published by Elsevier Ltd.
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1. Introduction

A model-based leak localisation method was successfully applied in a pilot test in a District Metered Area (DMA),

called Nova Icaria, located within the Barcelona water distribution network (WDN). This study was the result of two

different projects (PROFURED [6] and RTNM [7]) proposed and lead by CETAQUA, the technological Center of

Barcelona Water Company managing the DMA (AGBAR), and mainly developed by the Advanced Control Systems

(SAC) group of Technical University of Catalunya (UPC). This first approach motivated further steps on this work,

related with the accuracy that could be achieved by the initial methodology when applied exhaustively to the whole

WDN, if the only available information is coming from the measurements of the sensors already installed in the

system, and how it improves as new sensors are introduced [6][5]. Furthermore, the accuracy of any model-based

∗ Ramon Prez. Tel.: +34-93-739-8620

E-mail address: ramon.perez@upc.edu

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Scientific Committee of CCWI 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41822377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2015.08.911&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2015.08.911&domain=pdf
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methodology is highly dependant on the model reliability [12][3]. The uncertainty of a model can have different

origins. In this work the uncertainty is observed using measurements gathered from real scenarios. Measurements

obtained at the same hour in different days show an uncertain behaviour of the network. Once the expected distribution

of measurements is estimated, a hypothesis of the uncertainty source is assumed. This uncertainty source is modelled

so that the simulated scenarios are a realistic representation of the system.

1.1. Problem statement

In general a DMA has its inputs monitored, both flows and pressures. This is the actual case in the Barcelona WDN

where pressure measurements are used to set the model boundary conditions together with the demand distribution,

based on registered water and the total demand provided by flow sensors at the network inputs [6]. The pressure values

obtained by sensors installed within the DMA present a relevant dispersion. This dispersion includes uncertainties

with different origins. The reproduction of these uncertainties in the simulation model allows the assessment of any

methodology that will be applied in real networks beforehand. The questions that this work aims to answer are:

1. How can the uncertainty in pressure measurements be reduced by taking into account available information?

2. Which sources may be chosen to generate this uncertainty in the models?

3. How can this uncertainty be created in the simulation models?

1.2. Case Study

In this work, a DMA located in the Barcelona area is used as a case study. In order to simulate the DMA isolated

from the water transport network, the boundary conditions (i.e. pressure and flow measurements from the network)

are fixed. Generally, pressure is fixed using a reservoir and the overall demand is obtained as the sum of the inflow

distributed through the DMA. The total inflow is distributed using a constant coefficient (base demand) in each con-

sumption node. Hence, all the consumptions are assumed to share the same profile, whilst the billing information

is used to determine the base demand of each particular consumption. A good estimation of the demand model is

paramount for the real case application.

The DMA considered here (Fig. 1) is called Canyars and is located at the pressure level 80 within the Barcelona

water transport network. This DMA has Nn = 694 nodes and Nl = 719 links, and delivers water to the end consumers

by means of a single input point.

Fig. 1. Canyars DMA
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The paper is organized as follows: Section 2 describes the uncertainty estimation methodology and the results

obtained with the historical data available from the WDN. This uncertainty is generated in simulation using the

methodology described in Section 3, which also presents the results obtained applying the methodology to the case

study described in Secction 1.2. Finally, the conclusions that show up from the results are discussed in Section 4.

2. Uncertainty estimation

The pressure measurements distribution in a node within the DMA is studied. At the beginning of this work,

only pressure sensors were available in a DMA similar to our case study. Historical data, provided every 10 minutes

are processed in order to obtain one filtered value every hour for every pressure sensor. The distributions studied

correspond to the same hour of a week day so that demand conditions are similar. The range of pressures is rather

wide and a first topological conditions identification (e.g. valve status) is carried on. The data taken at the same

topological conditions are selected reducing the pressure variability. Boundary conditions induce part of the remaining

variability in the pressure measurements. In order to not include this known information in the uncertainty model, a

linear relation of the pressures with the measured inflows and the boundary pressures is estimated. Eq. 1 expresses

the linear model for pressure in a node i considering a DMA with two inputs.

pi = pi0 +

Nj∑

j=1

∂pi

∂S Pj
|x0
ΔS Pj +

∂pi

∂Qt
|x0
ΔQt + Δpi (1)

where pi is the pressure measured in node i; pi0 is the nominal pressure in node i under nominal boundary conditions

x0; ΔS Pj and ΔQt are the pressure difference in input j and the total demand difference respect to the nominal

boundary conditions respectively; Nj is the number of inputs.

Δpi is the remaining pressure uncertainty in node i after extracting the that uncertainty coming from the boundary

conditions. The pressure measurements, pi, are corrected in order to make them independent of the boundary condi-

tions using this linear model. Eq. 2 shows the correction applied. The coefficients a j and b are estimated by linear

regressions.

p∗i = pi −
N j∑

j=1

a jΔS Pj − bΔQt = pi0 + Δpi (2)

This remaining uncertainty, Δpi, comes from different sources (e.g. demand behaviours, modelling and measure-

ment uncertainties). It is expected to have a distribution normally distributed, so it can be characterised by its standard

deviation. The target here is to replicate the uncertainty in the pressure measurements taken in identical conditions,

so that the uncertain model lets us test the model-based methodologies.

The first row of Fig. 2 presents the pressure measurements for the five sensors considered at 0:00 weekdays. The

corresponding distributions present high deviations and their shape are barely Gaussian.

In order to use all the available data to infer the uncertainty, the influence of the known boundary conditions has to

be extracted. Fig. 3 and 4 show the relation of the boundary conditions, total inflow and input pressures, respectively,

with the DMA inner pressures considered. A linear regression produces the coefficients a j, and b in Eq. 2. Applying

this linear correction the distributions obtained (second row in Fig. 2) can be assumed gaussian and also reduce their

standard deviation from the former distributions.

Table 1. Table with the standard deviations of data (in m)

Conditions Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

Raw data 1.23 1.34 1.08 1.19 1.18

Extracting boundary conditions 0.21 0.19 0.24 0.19 0.52

Table 1 presents the standard deviations of the distributions in Fig. 2 before and after the regression model is

applied. From second row in Table 1 a mean standard deviation is defined for all the sensors. Namely in our case
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Fig. 2. Histogram of five pressure measurements (columns) at 0:00 a weekdays. Total data points: 133. First row: raw data, second row: row data

without boundary conditions

study σ(pi + Δpi) is around 20cm. In Section 3 this uncertainty in the pressure measurements is induced modelling

the uncertainty of parameters.

3. Uncertainty modelling

Uncertainty is originated from parameter estimation, measurement errors, incorrect boundary conditions, inherent

model structural errors or unknown status of valves [3][14]. In this work we aim to replicate the effect of the un-

certainties in the measurements rather than model all these uncertainty sources. Demands have a variable behaviour

compared with other parameters, thus they have inherent uncertainty added to the estimation uncertainty. We choose

demands as our uncertainty source coinciding with [2] where demands are assessed as the principal source of uncer-

tainty.

Our model assumes that the remaining uncertainty depends on the uncertainty in the demand, Eq. 3. The method-

ology for the demand uncertainty definition is to evaluate its effect on the uncertainty in pressures by means of Monte

Carlo simulations. The uncertainty in demands is increased until the uncertainty in pressures equals the observed in

Section 2.

p∗i = pi0 + Δpi(Δd) (3)

3.1. Basic model

Firstly, the simplest demand model of those applied in water networks is considered. It uses the inflow measure-

ments in a DMA that are generally obtained on-line and the percentage of consumption of each demand that comes

from billing (usually monthly or quarterly). Eq.4 expresses the demand di(t) at node i at each sample time t, hourly in

this work.

di(t) =
bdi∑
(bdi)

qt(t) + Δdi(t) (4)

where bdi is the so-called base demand that weighs the demand of node i within the global DMA and Δdi is the

uncertainty in the nodal demand. The uncertainty is simulated assuming a gaussian distribution with zero mean and

standard deviation σ for node i, Eq.5.

Δdi(t) =
bdi∑
(bdi)

qt(t)N(0, σ)). (5)
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Fig. 3. Total inflow in the DMA versus pressure in five sensors within this DMA.

This uncertainty is conditioned by the knowledge of the total demand:

∑

j

Δd j = 0 (6)

We try to estimate the standard deviation (σ) value that induces a similar uncertainty in the predicted pressure

measurements as the observed in Section 2.

Using the model presented in Section 3.1 it is not possible to generate the uncertainty in the pressures even when

considering rather high uncertainties in the demands. Table 2 shows the uncertainties obtained which are far from

the 20 cm, observed in the real measurements, even with an uncertainty standard deviation of 10 times the demand in

each node.

Computing the pressure uncertainty as a function of the demand uncertainty gives insight into how the demand

model may be changed to accommodate the observed uncertainty.
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Fig. 4. Pressure at the two inputs of the DMA (columns) versus pressure in five sensors within this DMA (rows).

Consider first that pressure uncertainty is a linear function of the uncertainty in the demands

Δpi =
∑

j

β jΔd j. (7)

The pressure variance is obtained squaring the previous equation and taking the expectation, denoted by E

EΔ2 pi =
∑

j

∑

k

β jβkEΔd jΔdk. (8)

As a simple application of Eq. 8 consider the uncorrelated uncertainty in the demands case, i.e. EΔd jΔdk = 0 for

j � k, then pressure variance is

EΔ2 pi =
∑

j

β2
j EΔ

2d j. (9)
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Table 2. Table with the standard deviations of data (in m)

σ = 0.5 σ = 1 σ = 3 σ = 5 σ = 10

σS 1 0.0009 0.0016 0.0041 0.0080 0.0359

σS 2 0.0028 0.0046 0.0098 0.0165 0.0500

σS 3 0.0015 0.0027 0.0074 0.0138 0.0561

σS 4 0.0020 0.0037 0.0105 0.0195 0.0700

σS 5 0.0046 0.0069 0.0127 0.0197 0.0478

In the present case demand uncertainty is conditioned by the knowledge of the total demand (Eq. 6) implying that

demands are not uncorrelated

EΔ2d j = −
∑

k� j

EΔd jΔdk. (10)

The previous equation combined with Eq. 8 gives an expression for the variance of the pressure uncertainty that allows

the interpretation of the present case

EΔ2 pi =
∑

j

∑

k� j

(β jβk − β2
j )EΔd jΔdk. (11)

To accommodate the observed pressure variance using only demand uncertainty, Eq. 11 suggests the use of a

demand model that increases the correlation of the demand uncertainties considering the geographical information in

the coefficients β jβk − β2
j .

3.2. Demand component model

The second model considered here includes demand components that have a daily periodicity so that the variation

in pressure gradients may be justified. These components have a geographical distribution. More information about

this model can be found in [9]. Eq. 12 expresses the demand using this model.

di(t) = bdi

nc∑

j=1

(mi j(c j(t) + Δc j(t)))qt(t) (12)

where c j(t) is the value of demand component j at time instant t; nc is the number of components defined in the

DMA; mi j is the membership of demand i to component j; Δc j(t) is the uncertainty of the component j. The uncertainty

is simulated assuming that the elements of a component are not fixed and well-known values but they have a gaussian

distribution with standard deviation σ j (Eq. 13). We try to estimate the standard deviation of these distributions σ j

that induces a similar uncertainty in the predicted pressure measurements as the observed in section 2.

Δc j(t) = c j(t)N(0, σ j). (13)

These demand components are defined using the sensitivity matrix that relates the demands in the nodes with the

pressures. Therefore these demand components have a geographical meaning. For the case study considered here the

membership of each node to each of the three demand components is presented in Fig. 5. The number of components

depends on the information available when the model is calibrated. Three components are considered as a reasonable

demand modelling of the DMA for this particular case.

Fixing the boundary conditions, a Monte Carlo simulation with 1000 realisations gives the mean standard deviation

in the pressures of the nodes depending on σ j (Fig. 6). The standard deviations in the three demand components that

produce de 20 cm of mean standard deviation in pressures are σ1 = 2.9; σ2 = 3.7;σ3 = 3.1, respectively.

The standard deviation of the demands and pressures is not homogeneous in this model. Fig. 7 shows the demand

and pressure standard deviation obtained by the Monte Carlo simulation. Fig. 8 presents the pressure distribution

for 25 different nodes, geographically representative of all the network. The Uncertainty distributions obtained are

similar to the ones observed in the measurements (Fig. 2) but their shape is not Gaussian. This deformation on the

distributions shape can be produced by the constraints in the negative demands, which are not allowed.
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Fig. 5. Membership of each node (darker: higher membership) to the three demand components

4. Conclusions

This paper describes a methodology for modelling the uncertainty observed in field data in a WDN. Firstly this

uncertainty has been reduced by means of extracting the effect of varying boundary conditions. The application of a

linear model estimated by regressions on real data has produced a Gaussian distribution with a reasonable standard

deviation.

The uncertainty source in the model proposed is the demand. A first attempt using a basic model of demands

can not justify the uncertainty observed in pressures. The analysis of the demand uncertainty effect on the pressure

uncertainty has suggested to change the demand model. A one with more correlated demand uncertainty between

nodes in a similar geographical location has been considered.
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Fig. 6. Mean standard deviation in pressures depending on standard deviation in demand components. Obtained by Monte Carlo simulation.
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Fig. 7. Standard deviation of demands and pressures in each node.

The demand components model has a geographical meaning that produces distribution in predicted pressures sim-

ilar to the measurements available. The standard deviation defined for each component has not implied high deviation

in individual demand or pressures (Fig. 6).

The model including the uncertainty allows the simulation of realistic scenarios for developing and validating

model-based methodologies like leak localisation.
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[8] Sanz, G., Pérez, R., 2014. Demand Pattern Calibration in Water Distribution Networks. Procedia Engineering 70, 1495–1504.

URL http://linkinghub.elsevier.com/retrieve/pii/S1877705814001660
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