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Abstract

Water distribution network models are used by water companies in a
wide range of applications. A good calibration of these models is required
in order to improve the confidence of the application results. Pressure and
flow measurements are the main source of information when calibrating
a hydraulic model. The selection of both the type and location of the
sensors is crucial to guarantee a good calibration. This paper describes
a sensor placement methodology based on the analysis of pressure and
flow sensitivity using the Singular Value Decomposition. A comparison
of demand calibration in a real network with synthetic data is presented.
Three sets of sensors are considered: pressure sensors, flow sensors, and a
combination of both.

1 Introduction

During the last decades, the concern about the water crisis has increased.
Among many causes, inefficiencies in supply networks produce a loss of en-
ergy and water. These losses have an economic cost that water utilities can
reduce. Network optimization [Creaco et al.(2015)] and fault detection and lo-
cation [Pérez et al.(2014)] in water distribution networks (WDN) are two ac-
tions that can be performed to reduce the water and energy losses. Many of
these techniques require a well calibrated model to generate reliable results
[Savic et al.(2009)]. Model calibration consists in tuning the network param-
eters to reduce the error on predicted measurements. These measurements
consist of pressure and/or flow sensors. Flow data are more sensitive to changes
on demands and leakage appearance. However, their installation is much more
expensive than pressure monitoring [Walski et al.(2014)]. Consequently, water
utilities opt for installing pressure sensors, which have already been used for
multiple purposes [Pérez and Sanz(2014)].

Many works in literature have treated the sampling design (i.e. sensor place-
ment) problem. [Pinzinger et al.(2011)] proposed three algorithms based on in-
teger linear programming and Greedy paradigm. [Kapelan et al.(2003)] solved a
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multiobjective optimization using genetic algorithm (GA) for WDN model cali-
bration. [Behzadian et al.(2009)] combined GA and adaptive neural network in
a multi-objective optimization for WDN calibration. [Pérez et al.(2009)] used
the GA to select sensors for leakage localization.

This work presents an assessment to determine: 1) what WDN model pre-
dicted variables (pressure and/or flow) to observe; and (2) where in the WDN to
observe them. The parameters to be calibrated are the demand components val-
ues explained in [Sanz and Pérez(2015)], which represent geographical demand
behaviours. The methodology to select the best sensors (pressure and/or flow
sensors) is based on the analysis of the Singular Value Decomposition (SVD)
of the WDN sensitivity matrix. The A, D, and V-optimalities of the sampling
design solutions given by the methodology will be analysed to evaluate how well
these solutions represent the true behaviour of the WDN. Finally, the validation
of the calibrated demand components model for each set of selected sensors is
performed by calculating the flow and pressure prediction error in 32 pipes and
34 nodes, respectively.

2 Problem Statement

Nodes in WDN models represent an aggregation of multiple demands. Each
of these demands may be of different type, e.g. domestic, commercial, etc.
Users of the same type are usually assumed to consume water in the same
(i.e. similar) way, following a certain, usually pre-determined, diurnal demand
pattern. The consumption of each user is then computed by multiplying the
pattern coefficients with the baseline (i.e. average) demand. Once this is done,
demands of different type that are associated with a certain network node are
aggregated resulting in the total nodal consumption at a given point in time.

However, the information on different types of users associated with a given
network node and their diurnal patterns and baseline demands is not always
available in practice. Quite often, the only information available is the consump-
tion aggregated during a period of time (usually monthly or quarterly). This
low temporal resolution information on demands can still be used to compute
the base demand of each consumer. The base demand of a node is computed
from the sum of the base demands of consumers aggregated in this node. The
basic model presented in Eq. 1 uses the nodal base demands, together with
the total network consumption metered at the network inputs, to calculate the
demand of each node at each sample.

di(t) =
bdi∑nd

j=1 bdj
· qin(t) (1)

where bdi is the base demand of node i, nd is the number of nodes in the network,
and qin(t) is the total network consumption metered at sample t.

The basic demand model (Eq. 1) cannot explain the daily variation of the
relative pressure behaviour between two areas in the network. The demand
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model in Eq. 2 presents a new approach to model demands depending on their
geographical location.

di(t) =
bdi∑nd

j=1 bdj
cj→i(t) · qin(t) (2)

where cj→i(t) is the value of the demand component j associated to node i
depending on the node location. Demand components are calibrated demand
multipliers that represent the behaviour of nodes in a determined geographi-
cal zone, avoiding the dependency on information of the user type and diurnal
pattern behaviour. All nodes in the same area of node i have the same asso-
ciated demand component. Consequently, all nodes in the same zone will have
the same demand behaviour, weighted depending on their base demand. This
demand model is capable of generating pressure variations in different zones of
the network, as it happens in a real situation. However, the assumption that all
nodes in the same area behave exactly in the same way is not realistic. For ex-
ample, a node in the limit of the effect zone of two demand components should
probably have a combination of the behaviour of the two demand components,
instead of only one. To solve that, we can redefine the demand model in Eq. 2
so that the level to which each demand component is associated with each node
is given as a membership, which depends on their geographical location. Eq. 3
represents the new demand model:

di(t) =
bdi∑nd

j=1 bdj
· qin(t) · (αi,1 · c1(t) + αi,2 · c2(t) + · · ·+ αi,nc

· cnc
(t)) (3)

with
nc∑
j=1

αi,j = 1 ∀i

where αi,j is the association of demand component j with node i, and nc is the
number of demand components. The membership of each node to each demand
component depends on the geographical location of the node, and is computed
by means of the sensitivity analysis detailed in [Sanz and Pérez(2015)]. The
model in Eq. 3 is capable of generating different behaviours in every demand,
while only having to calibrate few (nc) demand components.

[Sanz and Pérez(2015)] present the demand component calibration process
using a least squares (LS) based procedure. At each sample, demand compo-
nents values are estimated so that the errors in predicted measurements are
minimized. This way of calibrating demands incorporates the usually ignored
fact that demands depend in some ways of head status of the network. For
example, if the pressure in a specific zone of the DMA decreases, the calibration
process estimates demand component values that decrease the consumption of
nodes in that zone. Demand components in this work should not be confused
with the ones defined by [Giustolisi and Walski(2012)], where they were gener-
ated with a previous knowledge of the use of water (human-based, volume-based,
non-controlled orifice-based, leakage-based).
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The calibrated demand components generate individual demands that may
not be exactly as the real ones, but the aggregated demand in a zone at a specific
sample, and the cumulative demand of each individual node during a period of
time (similar to the billing) will coincide with the real ones if other parameters
(roughness, valve status, etc.) are well calibrated.

A comparison of the calibration results between type of user-based demand
patterns and pressure sensitivity-based demand components is presented in
[Sanz and Pérez(2014)], with better results for the latter: the uncertainty in
the calibrated parameters is reduced, while the geographical distribution is use-
ful for applications requiring parameters to be related with zones of the network.
[Sanz and Pérez(2015)] also present the methodology to select the pressure sen-
sors that have high sensitivity to one demand component while being low sen-
sitive to the rest. This methodology will be used in this work to select both the
pressure and flow sensors. This work considers the following assumptions:

• Pressures at the network inputs and total consumption are known.

• Noise is considered in the measurements.

• Quarterly billing for each individual consumer is known.

• The methodology is applied to a real network with synthetic data where
uncertainty in demands is considered.

• Gross errors in field data and model are considered to be corrected at a
prior stage.

• Status of valves in the DMA have been checked as part of the prior cali-
bration process.

The calibration in this work is performed by means of a LS-based methodol-
ogy, but other calibration methodologies can be used (e.g. GA). The sampling
design procedure presented selects the sensors to calibrate demand components,
but the same procedure can be applied if other parameters have to be calibrated.

3 Methodology

The methodology proposed analyses the information of the SVD of the sensi-
tivity matrix S in order to select the sensors that give the highest information
to calibrate the chosen parameters. The sensitivity matrix coefficients (i.e. the
partial derivatives of head and flow with respect to each of the parameters) can
be computed using the methods explained in [Yeh(1986)]: (1) Influence coeffi-
cient method; (2) Sensitivity equation method; and (3) Variational method. All
three methodologies require n+1 simulations to be run in order to compute the
complete sensitivity matrix, where n is the number of parameters in the model.
[Cheng and He(2011)] propose a matrix analysis of the WDN linearized model
where only one simulation is required at each iteration. The work presented uses
the latter approach to compute the sensitivity matrix, but other techniques can
be applied.
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3.1 The Singular Value Decomposition

The SVD is capable of solving under-, over-, even- or mixed-determined prob-
lems with no rank conditions in S, as explained by [Menke(1982)]. The SVD of
matrix S with dimensions m x n is:

S = U ·Λ ·VT (4)

where U is a m x m matrix of orthonormal singular vectors associated with the
m observed data, V is a n x n matrix of orthonormal singular vectors associated
with the n system parameters; and Λ is a m x n diagonal matrix of singular
values of S, where the additional rows (more measurements than parameters)
or columns (more parameters than measurements) are filled with zeros.

3.2 Sensor placement

As the objective of selecting sensors is to calibrate a WDN model, the number
of sensors ns is chosen to be equal to the number of parameters np in order
to have an equally determined system of equations that guarantees the system
identifiability.

Initially, matrix Ur is constructed with the first np columns of U, as the in-
formation from the subsequent columns is negligible (they are multiplied by null
rows of the Λ matrix). Then, the information density matrix Id is computed as
Id = UrUr

T [Aster et al.(2005)], describing how the generalized inverse solu-
tion smears out the original data y into a predicted data ŷ. Since Id has been
constructed from np orthonormal vectors in Ur, a set of np(=ns) orthonormal
vectors can be extracted from Id in a way that they enhance the delta-like be-
havior of the Id matrix [Wiggins(1972)]. This “delta-like” vector generation
process is presented in Pseudo-code 1 (lines 1-6). The sensor with highest in-
formation is selected in line 3. The orthonormal vectors u∗ are computed in
line 4. In line 5, the chosen sensor and all the sensors with similar geometric
directions (i.e. similar sensitivity coefficients) are deleted from the information
density matrix, preparing it for the selection of the next sensor. This process
results in a set of delta-like vectors u∗ that form matrix U∗. Subsequently, the
rows of matrix U∗ are normalised (line 7), so that sensors with high sensitivity
to two parameters will not be selected. Finally, the sensor with highest value in
each of the ns columns is selected as the sensor with highest information density
to calibrate a particular parameter (line 9).

Pseudo-code 1 uses the sensitivity matrix computed at a particular working
point. In order to make the sensor placement process more robust, the proce-
dure can be applied k times with k different working points. This results in
a maximum of k · ns possible sensor locations, from which ns sensors have to
be selected. Generally, the network topology has the highest impact on the
sensitivity matrix, hence normally the sensors chosen at each working point are
placed in near or same locations. The repetition ri of a particular sensor is the
number of times that this sensor location has been chosen, with a maximum of
ri = k. Fig. 1.a presents an example of all the possible sensors locations (and

5



Pseudo-code 1 Delta-like vector generation process for sensors selection

Require: Ur, ns
1: Compute Id1 = UrUr

T

2: for z = 1 : ns do
3: Find j = max(diag(Idz))
4: Compute u∗z = idj/

√
Id jj

5: Compute Idz+1 = Idz − u∗z · u∗Tz
6: end for
7: Normalise rows of U∗

8: for z = 1 : ns do
9: Find sz = max(U∗(:, z))

10: end for
11: return : s

their repetitions) after applying Pseudo-code 1 with 24 different working points.
The procedure to select the ns final sensors consists of 6 steps:

1. Generate matrix Dc with the crossed pipe distances from each possible
sensor to the others. This results in a symmetric matrix, with zeros in the
diagonal.

2. Binarize the matrix, replacing distances by “1” if the distances are lower
than a predefined distance threshold dth, or “0” otherwise.

3. Select the sensor with highest number of “1”, i.e. the sensor with highest
number of sensors within dth. This sensor is the relating sensor in its set.
Fig. 1.b shows an example of a group of sensors to be reduced.

4. For each sensor in the set, the weight ws of that sensor is calculated
depending on the distance d to the other sensors and the repetitions r of
the other sensors in the set, and the sensor itself:

ws =

nss∑
i=1

ri

10
dis

dmax(s)

(5)

where nss is the number of sensors in the current set; dis is the distance
between sensor s and sensor i; and dmax(s) is the maximum distance be-
tween sensor s and all other sensors in the current set. Eq. 5 prioritizes
sensors with a high number of repetitions that are close to sensors that also
have a high number of repetitions. Note that the exponent dis/dmax(s) is
always in the interval [0, 1], thus the denominators of the fractions are in
the interval [1, 10]: the lower the distance dis, the lower the value in the
denominator.

5. The sensor in the set with highest weight is chosen as the reference sensor.
All the other sensors are deleted from the possible sensors list and their
number of repetitions is added to the reference sensor (Fig. 1.c).
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Figure 1: Example of the complete sampling design process: empty stars rep-
resent possible sensors; filled stars represent the selected sensors

6. Repeat step 1 until no sets of sensors appear in the binarised matrix.

This process generates a number of clusters depending on the defined thresh-
old distance dth. In the end, the ns sensors with highest repetition number from
the remaining set of sensors are chosen. Fig. 1.d shows all the possible sensors
(stars), and the five selected sensors with highest repetitions (filled stars).

3.3 Optimality

The A, D and V-optimality criteria are used to evaluate how well a sampling
design represents the true behaviour (’response’) of a WDS. The A-optimality
minimises the average parameter variance by minimising the trace of the in-
verse information matrix; the D-optimality maximises the determinant of the
same matrix; and the V-optimality minimises the average prediction variance
[Savic et al.(2009)]. In section 5, the optimality of the chosen sets of sensors
using the methodology presented will be analysed by means of the formulas
proposed by [Kapelan et al.(2003)], listed in Eq. 6.

F1 =
1

np

np∑
i=1

Cov
1/2
p,ii F2 = [det(STWS)]1/(2np) F3 =

1

nz

nz∑
i=1

Cov
1/2
z,ii

(6)
with

Covp = σ2 · STWS Covz = Sz ·Covp · ST
z (7)

where Covp is the parameter covariance matrix; W is the weight matrix; nz is
the number of predicted variables of interest, i.e. the number of chosen predic-
tions whose uncertainties are being evaluated; Covz is the prediction covariance
matrix; σ2 is the variance of the measures used to calibrate, considered the same
for all measures; and Sz is the prediction sensitivity matrix, i.e. derivatives of
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Figure 2: Nova Icaria DMA model with highlighted network inputs (inverted
triangles) and sensors used to evaluate the calibrated model:

a) Pressure sensors; and b) Flow sensors

head and flow predictions with respect to each of the parameters. F1 and F2

are based on the parameter uncertainty (A-optimality and D-optimality, respec-
tively), while F3 is based on the model prediction uncertainty (V-optimality).

4 Case Study

The methodology presented in the previous section is used to select different
combinations of sensors in a real network model. These combinations will be
used to calibrate the network using synthetic data. The network is a DMA
situated in the Barcelona neighbourhood of Nova Icaria. It is composed of
3455 pipes and 3377 junctions, as depicted in Fig. 2. Water is supplied to
the network through two pressure reduction valves, highlighted in Fig. 2 with
inverted triangles. The total consumption of the DMA is supposed to be known,
although the distribution of flows between both inlets is unknown. Pressure is
monitored at both water inlets with a sample time of 10 minutes. The resolution
for all pressure and flow sensors is 0.01 mwc and 0.01 l/s, respectively.

The calibrated model is validated using 34 pressure sensors and 32 flow
sensors. The location of these sensors has been selected using a grid that covers
all the DMA. The selected pressure and flow sensors are depicted with stars and
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Figure 3: Representation of nodes’ memberships to each demand component in
scenario Sc5,P

triangles in Fig. 2.a and Fig. 2.b, respectively.

4.1 Network parameterization

The distribution of parameters (demand components) is generated using the
methodology presented in [Sanz and Pérez(2015)]. Three to six demand compo-
nents are considered in order to analyse the results when having different number
of sensors. Both the parameterization process (not included in this work) and
the sampling design process depend on the type of sensors to be installed (pres-
sure and/or flow), as the sensitivities involved are computed depending on the
type of the sensors. This work presents the analysis of 12 different scenarios.
Each scenario is denoted by Scns,T , where ns is the number of sensors used and
T is the type of sensors: F for flow, P for pressure and C for a combination of
pressure and flow. Fig. 3 presents an example of the parameterization process
output of scenario Sc5,P , where five demand components have been defined from
the pressure/demand sensitivity matrix. Each picture shows the memberships
(αi,j in Eq. 3) of nodes to a particular demand component: the darker the node,
the higher the membership to that demand component.

5 Results

This section presents the results of the sensor placement methodology, the study
of the optimality of the solution obtained in each scenario, and a summary of
the calibration results.

5.1 Sensors placement

The methodology presented in section 3 has been applied to the case study
network. Three to six sensors have been selected with 3 typologies: pressure
sensors, flow sensors and combined sensors. Fig. 4 presents all the sensors in
each scenario: a) 3 sensors; b) 4 sensors; c) 5 sensors; and d) 6 sensors. Pressure
sensors distributed using the pressure/demand sensitivity matrix are depicted
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Figure 4: Sensor locations for pressure, flow and combined sensors: a) 3 sensors;
b) 4 sensors; c) 5 sensors; and d) 6 sensors

as stars. Flow sensors distributed using the flow/demand sensitivity matrix
are depicted as triangles. Finally, sensors selected using the combined pressure
and flow/demand sensitivity matrix are depicted as full (pressure sensors) and
empty (flow sensors) circles, respectively. Note that each pressure sensor (stars)
in Fig. 4.c is located in the area affected by a different demand component
(Fig. 3). This happens in all the scenarios. Relating to flow sensors, the first
sensor chosen is always placed at the input pipe. The remaining flow sensors
tend to be placed in high diameter pipes. The combined approach was proposed
after analysing the flow and pressure sensor placement solutions: the sensitivity
matrix is constructed containing all possible pressure sensors and the input pipe
where a flow meter is always placed when only considering flow sensors. Results
in Fig. 4 show that the flow sensor is automatically selected before any pressure
sensor (this condition is not fixed), and that the remaining pressure sensors try
to cover the rest of the network.

5.2 Optimality analysis

The A, D and V-optimalities of the solutions from the sensor placement method-
ology are compared against a representative part of all other possible solutions
(30k-40k of other sensor combinations) using the formulas presented in Eq. 6.
The three types of optimalities are compared at 24 different samples (corre-
sponding to 24 hours in a day). Tab. 1 sums up the percentage of sensors
combinations with better optimalities than the one from the solution obtained
by the methodology. The worst case out of the 24 hours analysed is presented
for each optimality criterion.

Tab. 1 shows that flow sensors chosen by means of the methodology presented
are the ones with highest percentage of other preferable sensors combinations,
with a maximum of a 10.8% in the V-optimality criterion when selecting 6 flow
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Table 1: Percentage of sensors combinations with better optimality (%) than
the SVD solution

Scenario A-Optimality D-Optimality V-Optimality
Sc3F 1,224% 3,115% 3,104%
Sc3P 0,600% 0,350% 0,813%
Sc3C 0,003% 0,003% 0,350%
Sc4F 0,259% 4,120% 8,358%
Sc4P 1,656% 1,217% 2,206%
Sc4C 0,003% 0,003% 0,003%
Sc5F 0,056% 0,581% 0,950%
Sc5P 0,036% 0,042% 0,053%
Sc5C 0,003% 0,003% 0,006%
Sc6F 0,003% 10,320% 10,859%
Sc6P 0,015% 0,013% 0,015%
Sc6C 0,003% 0,003% 0,021%

Table 2: Prediction Mean Squared Error for each scenario

Basic model Demand components model
No Calibration Flow sensors Pressure sensors Combined sensors

3 sensors
MSEflow (l2/s2) 0,000460 0,000675 0,000365 0,000376

MSEpressure (m2) 0,042237 0,059845 0,031743 0,032858

4 sensors
MSEflow (l2/s2) 0,000460 0,000843 0,000417 0,000297

MSEpressure (m2) 0,042237 0,078316 0,043707 0,023512

5 sensors
MSEflow (l2/s2) 0,000460 0,000243 0,000136 0,000265

MSEpressure (m2) 0,042237 0,013553 0,004128 0,018187

6 sensors
MSEflow (l2/s2) 0,000460 0,000191 0,000136 0,000187

MSEpressure (m2) 0,042237 0,012351 0,004647 0,010427

sensors. The maximum value for pressure sensors is 2.2% of other preferable
sensors combinations, also in the V-optimality criterion, for four pressure sen-
sors. Finally, the maximum value for combined sensors is 0.35% of preferable
sensors in the V-optimality criterion for three combined sensors.

5.3 Calibration performance

Tab. 2 presents the mean squared errors (MSE) between the real values mea-
sured at the locations described in section 4, and the predicted values using
the basic demand model and the demand components model calibrated with
3-6 sensors with different typologies. A graphical representation of the data in
Tab. 2 is found in Fig. 5.

Fig. 5 and Tab. 2 show that all the demand components models that have
been calibrated using pressure or combined sensors improve the overall perfor-
mance comparing to the basic model. When calibrating demand components by
means of flow sensors, more than four sensors are required. The best result ob-
served has been obtained when calibrating demand components using five pres-
sure sensors, as introducing a sixth sensor does not improve the modelling error.
In particular, the chosen sensors in scenario Sc5P only has 0.036%-0.053% of
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Figure 5: Calibration results for all scenarios: a) Pressure error; and b) Flow
error

better sensors locations (regarding to all optimalities criteria), as seen in Tab. 1.

6 Conclusions

This work presents a sensor placement methodology that utilises the SVD of
the WDN sensitivity matrix to select a set of sensors to calibrate pre-defined
demand components. The method can be applied in multiple time samples to
make the sensor placement process more robust, selecting the best sensors for a
range of different working points. This can lead to different sensors locations at
each time sample used. To solve that, a simple clustering procedure is proposed
to decide which of the possible sensors are the most representative for all the
range of working points.

The methodology is then applied to select twelve sets of sensors that comprise
from three to six sensors, and combine pressure and/or flow sensors. Each of the
twelve sets is used to calibrate a number of demand components equal to the
number of sensors. Calibration results are evaluated by means of 32 flow sensors
and 34 pressure sensors that have been distributed using a grill that covers all
the DMA. It has been seen that as the number of demand components (and
sensors) increase, the results obtained in terms of pressure and flow MSE at the
evaluation sensors improve. Furthermore, results show that measuring pressure
seems to be the best option when calibrating demand components, whereas
metering flow requires a higher number of sensors to achieve a good calibration.
This can be justified by the meshed topology of the network: pressure is more
representative of a geographical zone, thus improving predicted pressure in a
particular point of the network will improve predicted pressure in the nearby
locations; on the other hand, improving the predicted flow at a particular pipe
does not necessarily improves the rest of flows of the zone, due to the meshed
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topology of the network.
Finally, the A, D and V-optimalities of the sets of sensors chosen have been

computed and compared with the ones obtained from a representative number
of all other possible combinations of sensors. The analysis shows that the opti-
malities obtained with the proposed methodology can be little improved when
considering pressure sensors or a combination of flow and pressure sensors. The
selection of flow sensors leads to good A-optimality, but slightly worse D and
V-optimalities.

The results from the calibration evaluation and optimality analysis show
that the proposed methodology can be a good and faster alternative to the
application of GAs or exhaustive algorithms.

Future work will analytically justify the good results of the methodology in
terms of the different optimalities. Besides, the combined distribution of flow
and pressure sensors will not be restricted to only one flow sensor.
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