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a b s t r a c t

This paper proposes a multi-step iterative method for solving systems of nonlinear equa-
tions with a local convergence order of 3m − 4, where m (≥2) is the number of steps. The
multi-step iterative method includes two parts: the base method and the multi-step part.
The base method involves two function evaluations, two Jacobian evaluations, one LU de-
composition of a Jacobian, and twomatrix–vectormultiplications. Every stage of themulti-
step part involves the solution of two triangular linear systems and one matrix–vector
multiplication. The computational efficiency of the newmethod is better than those of pre-
viously proposed methods. The method is applied to several nonlinear problems resulting
from discretizing nonlinear ordinary differential equations and nonlinear partial differen-
tial equations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Amulti-step iterativemethod includes the basemethod and themulti-step part. The basemethod is designed to be com-
putationally efficient. Since matrix inversion is an expensive operation, most base methods involve only one inversion of
the Jacobianmatrix. In the multi-step part, systems of linear equations should be solved by using the inverse of the Jacobian
matrix computed in the basemethod. For instance, one can use the LU-factors of the Jacobianmatrix. Other expensive opera-
tions which should beminimized inmulti-step iterativemethods include functions and Jacobian evaluations, matrix–vector
multiplications, vector–vector multiplications, and solutions of systems of linear equations. Recently, Malik et al. [1] have
constructed a general class of multi-step iterative methods with two matrix inversions in the base method, making those
methods expensive. The method proposed in [2] also involves two matrix inversions in the base method. Independent re-
cent efforts by two different research groups have resulted [3,4] in the same multi-step iterative method. In this paper, we
will improve the higher order multi-step Jarratt-like (HJ) method described in [3,4]. That method can be described, taking
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note of the convergence order and the computational cost, as

HJ =



Number of steps = m ≥ 2
Convergence order = 2m
Function evaluations = m − 1
Jacobian evaluations = 2
LU decomposition = 1
Matrix–vector multiplications = m
Vector–vector multiplications = 2m
Number of solutions of systems
of lower and upper triangular
systems of equations = 2m − 1



Base method −→



F′ (xk) φ1 = F (xk)

y1 = xk −
2
3

φ1

F′ (xk) φ2 = F′ (y1) φ1
F′ (xk) φ3 = F′ (y1) φ2

y2 = xk −
23
8

φ1 + 3φ2 −
9
8

φ3

Multi-step part →



For s = 1,m − 2
F′ (xk) φ2s+2 = F (ys+1)
F′ (xk) φ2s+3 = F′ (y1) φ2s+2

ys+2 = ys+1 −
5
2

φ2s+2 +
3
2

φ2s+3

End

where F′ (·) denotes the Fréchet derivative [5] or the Jacobian of F (·). The basemethod in HJ has a convergence order of four
and involves one LU decomposition, one function evaluation, and two Jacobian evaluations. Each step of the multi-step part
increases the convergence order by two. In 2015, Malik et al. [6] developed another efficient multi-step iterative method
(MSF) for solving nonlinear systems arising from particular ODEs which can be described as

MSF =



Number of steps = m
Convergence-order = 3m
Function evaluations = m
Jacobian evaluations = 2
Second-order Fréchet derivative = 1
LU decomposition = 1
Matrix–vector multiplications = 2m − 2
Vector–vector multiplications = m + 2
Number of solutions of systems
of lower and upper triangular
systems of equations = 3m − 1



Base method −→


F′ (xk) φ1 = F (xk)
F′ (xk) φ2 = F′′ (xk) φ2

1

y1 = xk − φ1 −
1
2

φ2

Multi-step part →



For s = 1,m − 1
F′ (xk) φ3s = F (ys)
F′ (xk) φ3s+1 = F′ (y1) φ3s
F′ (xk) φ3s+2 = F′ (y1) φ3s+1
ys+1 = ys − 3φ3s + 3φ3s+1

−φ3s+2
End.

The limitation of MSF is that it was only constructed for a particular class of ordinary differential equations (ODEs) of
the form L (x (t)) + f (x (t)) = g (t). The MSF method uses a second-order Fréchet derivative that is a diagonal matrix.
The computational cost of that second-order Fréchet derivative is prohibitive for general systems of nonlinear equations.
Interested readers can find information about other multi-step iterative methods for scalar as well as systems of nonlinear
equations in [7–18].

The structure of this paper is as follows. In the next section, a newmulti-step iterativemethodwill be proposed. The order
of convergence of the newmethodwill be studied in Section 3. Section 4will derive an efficiency index for themethod taking
into account both order of convergence and computational cost. To confirm theoretical predictions, some test problems
resulting from discretizing nonlinear ordinary differential equations and nonlinear partial differential equations (PDEs) will
be considered in Section 5. Conclusions will be given in Section 6.

2. Newmulti-step iterative method

The new multi-step iterative method (FTUC) can be described as

FTUC =



Number of steps = m ≥ 3
Convergence-order = 3m − 4
Function evaluations = m − 1
Jacobian evaluations = 2
LU decomposition = 1
Matrix–vector multiplications = m − 1
Vector–vector multiplications = m + 1
Number of solutions of systems
of lower and upper triangular
systems of equations = 2m − 2



Base method −→



F′ (xk) φ1 = F (xk)
y1 = xk − φ1
F′ (xk) φ2 = F (y1)
y2 = y1 − 3φ2
F′ (xk) φ3 = F′ (y2) φ2
F′ (xk) φ4 = F′ (y2) φ3

y3 = y1 −
7
4

φ2 +
1
2

φ3 +
1
4

φ4

Multi-step part →


For s = 1,m − 3

F′ (xk) φ2s+3 = F (ys+2)
F′ (xk) φ2s+4 = F′ (y2) φ2s+3
ys+3 = ys+2 − 2φ2s+3 + φ2s+4

End.
The convergence-order of the basemethod of FTUC is five, and each step of themulti-step part increases the convergence

order by three. We will prove the convergence order for m = 4 and, then, will use mathematical induction to obtain the
convergence order for anym.
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3. Convergence analysis

In this section, we will prove that the local convergence-order of FTUC is eight for m = 4 and later we will establish the
proof for the convergence order for arbitrarym via mathematical induction.

Theorem 3.1. Let F : Γ ⊆ Rn
→ Rn be sufficiently Fréchet differentiable on an open convex neighborhood Γ of x∗

∈ Rn with
F (x∗) = 0 and det


F′ (x∗)


≠ 0. Then the sequence {xk} generated by FTUC converges to x∗ with local order of convergence at

least eight and the following error equation

ek+1 = Lek8 + O

ek9


, (1)

where ek = xk − x∗, ekp =

p times  
(ek, ek, . . . , ek) and L = −15 C3C2

2C3C2 +45 C3C2C3C2
2 +120 C3C5

2 +5C2C3C2C3C2 −15 C2C2
3C

2
2 +

150 C3
2C3C2

2 − 40 C2C3C4
2 − 50 C4

2C3C2 + 400 C7
2 is a p-linear function i.e. L ∈ L

p times  
Rn, Rn, . . . , Rn and Lekp ∈ Rn.

Proof. Let F : Γ ⊆ Rn
→ Rn be sufficiently Fréchet differentiable function in Γ . The qth Fréchet derivative of F at v ∈ Rn,

q ≥ 1, is the q-linear function F(q) (v) :

q times  
RnRn

· · · Rn such that F(q) (v)

u1, u2, . . . , uq


∈ Rn. The Taylor’s series expansion of

F (xk) around x∗ can be written as

F (xk) = F

x∗

+ xk − x∗


= F

x∗

+ ek

,

= F

x∗


+ F′


x∗


ek +

1
2!

F′′

x∗


ek2 +

1
3!

F(3) 
x∗


ek3 + · · · ,

= F′

x∗

 
ek +

1
2!

F′

x∗

−1F′′

x∗


ek2 +

1
3!

F′

x∗

−1F(3) 
x∗


ek3 + · · ·


,

= C1

ek + C2 ek2 + C3 ek3 + O


ek4


, (2)

where C1 = F′ (x∗) and Cs =
1
s! F

′ (x∗)
−1F(s) (x∗) for s ≥ 2. From (2), we can calculate the Fréchet derivative of F as

F′ (xk) = C1

I + 2C2 ek + 3C3 ek2 + 4C3 ek3 + O


ek4


, (3)

where I is the identity matrix. Furthermore, using the Maple software package, we obtained the following expression for
the inverse of the Fréchet derivative:

F′ (xk)
−1

=


I − 2C2 ek +


4C2

2 − 3C3

e2k +


6C3C2 + 6C2C3 − 8C3

2 − 4C4

e3k

+


8C4C2 + 9C2

3 + 8C2C4 − 5C5 − 12C3C2
2 − 12C2C3C2 − 12C2

2C3 + 16C4
2


e4k

+


24C3C3

2 + 24C3
2C3 + 24C2

2C3C2 + 24C2C3C2
2 + 10C5C2 + 12C4C3 + 12C3C4 + 10C2C5

− 6C6 − 16C4C2
2 − 18C2

3C2 − 18C3C2C3 − 16C2C4C2 − 18C2C2
3 − 16C2

2C4 − 32C5
2


e5k

+


32C4C3

2 + 64C6
2 − 48C3C4

2 + 12C2C6 + 16C2
4 + 15C3C5 + 15C5C3 + 12C6C2 − 24C4C2C3

− 24C4C3C2 − 20C2
2C5 − 24C2C3C4 − 24C2C4C3 + 32C3

2C4 − 20C2C5C2 + 36C2
2C

2
3

− 20C5C2
2 + 32C2

2C4C2 + 32C2C4C2
2 + 36C2C2

3C2 + 36C2C3C2C3 + 36C2
3C

2
2 − 7C7

− 24C3C2C4 − 27C3
3 − 24C3C4C2 + 36C3C2C3C2 + 36C3C2

2C3 − 48C2
2C3C2

2

− 48C3
2C3C2 − 48C4

2C3 − 48C2C3C3
2


e6k + O


ek7


C−1
1 . (4)

Substituting (2) and (4) in φ1 = F′(xk)−1F(xk), we get

φ1 = ek − C2 e2k +


2C2

2 − 2C3


e3k +


−3C4 − 4C3

2 + 3C3C2 + 4C2C3


e4k

+


−4C5 − 6C3C2

2 − 6C2C3C2 − 8C2
2C3 + 8C4

2 + 4C4C2 + 6C2
3 + 6C2C4


e5k

+


−5C6 + 12C3C3

2 + 16C3
2C3 + 12C2

2C3C2 + 12C2C3C2
2 − 8C4C2

2 − 9C2
3C2 − 12C3C2C3

− 8C2C4C2 − 12C2C2
3 − 12C2

2C4 − 16C5
2 + 5C5C2 + 8C4C3 + 9C3C4 + 8C2C5


e6k + O


ek7


. (5)
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Using y1 = x − φ1, we obtain

y1 − x∗
= x − x∗

− φ1 = ek − φ1,

and substituting (5), we get

y1 − x∗
= C2 e2k +


−2C2

2 + 2C3


e3k +


−3C3C2 − 4C2C3 + 4C3

2 + 3C4


e4k

+


−4C4C2 − 6C2

3 − 6C2C4 + 6C3C2
2 + 8C2

2C3 + 6C2C3C2 − 8C4
2 + 4C5


e5k

+


16C5

2 − 5C5C2 − 8C4C3 − 9C3C4 − 8C2C5 + 8C4C2
2 + 12C3C2C3 + 9C2

3C2 + 12C2C2
3

+ 12C2
2C4 + 8C2C4C2 − 12C3C3

2 − 12C2
2C3C2 − 16C3

2C3 − 12C2C3C2
2 + 5C6


e6k + O


ek7


. (6)

Substituting (4) and

F(y1) = C1

y1 + C2 y12 + C3 y13 + · · ·


in φ2 = F′(xk)−1F(y1), we get

φ2 = C2e2k +

−4C2

2 + 2C3

e3k +


3C4 − 8C2C3 − 6C3C2 + 13C3

2


e4k

+


4C5 − 38C4

2 + 20C2C3C2 + 26C2
2C3 + 18C3C2

2 − 12C2C4 − 12C2
3 − 8C4C2


e5k

+


5C6 + 104C5

2 + 27C2C4C2 + 40C2C2
3 + 39C2

2C4 + 27C2
3C2 + 36C3C2C3 − 50C3C3

2

− 16C2C5 − 18C3C4 − 16C4C3 − 10C5C2 + 24C4C2
2 − 55C2C3C2

2 − 76C3
2C3 − 59C2

2C3C2


e6k + O


ek7


. (7)

Using y2 = y1 − 3φ2 and substituting (6) and (7), we get

y2 − x∗
= −2C2 e2k +


10C2

2 − 4C3


e3k +


−6C4 + 15C3C2 + 20C2C3 − 35C3

2


e4k

+


−8C5 + 106C4

2 + 20C4C2 + 30C2
3 + 30C2C4 − 48C3C2

2 − 70C2
2C3 − 54C2C3C2


e5k

+


−296C5

2 − 73C2C4C2 − 108C2C2
3 − 105C2

2C4 − 72C2
3C2 − 96C3C2C3 + 138C3C3

2

+ 40C2C5 + 45C3C4 + 40C4C3 + 25C5C2 − 64C4C2
2 + 153C2C3C2

2 + 212C3
2C3

+ 165C2
2C3C2 − 10C6


e6k + O


ek7


. (8)

Substituting (4), (7) and (8) in φ3 = F′(xk)−1F(y2) φ2, we get

φ3 = C2 e2k +


−6C2

2 + 2C3


e3k +


3C4 − 9C3C2 − 12C2C3 + 21C3

2


e4k

+


4C5 − 44C4

2 + 36C3C2
2 + 42C2

2C3 + 30C2C3C2 − 12C4C2 − 18C2
3 − 18C2C4


e5k

+


5C6 − 10C5

2 − 101C3C3
2 − 55C2

2C3C2 − 88C3
2C3 − 65C2C3C2

2 + 48C4C2
2 + 72C3C2C3

+ 54C2
3C2 + 63C2

2C4 + 60C2C2
3 + 39C2C4C2 − 15C5C2 − 24C4C3 − 27C3C4 − 24C2C5


e6k + O


ek7


. (9)

Using φ4 = F′(xk)−1F(y2) φ3 and substituting (4), (8) and (9), we get

φ4 = C2e2k +


−8C2

2 + 2C3


e3k +


−12C3C2 − 16C2C3 + 33C3

2 + 3C4


e4k

+


60C3C2

2 + 66C2
2C3 + 46C2C3C2 − 16C4C2 − 24C2

3 − 24C2C4 − 66C4
2 + 4C5


e5k

+


80C4C2

2 + 120C3C2C3 + 90C2
3C2 + 99C2

2C4 + 92C2C2
3 + 59C2C4C2 − 20C5C2 − 32C4C3

− 36C3C4 − 32C2C5 − 152C5
2 − 188C3C3

2 − 71C2
2C3C2 − 132C3

2C3 − 107C2C3C2
2 + 5C6


e6k + O


ek7


. (10)
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Using y3 = y1 − (7/4) φ2 + (1/2) φ3 + (1/4) φ4 and substituting (6), (7), (9), and (10), we get

y3 − x∗
=


20C4

2 − (5/2)C2C3C2 + (15/2)C3C2
2


e5k +


−209C5

2 − 5C2C4C2 − 5C2C2
3 + (45/4)C2

3C2

+ 15C3C2C3 − 22C3C3
2 + 10C4C2

2 + 25C2C3C2
2 + 40C3

2C3 + 46C2
2C3C2


e6k

+


−(267/2)C3C4

2 − (15/2)C2C3C4 − 10C2C4C3 − (15/2)C2C5C2 + 15C3C4C2 + (45/2)C3
3

+ (45/2)C3C2C4 + 15C4C3C2 + 20C4C2C3 − 44C4C3
2 + 72C2

2C4C2 + 92C2
2C

2
3 + 60C3

2C4

+ 54C2C2
3C2 + 50C2C3C2C3 + 40C2C4C2

2 − 50C2
3C

2
2 − 44C3C2

2C3 − 20C3C2C3C2

− (451/2)C2C3C3
2 − 357C2

2C3C2
2 − 418C4

2C3 − 385C3
2C3C2 + 25/2C5C2

2 + 1316C6
2


e7k + O


ek8


. (11)

Substituting (4) and

F(y3) = C1

y3 + C2 y32 + C3 y33 + · · ·


,

in φ5 = F′(xk)−1F(y3), we get

φ5 =


20C4

2 − (5/2)C2C3C2 + (15/2)C3C2
2


e5k +


−22C3C3

2 + 51C2
2C3C2 + 40C3

2C3

+ 10C2C3C2
2 − 249C5

2 + 10C4C2
2 + 15C3C2C3 + (45/4)C2

3C2 − 5C2C2
3 − 5C2C4C2


e6k

+


−(387/2)C3C4

2 − (15/2)C2C3C4 − 10C2C4C3 − (15/2)C2C5C2 + 15C3C4C2 + (45/2)C3
3

+ (45/2)C3C2C4 + 15C4C3C2 + 20C4C2C3 − 44C4C3
2 + 82C2

2C4C2 + 102C2
2C

2
3 + 60C3

2C4

+ (63/2)C2C2
3C2 + 20C2C3C2C3 + 20C2C4C2

2 − (145/2)C2
3C

2
2 − 44C3C2

2C3 − (25/2)C3C2C3C2

− (363/2)C2C3C3
2 − 377C2

2C3C2
2 − 498C4

2C3 − 487C3
2C3C2 + 25/2C5C2

2 + 1814C6
2


e7k + O


ek8


. (12)

Substituting (4), (8) and (12) in φ6 = F′(xk)−1F′(y2) φ5, we get

φ6 =


20C4

2 − (5/2)C2C3C2 + (15/2)C3C2
2


e5k +


−289C5

2 + 10C4C2
2 + 15C3C2C3

+ (45/4)C2
3C2 − 5C2C2

3 − 5C2C4C2 − 22C3C3
2 + 56C2

2C3C2 + 40C3
2C3 − 5C2C3C2

2


e6k

+


2312C6

2 − (507/2)C3C4
2 − (275/2)C2C3C3

2 − 397C2
2C3C2

2 − 578C4
2C3 − 589C3

2C3C2 + (25/2)C5C2
2

+ 20C4C2C3 + 15C4C3C2 + (45/2)C3C2C4 + (45/2)C3
3 + 15C3C4C2 − (15/2)C2C5C2 − 10C2C4C3

− (15/2)C2C3C4 − 44C4C3
2 − 44C3C2

2C3 − 95C2
3C

2
2 + 92C2

2C4C2 + 112C2
2C

2
3 + 60C3

2C4

+ 9C2C2
3C2 − 5C3C2C3C2 − 10C2C3C2C3


e7k + O


ek8


. (13)

Finally, using y4 − x∗
= y3 − x∗

− 2φ5 + 2φ6 and substituting (11)–(13), we get

y4 − x∗
=


−15C3C2

2C3C2 + 45C3C2C3C2
2 + 120C3C5

2 + 5C2C3C2C3C2 − 15C2C2
3C

2
2 + 150C3

2C3C2
2

− 40C2C3C4
2 − 50C4

2C3C2 + 400C7
2


e8k + O


ek9


. � (14)

Theorem 3.2. The multi-step iterative method FTUC has local convergence order at least 3m − 4 for m ≥ 3.

Proof. The proof is established by mathematical induction. For m = 3, 4 the convergence orders are according to (11) and
(14) five and eight, respectively. Consequently, our claim concerning the convergence-order 3m − 4 is true for m = 3, 4.

Assume our claim is true for m = q ≥ 4, i.e., that the convergence order of FTUC for m = q is 3q − 4. The qth and
(q − 1)th steps FTUC can be written as

F′ (xk) T = F′ (y2)

Frozen factor = (2I − T) F′ (xk)
−1

,

yq−1 = yq−2 − (Frozen factor) F

yq−2


,

yq = yq−1 − (Frozen factor) F

yq−1


.
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The enhancement in the convergence order of FTUC from the (q − 1)th step to the qth step is (3q − 4)−(3 (q − 1) − 4) = 3.
Now, we write the (q + 1)th step of FTUC as

yq+1 = yq − (Frozen factor) F

yq


.

The increment in the convergence-order of FTUC, due to (q + 1)th-step, is precisely three because the use of the Frozen
factor adds an additive constant to the convergence order [2]. Therefore, the convergence order after the addition of the
(q + 1)th step is 3q − 4 + 3 = 3q − 1 = 3 (q + 1) − 4, completing the induction step. �

4. Efficiency index

In the literature, the computational efficiency of an iterative method is evaluated by the efficiency index defined as

E = p1/C , (15)
where p is the order of convergence of the method and C is the computational cost of the method defined as

C (µ0, µ1, n) = P0 (n) µ0 + P1 (n) µ1 + P (n) , (16)

where P0 (n) is the number of scalar function fi evaluations in F (·), P1 (n) is the number of scalar function ∂ fi
∂xj

evaluations
in the Jacobian, P (n) is the number of products/divisions, and µi are coefficients which are required to express the
computational cost in terms of products/divisions. Table 1 gives the number of products, divisions and computational cost
of some operations in terms on the number of variables n. In the table and in the sequel, l denotes the cost of a division
relative to the cost of a multiplication.
The computational costs of HJ and FTUC, CHJ and CFTUC , are

CHJ = (m − 1) µ0n + 2n2µ1 + mn2
+ 2mn + (2m − 1) (n (n − 1) + ln) +

n (n − 1) (2n − 1)
6

+ l
n (n − 1)

2
, (17)

CFTUC = (m − 1) µ0n + 2n2µ1 + (m − 1) n2
+ (m + 1) n + (2m − 2)

× (n (n − 1) + ln) +
n (n − 1) (2n − 1)

6
+ l

n (n − 1)
2

. (18)

To compare the efficiencies of HJ and FTUC we define the quotient

R =
log


(3m1 − 4)1/CFTUC


log


(2m2)

1/CHJ
 =

CHJ

CFTUC

log (3m1 − 4)
2m2

, (19)

wherem1 is the number of steps of FTUC andm2 is the number of steps of HJ. Clearly, if R > 1 the efficiency of FTUC is higher
than that of HJ.

4.1. Comparison of the efficiencies of FTUC and HJ for convergence orders five and four, respectively

When FTUC and HJ have convergence orders five and four, respectively, the value of R is

R =
ln (5)


3ln + 12µ1n + 2n2

+ 15l + 6µ0 + 27n + 7


2

3ln + 12µ1n + 2n2 + 21l + 12µ0 + 33n + 1


ln (2)

. (20)

R is > 1 if
µ0 < 0.06394801344n2

+ (0.09592202004l + 0.3836880802µ1 − 0.3285458591) n
− 0.7122339393l + 1.415662087. (21)

In that case the base method of FTUC will be more efficient than the base method of HJ.

4.2. Comparison of the efficiencies of FTUC and HJ for the same convergence order

FTUC and HJ have convergence order 6s − 4 for numbers of steps m1 = 2s and m2 = 3s − 2, s ≥ 2, respectively. In that
case,

R = 1 +
6 (2ls + µ0s + 3ns − 3l − 2µ0 − 4n + 2s − 2)

3ln + 24ls + 12µ0s + 12µ1n + 2n2 + 36ns − 15l − 6µ0 − 21n − 12s + 19
. (22)

The value of l depends on the computer system where the methods are run. Reasonable values for l fall between 2.5 and 3.
Replacing s and l by s + 2 and l + 1 in (22) gives

R = 1 +
6 (2ls + µ0s + 3ns + l + 2n + 4s + 3)

3ln + 24ls + 12µ0s + 12µ1n + 2n2 + 36ns + 33l + 18µ0 + 54n + 12s + 28
, (23)

which is > 1 for s ≥ 0. Since l > 1, this shows that R > 1 and FTUC is more efficient than HJ when s ≥ 2, i.e. with a
convergence order ≥ 8.
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Table 1
Computational cost of different operations.

Multiplications Divisions Computational cost

LU decomposition n(n−1)(2n−1)
6

n(n−1)
2

n(n−1)(2n−1)
6 + l n(n−1)

2

Solution of two triangular systems n (n − 1) n n (n − 1) + ln
Matrix–vector multiplication n2 n2

Vector–vector multiplication n n

Table 2
Comparison between computational efficiencies when FTUC and HJ make the same number of function evaluations.

Number of steps Function evaluations Convergence order of (FTUC, HJ) R

4 3 (8, 8) 1 +
6(l+2 n+3)

12 nµ1+3 ln+2 n2+18µ0+33 l+54 n+28

5 4 (11, 10) 1 +
0.16µ0+0.08 nµ1+2.57 n+4.40+1.35 l+0.01 n2+0.02 ln
4.0µ0+2.0 nµ1+12.0 n+5.66+7.50 l+0.33 n2+0.50 ln

6 5 (14, 12) 1 +
0.31µ0+0.12 nµ1+3.05 n+5.72+1.65 l+0.02 n2+0.03 ln
5.0µ0+2.0 nµ1+15.0 n+6.66+9.50 l+0.33 n2+0.50 ln

100 99 (296, 200) 1 +
7.32µ0+0.14 nµ1+24.12 n+113.77+15.68 l+0.02 n2+0.03 ln
99.0µ0+2.0 nµ1+297.0 n+100.66+197.50 l+0.33 n2+0.50 ln

Table 3
Comparison between FTUC and HJ when both methods make the same number of function evaluations.

FTUC (m ≥ 3) HJ (m ≥ 2)

Number of steps m m
Convergence order 3m − 4 2m
Function evaluations m − 1 m − 1
Jacobian evaluations 2 2
LU decompositions 1 1
Matrix–vector multiplications m − 1 m
Vector–vector multiplications m + 1 2m
Number of solutions of systems of linear equations 2m − 2 2m − 1

4.3. Comparison of FTUC and HJ for the same number of function evaluations

The values of R when both methods make the same number of function evaluations (≥ 3) are given for several cases
in Table 2. In the expressions for R, l is replaced by l + 1. We can see that, for the same number of function evaluations,
the convergence order of FTUC is higher than that of HJ for a number of steps larger than 4. Also, since l > 1, the values
of R − 1 reveal that FTUC has, for the same number of function evaluations, higher efficiency than HJ. Table 3 compares
the characteristics of FTUC and HJ. For two function evaluations the convergence orders of FTUC and HJ are five and six,
respectively. In that case, the performance of HJ is better than that of FTUC. However, for a number of function evaluations
greater then two, the performance of FTUC is better than that of HJ.

4.4. Comparison of FTUC and MSF for the same number of function evaluations

The MSF method usesm1 function evaluations and one second-order Fréchet derivative. For the purpose of comparison,
we assume that the evaluation of a second-order Fréchet derivative has same computational cost as that of a function. The
above assumption onlymakes sense if the second-order Fréchet derivative is a diagonalmatrix. Under that assumption, MSF
makes m1 + 1 function evaluations to achieve a convergence order of 3m1 in m1 steps and FTUC makes m2 − 1 function
evaluations to achieve a convergence order of 3m2 − 4 inm2 steps. If we equate the number of function evaluations of FTUC
and MSF we get

m2 − 1 = m1 + 1,
m2 = m1 + 2.

Suppose m1 = m and m2 = m + 2. Table 4 compares the characteristics of FTUC and MSF for those numbers of steps. MSF
achieves a convergence order of 3m in m steps by making m + 1 function evaluations while FTUC achieves a convergence
order of 3m+2 inm+2 steps bymakingm+1 function evaluations. MSFmakesm−3,m+3 andm−3morematrix–vector
multiplications, vector–vector multiplications and solutions of upper and lower triangular systems of linear equations than
FTUC. Obviously, for the samenumber of function evaluations, FTUC is computationallymore efficient thanMSF and achieves
a better convergence order. The high computational cost of second-order Fréchet derivativesmakes thatmethod impractical
for general systems of nonlinear equations. Since, even if the second-order Fréchet derivative is a diagonal matrix, MSF has
worse performance than FTUC, we will not test numerically MSF against FTUC.
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Table 4
Comparison of FTUC and MSF for, respectively,m + 2 and m steps.

FTUC MSF

Number of steps m + 2 m
Convergence order 3m + 2 3m
Function evaluations m + 1 m + 1
Jacobian evaluations 2 2
LU decompositions 1 1
Matrix–vector multiplications m + 1 2m − 2
Vector–vector multiplications m + 3 m + 2
Number of solutions of lowers and upper triangular systems 2m + 2 3m − 1

Table 5
Results under FTUC and HJ for the first example.

Iterative methods FTUC HJ

Number of iterations 3 1
Size of problem 4 4
Number of steps 6 7
Theoretical convergence order 14 14
Computational convergence order 14.1 14.1
Number of function evaluations per iteration 5 6
Solutions of system of linear equations per iteration 10 13
Number of matrix–vector multiplication per iteration 5 7

Iteration
∥yq − y∗

∥1 1 8.21e−10 1.66e−10
2 4.76e−136 2.51e−146
3 5.26e−1918 1.84e−2062

Execution time (s) 3.37 3.82

5. Numerical results

We will use the definition for the computational convergence order (COC)

ρq =
log


∥yq+2 − y∗

∥1/∥yq+1 − y∗
∥1


log


∥yq+1 − y∗∥1/∥yq − y∗∥1

 , (24)

where y∗ is the zero of function F (·) and y1, y2, y3, . . . is the sequence of approximations given by the multi-step iterative
method. In all tests, we will use the Chebyshev pseudospectral collocation method to approximate derivatives. It should
be noted that, these approximations have high accuracy with respect to other numerical methods for smooth solutions of
initial value problems [19], boundary value problems [20], integral equations [21], partial differential equations [22] and
stochastic partial differential equations [23].

5.1. General systems of nonlinear equations

As a first example, we will first solve a small system of nonlinear equations. The results will confirm the claimed
convergence order and accuracy of our method. The system of nonlinear equations is

x2x3 + x4 (x2 + x3) = 0
x1x3 + x4 (x1 + x3) = 0
x1x2 + x4 (x1 + x2) = 0
x1x2 + x1x3 + x2x3 − 1 = 0.

(25)

Its solution up to an accuracy of 32 digits is

x1 = 0.577350269189625764509148780502
x2 = 0.577350269189625764509148780502
x3 = 0.577350269189625764509148780502
x4 = −0.288675134594812882254574390251.

(26)

Table 5 gives the results obtained under FTUC and HJ. The accuracy obtained by HJ method is superior to that of FTUC,
but the execution time of HJ is longer than that of FTUC. In Table 6, we give results obtained by approximately equating the
execution times of both methods. Now, the accuracy obtained by FTUC is better, showing the superiority of FTUC over HJ.
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Table 6
Comparison of performance between FTUC and HJ when both have approximately same execution time.

Iterative methods FTUC HJ

Number of iterations 3 1
Number of steps 7 7
Theoretical convergence order 17 14
Computational convergence order 17.1 14.1
Number of function evaluations per iteration 6 6
Solutions of system of linear equations per iteration 12 13
Number of matrix–vector multiplication per iteration 6 7

Iteration
∥yq − y∗

∥1 1 1.03e−11 1.66e−10
2 6.58e−199 2.51e−146
3 1.27e−3400 1.84e−2062

Execution time (s) 3.71 3.82

Fig. 1. Numerically calculated profile of u (x), u′ (x) and u′′ (x).

5.2. Classical Blasius flat-plate problem

The Classical Blasius flat-plate flow problem [24] is the boundary value problem

u′′′ (x) +
1
2
u′′ (x) u (x) = 0

u (0) = u′ (0) = 0,

u′, u′′


−→ (1, 0) as x −→ ∞

F (u) = D3
xu +

1
2
uD2

xu

F′ (u) = D3
x +

1
2


diag


D2
xu


+ diag (u)D2

x


.

(27)

We considered that problem for a domain for x [0, 200] with a mesh giving a problem size of 250. From a practical point of
view, many researchers have been interested in computing u′′ (0), and Howarth [24] reported u′′ (0) = 0.332057. We have
computed u′′(0) with an accuracy of twenty five digits with the result

0.33205733628286351714556307. The FTUC iterative method produced numerical values of u′ and u′′ at x = 200 with
accuracies of 3.87e−26 and 5.65e−25, respectively. The initial guess was

u0 (x) =


x2 if x ≤ 1
x otherwise. (28)

Fig. 1 shows u (x), u′ (x) and u′′ (x). Fig. 2 plots log (∥F(u)∥1) versus the number of steps for the first three iterations. FTUC
showed clear dominance over HJ. Table 7 gives the results obtained under FTUC and HJ with 30 steps.
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Table 7
Performance of FTUC and HJ for the classical Blasius flat-plate problem for 30 steps.

Iterative methods FTUC HJ

Number of iterations 3 3
Number of steps 30 30
Theoretical convergence order 86 60
Number of function evaluations per iteration 29 29
Solutions of linear systems per iteration 58 59
Number of matrix–vector multiplication per iteration 29 30

Iteration
log


∥F(uq)∥1


1 4.63e−3 2.47e−3
2 4.78e−8 8.605e−4
3 4.98e−26 1.83e−7

Execution time (s) 125.42 158.82

Fig. 2. Plot of log (∥F(u)∥1) versus the number steps, for the first three iterations.

5.3. Klein–Gordon equation

The Klein–Gordon equation [25] is the relativistic case of the Schrödinger equation

utt − c2uxx + f (u) = p − ∞ < x < ∞, t > 0

F (u) =

D2
t − c2D2

x


u + f (u) − p

F′
= D2

t − c2D2
x + diag


f ′ (u)


,

(29)

where f (u) is an odd function of u and initial conditions are given by

u (x, 0) = g1 (x)

ut (x, 0) = g2 (x) .
(30)

We chose f (u) = ku−γ u3 and a domain [−10, 10]×[0, 1]. We used Chebyshev pseudospectral collocationmethod for the
discretization of space and time with 120 grid points for space and 30 grid points for time. The resulting problem size was
3600. Table 8 shows the results. The FTUC method clearly outperforms the HJ method. The exact solution can be written as

δ =


2k
γ

κ =


k

c2 − v2

u (x, t) = δ sech (κ (x − vt)) ,

(31)

where c = 1, γ = 1, v = 0.5 and k = 0.5 (see Fig. 3).

Please cite this article in press as: F. Ahmad, et al., Higher order multi-step Jarratt-like method for solving systems of nonlinear equations: Application
to PDEs and ODEs, Computers and Mathematics with Applications (2015), http://dx.doi.org/10.1016/j.camwa.2015.05.012



F. Ahmad et al. / Computers and Mathematics with Applications ( ) – 11

Table 8
Performance of comparison between FTUC and HJ for Klein–Gordon problem.

Iterative methods FTUC HJ

Number of iterations 1 1
Number of steps 9 10
Theoretical convergence order 23 20
Number of function evaluations per iteration 8 9
Solutions of linear systems per iteration 16 19
Number of matrix–vector multiplication per iteration 8 10

Iteration
∥uq − u∗

∥1 1 4.08e−1 5.99e−1
2 5.67e−1 4.15e−2
3 6.45e−2 2.34e−3
4 3.62e−3 6.72e−5
5 1.06e−4 1.15e−6
6 1.84e−6 1.31e−8
9 9.63e−11 1.24e−10
10 9.12e−11

Execution time (s) 4.91 5.34
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(a) Numerically calculated solution. (b) Absolute error plot.

Fig. 3. Klein–Gordon equation, domain = [−10, 10] × [0, 1], grid points in spatial dimension = 120, grid points in temporal dimension = 30.

5.4. Two-dimensional sinh-Poisson equation

The stationary two-dimensional Euler flow free of body forces satisfies [26]

▽2φ + σ sinh (φ) = 0, σ > 0. (32)

The analytical solution of (32) for σ = 1 is given in [27].

φ (x, y) = 4 tanh−1

 β cos


1 + β2x



1 + β2 cosh (βy)

 . (33)

That solution is called the Mallier–Maslowe vortices for σ = 1. We choose a domain [−1.3, 1.3] × [−1.3, 1.3] with 30 grid
points for each dimension. That resulted in a problem size 500. The computed solution corresponds to β = 0.5. Table 9
shows the obtained results. The FTUC method achieves almost the same accuracy as the HJ method with a smaller number
of iterations and, consequently, a smaller execution time. Fig. 4 depicts the numerically calculated solution and the absolute
error over the spatial grid.

5.5. Three-dimensional nonlinear Poisson equation

The numerical solution of nonlinear 3-D nonlinear Poisson equation is treated in [28]. The governing equation is

▽ · (K (u) ▽u) − g = 0, (34)

where K (u) can be any function of u and g is a force term. We will adopt the expression for K (u) from [28]

K (u) =
100 + 27u
300 + 27u

. (35)
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Table 9
Performance of FTUC and HJ for the sinh-Poisson equation.

Iterative methods FTUC HJ

Number of iterations 1 1
Number of steps 111 183
Theoretical convergence order 329 366
Number of function evaluations per iteration 110 182
Solutions of linear systems per iteration 220 365
Number of matrix–vector multiplication per iteration 110 183
∥φq − φ∗

∥1 9.22e−138.81e−13
Execution time (s) 42.87 68.225
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Fig. 4. Solution of sinh-Poisson equation and absolute error in the computed solution.

Table 10
Performance of FTUC and HJ for nonlinear Poisson equation.

Iterative methods FTUC HJ

Number of iterations 1 1
Number of steps 13 16
Theoretical convergence order 35 32
Number of function evaluations per iteration 12 15
Solutions of linear systems per iteration 24 31
Number of matrix–vector multiplication per iteration 12 16
∥uq − u∗

∥1 5.77e−155.32e−15
Execution time (s) 10.608 11.646

We took a domain [−1, 1]3 and constructed g in a way that makes u = x2 + y2 + z2 the solution of (34). The grid points
were taken so that the problem size is 1331. Table 10 gives the obtained results. FTUC achieves a similar accuracy as HJ with
smaller number of steps and a smaller execution time. Fig. 5 plots the maximum absolute error in the solution vector u(x)
against the number of steps.

6. Conclusions

Multi-step iterative methods with a large number of steps are computationally efficient because the computational cost
required to perform the additional steps is small. The increase of convergence order in the multi-step part depends on the
base method. So, the design of the base method is crucial. All numerically conducted tests conclude that the proposed FTUC
multi-step iterative method requires relatively less execution time to achieve same numerical accuracy than HJ.
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Fig. 5. log (∥u (x) − u∗
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