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The mesoscopic activity of the brain is strongly dynamical, while at the same time

exhibits remarkable computational capabilities. In order to examine how these two

features coexist, here we show that the patterns of synchronized oscillations displayed

by networks of neural mass models, representing cortical columns, can be used as

substrates for Boolean-like computations. Our results reveal that the same neural

mass network may process different combinations of dynamical inputs as different

logical operations or combinations of them. This dynamical feature of the network

allows it to process complex inputs in a very sophisticated manner. The results are

reproduced experimentally with electronic circuits of coupled Chua oscillators, showing

the robustness of this kind of computation to the intrinsic noise and parameter mismatch

of the coupled oscillators. We also show that the information-processing capabilities of

coupled oscillations go beyond the simple juxtaposition of logic gates.

Keywords: synchronization, neural mass, Chua oscillators, complex networks, information processing, logic gate

1. Introduction

It has been established that the healthy brain operates in a highly coordinated way that involves
different neural oscillations spanning through multiple spatiotemporal scales (Freeman, 1975;
Singer, 1993, 1999; Başar et al., 2000; Varela et al., 2001; Ward, 2003; Buzsáki and Draguhn, 2004).
Even though these oscillatory rhythms may have different synchronization properties (Kopell et al.,
2000), they have been explained as a result of the balance between excitatory and inhibitory
neurons in a network (Börgers and Kopell, 2003; Börgers et al., 2005). In turn, this synchronous
firing may subserve complex coordinated patterns of spiking activity which may be transmitted in
large neural networks with high temporal accuracy over long distances (Abeles, 1991; Rodriguez
et al., 1999; Abeles et al., 2004; Asai et al., 2008; Asai and Villa, 2012; Barardi et al., 2014b).
It has also been accepted that the oscillatory activity exhibited by brain signals such as local
field potentials (LFP), electroencephalograms (EEG) and magnetoencephalograms (MEG), arises
from the synchronized activity of large neuronal assemblies. Such collective dynamics throughout
the different scales in the brain is likely to determine the functional role of normal and
aberrant synchronization mechanisms during adaptive and cognitive processes as well as brain
diseases (Del Prete et al., 2004; Iglesias and Villa, 2010; Pons et al., 2010; Villa and Tetko, 2010).
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Synchronization’s role in coordinating and processing
information at different spatiotemporal scales has been also
stressed (Lachaux et al., 1999; Stam and de Bruin, 2004; Busáki,
2006; Malagarriga et al., 2015). For instance, synchronization-
based selectivity of visual response has been studied in the context
of monkeys and cats (Castelo-Branco et al., 2000; Womelsdorf
et al., 2006) or even in humans (Rodriguez et al., 1999). Besides,
synchronization participates in the odor perception (Stopfer
et al., 1997; Laurent et al., 2001; Blumhagen et al., 2011) and
coherence of stimuli also affects the selective capability of
oscillatory networks (Börgers and Kopell, 2008; Börgers et al.,
2008). The processing and computation mechanisms based in all
this diversity of synchronized elements has also been studied in
detail (Engel et al., 2001; Fries, 2009; Maris et al., 2013; Nikolić
et al., 2013; Womelsdorf et al., 2014). Thus, the interaction
of different synchronized ensembles of neurons (Womelsdorf
et al., 2007; Wulff et al., 2009) plays a role in tasks like
learning item-context associations (Tort et al., 2009), selective
attention (Fries et al., 2001, 2008; Womelsdorf and Fries, 2007;
Bosman et al., 2012), or even conscious perception (Melloni
et al., 2007; Levy et al., 2013). At the larger spatial scale in
the brain, synchronization participates in the control of task-
switching (Phillips et al., 2013) and is studied routinely in normal
and abnormal EEG and MEG recordings (Stam, 2005).

Even though much progress in the understanding of these
synchronization mechanisms has been gained during many
years, it is not fully understood yet how these synchronization
relations are established with the participation of different
scales simultaneously, or how they operate at the same time
without interfering with each other (Barardi et al., 2014a).
So, for instance, the information processing capacity of the
brain operating under multiple scales has been described very
often in terms of logic calculus. At the most microscopic level,
the idea of logic calculus based on neuronal activities was
embedded in the seminal work of McCulloch and Pitts (1990).
Neuronal circuitry performing logic operations was physically
implemented in cell cultures of in vitro models of selected
brain areas (Feinerman et al., 2008; Wolf and Geisel, 2008).
This approach is mainly based on action potentials and on the
connectivity within the network, rather than on a dynamical
analysis of the ongoing activity. At the cellular level neurons
have revealed that, in addition to behaving as a bistable system,
they can be driven into a continuous oscillation by means
of selected voltage-dependent inward currents controlled by
intracellular calcium concentrations (Contreras and Steriade,
1995; Hughes et al., 2002; Crunelli et al., 2005). Besides,
from the microscopic point of view, neurons may coordinate
their firing in response to incoming stimuli, opening the
way to a neurocomputing paradigm characterized by different
synchronized states where the neurons oscillate with equal
frequencies and specific phase relationships (Hoppensteadt and
Izhikevich, 2000; Zanin et al., 2011). By associating logical
states to the dynamics of coupled oscillators, all usual Boolean
operations can be implemented and a full computational model
can be obtained (Xu et al., 2004). Beyond the cellular level of
neuronal oscillators, it was recently demonstrated that circuits

of neurons embedded within a large-scale network of cortical
cells were able to express logic functions that are dependent
on complex spatiotemporal patterns (Vardi et al., 2013; Menon
and Sinha, 2014). This type of analysis can also be made at
the mesoscale. Large brain circuits are frequently described as
networks of nodes associated with neuronal assemblies, evolving
at the mesoscopic scale, in such a way that their dynamics
can be considered as that of limit-cycle oscillators subjected to
weak forcing and coupling. Phase-reduction theory has revealed
synchronization to be among the most relevant features that
determine the dynamical states of these systems (Pikovsky
et al., 2003; Brown et al., 2004). Furthermore, coupled oscillator
theory has established the conditions that allow all the
nodes, or a subgroup of them, to operate in one of several
synchronization regimes, including complete, lag, generalized,
and phase synchronization (Boccaletti et al., 2002; Li and Chen,
2004). In fact, recent work shows that in networks of mesoscopic
brain oscillators different forms of synchronization might
coexist (Malagarriga et al., 2015). This phenomenon enlarges
the processing capacity of neural oscillators, and endows the
corresponding networks with stability, flexibility and robustness
against perturbations (Zanette, 2004).

In this paper we present a combination of a theoretical
approach and its experimental implementation that may shed
light on possible mechanisms of brain computation based on
synchronized oscillations. Specifically, we show that networks
of neural mass oscillators may process inputs in a complex
Boolean-like manner. So, the combination of all the fluctuating
inputs received by each oscillator in the network determines
the global network dynamical response. Every combination
of inputs received by the nodes produces a synchronization
pattern that relates the dynamics of all the nodes of the
network. We interpret the different synchronization states (i.e.,
phase, generalized, lag, or complete synchronization) of two
oscillators in the network as Boolean variables that allow to
classify the response of inputs onto pairwise logic gates of
different nature. By tuning the characteristics of the oscillatory
input acting upon the neural masses, the pairwise coordinated
activity changes accordingly. Each form of synchronization
brings different information in terms of the synchronized motion
in phase space, thus providing additional characterization of such
incoming stimuli in the form of coordination evolution. We
show that several distinct logical operations can be implemented,
in this way, by the same type of neural mass network.
However, far from suggesting that the processing capacity of
the brain is the result of a more or less complex boolean
circuitry, we postulate that it results from its very complex
collective dynamics in which synchronization may play a very
relevant role (Buzsáki and Draguhn, 2004). The capacity of
synchronized oscillations to perform Boolean-like operations
is demonstrated by a physical implementation in the form of
an electronic system consisting of coupled Chua oscillators
driven by oscillatory input signals. Finally, we show that the
processing possibilities of larger networks composed by this
type of systems go beyond the simple juxtaposition of logic
gates.
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2. Materials and Methods

In this Section we describe how the networks of neural mass
models and Chua oscillators are implemented. We also describe
the numerical methods used and how the synchronization
relations between the different nodes of the network are analyzed.

2.1. Networks of Neural Mass Oscillators
In order to describe theoretically the computation capabilities of
a network of cortical columns acting as a cluster of interacting
logic gates, we consider a network of neural mass models as
described by Jansen et al. (Jansen et al., 1993; Jansen and Rit,
1995). In the Jansen model, all the neurons in each cortical
column are classified into three different groups: pyramidal
neurons (responsible of the signal measured in the scalp),
excitatory interneurons and inhibitory interneurons. The three
populations interact with each other through excitatory and
inhibitory connections. Specifically, the population of pyramidal
neurons receives both excitatory and inhibitory inputs, in the
form of a feedback loop, from the interneuron populations. At the
same time, the pyramidal population sends an excitatory input
to the interneuron populations inside its cortical column in a
feed-forward manner. The pyramidal population also receives
an excitatory (inhibitory) input from the pyramidal (inhibitory
interneurons) neighboring columns that form the network of
neural mass oscillators.

The dynamics of each column in the network is described
as follows. Each population converts the average pulse density
of action potentials arriving to the population from different
origins,

∑

pi(t), into an average excitatory postsynaptic
membrane potential, ye(t), through the following expression:

d2ye

dt2
+ 2a

dye

dt
+ a2ye = Aa

∑

pi(t). (1)

A similar expression with different constant terms, B and b,
substituting A and a, respectively, works for average inhibitory
postsynaptic membrane potentials, yi. A (B) is related with
the maximum height of the excitatory (inhibitory) postsynaptic
potential, whereas a (b) represents the inverse of the membrane
time constants and the dendritic delays. At the somas of the
neurons forming the populations, the net average postsynaptic
potential (PSP) input for the considered population, m(t) =

ye(t) − yi(t), is transformed into an average density of spikes,
pi(t) = CiS[m(t)], which will become part of the input of other
populations. The transfer function S[m(t)] is given by

S[m(t)] =
2e0

1+ er(ν0−m(t))
, (2)

where e0 determines the maximum firing rate of the neural
population, ν0 sets the net PSP for which a 50% firing rate is
achieved and r is the steepness of this sigmoidal transformation.

The dynamical activity of the three populations in each
cortical column i of the network follows from (Malagarriga et al.,
2014, 2015):

d2yi0
dt2

+ 2a
dyi0
dt

+ a2yi0 = AaS[yi1 − yi2], (3)

d2yi1
dt2

+ 2a
dyi1
dt

+ a2yi1 = Aa{C2S[C1y
i
0] (4)

+

N
∑

j=1

αijS[y
j
1 − y

j
2]

+ δi(t)sin(2π f it + φi)+ p̄i + χi(t)}, (5)

d2yi2
dt2

+ 2b
dyi2
dt

+ b2yi2 = Bb{C4S[C2y
i
0]+

N
∑

j= 1

βijS[C3y
j
0]}, (6)

where yi0 represents the PSP that feeds the interneurons
populations, and yi1 (yi2) represents the excitatory (inhibitory)
PSP that feeds the pyramidal population. The intensity of
the excitatory (inhibitory) coupling of columns with their
neighboring columns is given by αij (βij). Moreover, each
column may receive a time dependent input Ii(t) composed by
a constant input, p̄i, and a periodic external stimulus coming
from other brain structures or the sensory system. We represent
this periodic input as a sinusoidal driving, i.e., δi(t)sin(2π f it +
φi). Besides, each column may receive a random excitatory
contribution onto the pyramidal cells, χi(t), which can be
associated with a stochastic process occurring at a cellular level.
The contribution of the column i to the EEG activity measured
in the scalp is given by yi1 − yi2. Thus, we will analyze the
activity of each cortical column considering the evolution of
yi = yi1 − yi2. The model presented here has an extensive
repertoire of dynamical states, being able to produce periodic,
quasi-periodic or chaotic (Skarda and Freeman, 1987; Spiegler
et al., 2011; Malagarriga et al., 2015) behavior. It also exhibits
excitatory/inhibitory segregation (Malagarriga et al., 2014, 2015)
depending on the choice of αij and βij values in the network.
These coupling parameters also fix a whole set of synchronized
regimes that may coexist in the network (Malagarriga et al.,
2015). By choosing carefully the input protocol in terms of p̄i,
δi(t)sin(2π f it + φi), χ i(t), αij, and βij, we will establish different
synchronization-based logic gates.

2.2. Networks of Chua Oscillators
The feasibility and robustness of our theoretical results are
proven experimentally by considering a network of electronic
oscillators. In this case, the dynamics for every node i in the
network is determined by the classical Chua circuit (Madan,
1993) (see Figure 1). This system is described by the following
equations (Kennedy, 1992; Wagemakers et al., 2007):

dvA
i

dt
=

1

C1

(

vB
i − vA

i

R5
− f (vA

i)+
vA

i − s(t)

Rin

)

, (7)

dvB
i

dt
=

1

C2

(

vB
i − vA

i

R5
+ iL +

vB
i − vB

j

Rc

)

, (8)

diL
i

dt
= −

vB
i

L1
, (9)

where vA
i and vB

i are the voltages of the two capacitors (C1 and
C2) and iL

i is the intensity through the coil of the circuit (L1). s(t)
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FIGURE 1 | Electronic implementation of the Chua circuit. Two TL082 operational amplifiers are the core of the non-linear part of the circuit which follows the

function given in Equation 10. The input signal (0/1) is introduced through the capacitor C1, while the output of the circuit is the voltage (vB) of both C2 and L1.

is an external oscillatory input signal that we can (“1”) or can not
(“0”) activate, controlling the dynamical state at which the Chua
operates. The strength of the input signal is proportional to the
inverse of Rin. We will tune its value depending the type of logic
gate we will be considering. f (vA

i) is a piece-wise (non-linear)
function given by:

f (vA
i) = G1vA

i +
1

2
(G1 − G0)[|vA

i + Bp| − |vA
i| − Bp], (10)

with Bp = 1.7 V being the breaking point of the piece-wise
function. The values of G1 and G2 are obtained from different
resistances of the electronic circuit:

G1 =
−R1

R1 + R3
+

1

R2
, (11)

G0 =
−R1

R1 + R3
−

R2

R2R4
, (12)

and the rest of the parameters are Vcc = 15V, VEE = −15V,
R1 = 222�, R2 = 22 k�, R3 = 2.2 k�, R4 = 3.3 k�,C1 = 10 nF,
C2 = 100 nF, L1 = 20 mH, and R5 = 1.38 k�.

The coupling circuit between the different Chua circuits (not
shown in Figure 1), represented as the last term in Equation (8),

consists on a voltage follower placed at the output of v
j
B combined

with a coupling resistance Rc, whose value controls the amount of

unidirectional coupling from v
j
B to viB. The coupling from unit

i to unit j is introduced in a similar way, thus leading to an
effective bidirectional coupling. Values of the coupling and input
resistances of the different gates implemented in the experiments
are summarized in Table 1.

TABLE 1 | Coupling Rc and input Rint resistances of the Chua circuits.

Node Rin [k�] Rc [k�] Rint [k�]

XNOR GATE

A1 0.6 (s(t) → A1) 3.13 (A1 → A2) 100 (A1 ↔ C)

A2 1.2 (s(t) → A2) 100 (A2 → A1) 100 (A2 ↔ C)

AND GATE

B1 32 (s(t) → B1) 7.22 (B1 → B2) 100 (B1 ↔ C)

B2 61 (s(t) → B2) 96 (B2 → B1) 100 (B2 ↔ C)

Note that the coupling strength is proportional to the inverse of the resistances. Rin

accounts for the resistance of the input signal of each circuit. Rc is the coupling resistance

of the output signal of each unit to its neighbors. Rint is the integration resistance that

quantifies the amount of coupling from each unit to the integrator. Parenthesis indicate

the direction of the coupling between units i and j, which can be either unidirectional (→)

or bidirectional (↔). See Figure 4 for details.

The input signal s(t) used as the “1” input for the logic
gates is introduced through the variable vA by means of a
voltage follower and a coupling resistance Rin. The signal s(t)
was recorded previously from a Chua circuit with the same
parameters as the ones used in the experiments. Both the
input and the output signals are characterized by a chaotic
behavior (see Madan, 1993 for a detailed analysis of the
bifurcation diagram of the Chua circuit, and Wagemakers
et al., 2007 for an implementation of a similar circuit in the
chaotic regime). Finally, outputs of both gates are sent to an
integrator system (C), by means of a bidirectional coupling,
adjusted by an integrating resistance Rint (see Figure 4 for
details).
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2.3. Numerical Methods
The equations of the Jansen model were numerically solved by
means of Heun’s method (García-Ojalvo and Sancho, 1999; Toral
and Colet, 2014), as performed in Malagarriga et al. (2015).
We generated random numbers using standard GSL routines
to set different initial conditions and to introduce noise in the
dynamics. We implement numerically the noise term χi(t) using:

χi(t) =
√

2ξi1tη(t), (13)

where ξi is the noise amplitude and 1t is the integration time
step, whereas η(t) is a number resulting from a white noise
Gaussian distribution with zero mean and variance equal to
1 (García-Ojalvo and Sancho, 1999). Each simulation of the
Jansen model had a time step of 1 ms and ran over a total time
of t = 25 s in Figures 2, 3, and t = 50 s in Figure 5. An initial
interval of 10 s was omitted to avoid transients in Figures 2, 3,
whereas no transient dynamics were found for the simulations
presented in Figure 5.

2.4. Analysis
In order to determine the state of our logic gates, we need
to quantify the synchronization between pairs of nodes.
Each synchronized state is defined by a characteristic
functional relationship between the dynamics of the interacting
elements (Boccaletti et al., 2002). Phase synchronization (PS)
entails a constant phase difference in time between the coupled
oscillators, whereas amplitudes remain uncorrelated (Rosenblum
et al., 1996). Generalized synchronization (GS) is characterized
by a complex functional relationship between the dynamics
of the oscillators that can only be unveiled by the auxiliary

system approach (Abarbanel et al., 1996) or the nearest neighbor

method (Moskalenko et al., 2012). In turn, lag synchronization
(LS) imply a constant time shift between the signals of the
two oscillators, with amplitudes being completely correlated,
whereas in complete synchronization (CS) no time shift is
present. Although CS is not likely to be achieved in a neural
context, here we want to emphasize the possibility of the system
to reach several synchronized states and, thus, we include here
this type of coordinated dynamical evolution as a possible coding
state. Accordingly, we computed in the neural mass model the
cross-correlation and a phase synchronization index between
the output signals of the cortical columns, ym(t) (Lachaux et al.,
1999). Cross-correlations allow us to distinguish between zero-
lag (complete) synchronization (CS) and lag synchronization
(LS), whereas the phase synchronization index provides evidence
of phase synchronization (PS). Generalized synchronization
entails the implementation of a three input logic gate, which has
been excluded for the sake of clarity. The phase φm(t) of the
output signal is obtained from the Hilbert transform of ym(t)
(Rosenblum et al., 1996; Mormann et al., 2000). From the phase,
the phase synchronization index γ of two oscillators, 1 and 2, is
calculated from 1φ12(t)=φ1(t)−φ2(t) as (Mormann et al., 2000;
Quian Quiroga et al., 2002):

γ ≡ |〈ei1φ12(t)〉t| =

√

〈cos1φ12(t)〉2t + 〈sin1φ12(t)〉2t . (14)

For the Chua circuits, we evaluate the synchronization error as
the average of the difference between the outputs of two systems

(e.g., units A1 and A2 in Figure 4A):

A B

FIGURE 2 | Implementation of binary logic gates formed by pairwise

connected cortical columns. (A) Cartoon depicting two connected cortical

columns. Both columns are bidirectionally coupled through both

excitatory–excitatory (black solid arrows) and inhibitory–excitatory (blue solid

lines) contacts. The intensity of such connections is weighted by αij=αji and

βij=βij coupling strengths, respectively. The pyramidal population within each

cortical column additionally receives a constant background pulse density ¯pi ,

an oscillatory input defined by an amplitude δi and a frequency f i and a

stochastic input contribution (see Equation 5). The characteristics of these

inputs define states which feed this binary logic gate. The out-coming

signals, yi = yi1 − yi2, of the two columns may (C(y1, y2 ) ≈ 1) or may not

(C(y1, y2 ) ≈ 0) be correlated. The correlation value of the timetraces of the

two nodes defines the output state of the gate for the given input stimulation

(see Table 3). (B) Several binary logic gates can be obtained from the system

shown in panel (A) if the appropriate combination of parameters and input

protocols are selected (see Table 2). Correlated signals, in the form of PS,

LS, or CS, result in a “1” state of synchronization, however, not correlated

signals are interpreted as a “0” state of synchronization. In the panel (B),

both, the time traces of the oscillators and the state resulting from their

synchronization are shown for all the binary combinations of input protocols

(00, 01, 10, and 11). Several truth tables defined in this way for the logic

gates AND, NAND, NOR, OR, XNOR, and XOR are shown.
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A

B C

FIGURE 3 | Implementation of two logic gates embedded in a

network of coupled cortical units. (A) Cartoon depicting the network of

coupled units. Nodes A1 and A2 implement a NOR gate (in a CS regime)

while nodes B1 and B2 implement an AND gate (in a PS regime). (B) The

implementation of such logic gates is not altered by the state of

synchronization of neighboring pairs, i.e., nodes B1 and B2 are capable of

implementing a AND gate for any synchronized state of nodes A1 and A2
(shown only for a single input state combination for nodes A1 and A2).

However, the dynamics of B1 and B2 are indeed altered, as time traces are

no longer the same for each of the four realizations. In fact, such changes in

the dynamics may produce long transients before falling into the

corresponding synchronized regime (see third pair of time traces between 30

and 35 s). (C) In some cases, when tuning the input, the dynamics of the

oscillators no longer allows to implement the desired logic gates. For an A1
and A2 (constant) input configuration of 00, the implementation of an AND

gate in nodes B1 and B2 fails (see first time traces, where no synchronized

output configuration is obtained for the 11 input for B1 and B2 as required by

the AND truth table). Another type of failure, observed in the second example

of timetraces in the panel (C), is the impossibility to return to the initial state

of desynchronization. This results in a history-dependent logic gate.

ǫ =
1

T

T
∑

t=1

|v1A(t)− v2A(t)|, (15)

with T being the total number of time steps. We use a similar
expression in terms of y1 and y2 for the neural mass oscillators.
We consider two oscillators to have complete synchronization
(or lag synchronization if there is a time shift of the signals)
when the values of the synchronization error are lower than
a certain threshold ǫth (ǫth = 0.10 V in the case of Chua
oscillators, ǫth = 0.01 mV for Jansen oscillators). On the other
hand, phase synchronization arises for high values of the phase
synchronization index (with a threshold of γth = 0.85 for both
cases) and, at the same time, high values of the synchronization
error (ǫ > ǫth = 0.10 V, ǫth = 0.01 mV, for the Chua and Jansen
oscillators, respectively).

3. Results

3.1. Small Networks of Neural Mass Oscillators
The input received by two Jansen oscillators within a network
may determine their state of synchronization (Malagarriga et al.,
2015). Thus, labeling the input signals as “0” and “1” (arbitrarily)
and the synchronization of the two oscillators as “0” (“1”) when
the oscillators are not (are) synchronized, we can interpret the
dynamical response of these two nodes to their inputs in terms

of binary logic gates. By changing the characteristics of the inputs
and the excitatory/inhibitory coupling strengths between the two
oscillators, αij/βij, several types of binary logic gates may be
created.

In order to understand how these clusters of gates operate
in networks of oscillators we first study a simpler situation
formed only by two bidirectionally coupled Jansen oscillators
(See Figure 2, Table 2). In this configuration, each oscillator
(A1 and A2 from now on) receives an external oscillatory and
stochastic input, i.e., Input A1 (δA1 , fA1 , ξA1 ) and Input A2 (δA2 ,
fA2 , ξA2 ), that adds to the other pulse density contributions.
The output signal of each oscillator is the difference between
the Excitatory Postsynaptic Potential (EPSP) and the Inhibitory
Postsynaptic Potential acting upon the pyramidal population
(yi = yi1 − yi2) (see triangles in Figure 2 and the Section 2).
The evaluation of the synchronization of the output of the two
elements that form the gate, yi and yj, determines the dynamical
response of the system. Other characteristics of the response
may also inform about the nature of the inputs received by
the oscillators. For instance, it has been shown (Huang et al.,
2011; Spiegler et al., 2011) that the driving of Jansen oscillators
by a periodic input may result in chaotic, quasi-periodic or
periodic dynamical evolutions. So, taken as a whole, both the
synchronization state of two oscillators and their dynamical state
(e.g., chaotic or oscillatory), inform about the characteristics of
the input received by the gate. As mentioned above, we have
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A

B C

FIGURE 4 | Experimental implementation of integrated logic gates.

(A) Qualitative description of the experimental setup: Nodes A1 and A2
form a XNOR gate (in a CS regime) while nodes B1 and B2 implement an

AND gate (in a PS regime). The output of the two sync-based gates is

integrated through node C. (B) Time series of the XNOR gate. Functioning

of the gate relies on the complete synchronization of units A1 and A2.The

upper time trace, obtained for low values of the coupling with node C

(Rint = 100 k�), shows the different outputs of the truth table of the XNOR

gate (see Table 5). In the bottom signal, coupling with node C is increased

(Rint = 25 k�), and the gate begins to fail. (C) Time series of the AND gate.

In this case, the functioning of the gate relies on the phase synchronization

of units B1 and B2. The upper time trace, obtained for low values of the

coupling (Rint = 100 k�) with node C, corresponds to the different outputs

of the truth table of the AND gate (see Table 5). In the bottom time trace,

coupling with node C is increased (Rint = 25 k�), and the AND gate also

begins to fail.

assigned arbitrarily the “0” and “1” values to the absence of
synchronization and its presence, respectively. However, our
approach can be generalized in several ways. We could, as well,
have labeled each synchronization type (PS, LS, or CS) with a
different label increasing the possible number of output states.
We could also consider the correlation value to define the output
state allowing for fuzzy logic computation.Wewill not study such
complex scenarios, in order to keep our approach as simple as
possible.

With all these ingredients we have constructed truth tables
based on synchronized states as shown in Figure 2B. The
time traces show the online implementation of AND, NAND,
NOR, OR, XNOR, and XOR gates that operate in different
synchronization regimes. To obtain them, different input
protocols and coupling strength relations between the two nodes
are needed (see Table 2). However, a single pair of connected
oscillators with fixed coupling strengths αij/βij may organize
its response in different ways when the input characteristics
(frequency, amplitude, etc.) change (e.g., see AND, OR, XOR
gates in Table 2). So the same brain circuit represented by a
single pair of oscillators may behave as different logic gates
depending of the inputs they receive. This ability to classify
the response of the system in different ways depending of the
inputs received results in a higher flexibility for the information
processing capacity of the network. The network is not a static
circuit which computes passively the response to the inputs but
a whole collection of circuits (based in the logic gates described
here) which reconfigures itself depending of the input received.

TABLE 2 | Values of the coupling parameters and input stimulation

protocols for inputs labeled as “1” in the implementation of the binary

logic gates shown in Figure 2.

Parameters Logic gates

AND NAND NOR OR XNOR XOR

αA1A2
2.0 27.0 5.0 2.0 27.0 2.0

βA1A2
8.0 5.0 1.0 8.0 5.0 8.0

pA1
(t) (Hz) 250 150 155 250 155 250

pA2
(t) (Hz) 250 150 155 250 155 250

δA1
(Hz) 120 150 65 250 250 250

δA2
(Hz) 120 150 65 250 250 250

fA1
(Hz) 10.8 8.5 8.5 8.5 8.5 9.5

fA2
(Hz) 10.8 8.5 8.5 8.5 8.5 8.5

ξA1
(Hz) 0.0 0.0 1000 0.0 1000 0.0

ξA2
(Hz) 0.0 0.0 1000 0.0 1000 0.0

This type of complex networks of logic gates which reconfigure
themselves dynamically to adapt its response to specific inputs
has been found in other natural systems such as the signaling
networks in eukaryotic cells (Domedel-Puig et al., 2011; Rué et al.,
2012). As said above, we do not claim, however, that the brain is
a circuit of boolean gates but a highly complex dynamical system
able to process information in a very sophisticated manner at the
mesoscale.
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TABLE 3 | Synchronization errors and phase synchronization indices for each logic gate implemented in Figure 2.

Inputs AND NAND NOR OR XNOR XOR

A1 A2 γ ǫ (mV) Out γ ǫ (mV) Out γ ǫ (mV) Out γ ǫ (mV) Out γ ǫ (mV) Out γ ǫ (mV) Out

0 0 0.3 0.5 0 0.98 0.001 1 0.99 0.001 1 0.31 0.75 0 0.99 0.001 1 0.19 0.5 0

0 1 0.2 0.7 0 0.97 0.003 1 0.25 0.64 0 0.98 0.42 1 0.23 0.54 0 0.95 0.3 1

1 0 0.1 0.602 0 0.98 0.001 1 0.27 0.73 0 0.97 0.45 1 0.14 0.75 0 0.98 0.45 1

1 1 0.91 0.002 1 0.5 0.3 0 0.63 0.47 0 0.98 0.05 1 0.91 0.2 1 0.24 0.41 0

Another trait of these logic gate implementations is related
with the complex dynamical evolutions that the neural mass
oscillators may show. For instance, for chaotic states, time
evolutions depend strongly on the initial conditions. This
feature introduces a very strong link between the dynamical
evolution of one oscillator and its input. Resulting from this,
we argue that our implementation may possess reversible logic
characteristics (Bennett, 1973), as it allows to recognize from the
out coming signals which of the two elements in the logic gate is
receiving an input. The details of such paradigm are however out
of the scope of this work.

The extension of the previous results to a network of
interacting cortical columns leads to spatially distributed
computation. In this case, each node in the network receives
inputs that determine their synchronization state with other
network nodes, following one of the implemented logic gates
shown in Figure 2B. In that way, different regions of the network
may act as gates that process inputs from the same or different
origins, enriching the processing capabilities of the network even
further. In this paper, we present a first step toward analyzing
these capabilities by considering only relatively simple network
motifs. Even if these motifs behave as well-established logic
gates in isolation, their behavior when operating within larger
networks might be more complex or even unexpected, as shown
in Figure 3. In those cases, the whole network can process the
whole set of its inputs following complex multidimensional logic
rules.

Figure 3A shows a network of five interacting cortical
columns that implement two logic gates: NOR (with CS
synchronization) and AND (with PS synchronization).
The peripheral pairs of columns are capable of working
independently, even though their dynamics are influenced by
the behavior of the whole network. Figure 3B shows the truth
table and the corresponding time traces for the response of the
AND gate (columns B1 and B2), while columns A1 and A2, which
implement the NOR gate, receive different inputs. In this case
it is worth mentioning that all four time traces for the AND
implementation, which are symmetric realizations in terms of
initial conditions, display distinctive dynamics depending on
the A1 and A2 inputs. However, they do not lose the capacity of
remaining synchronized/non-synchronized. Nevertheless, some
realizations display states of long transient dynamics (see the
"0” return state in all pairs of time traces) which are indeed not
beneficial for fast brain computation. One possible application
of transient dynamics in this system can be related with the
ability to discern between the different input scenarios thanks to
the different length of the transient dynamical evolutions. Such

TABLE 4 | Values of the parameters used in the implementation of the

NOR and AND logic gates appearing in Figure 3.

Parameters NOR AND

NOR and AND gates

αij 5.0 2.0

βij 1.0 8.0

αiC = αjC 0.01 2.0

βiC = βjC 0.0 1.7

pi (t) = pj (t) (Hz) 155 250

pC (t) (Hz) 250 250

δi = δj (Hz) 65 191

fi = fj (Hz) 8.5 10.8

ξi = ξj = ξC (Hz) 0.0 0.0

transient dynamics coding may be related with brain functions as
proposed in Rabinovich and Varona (2011). Thus, overall, such
dynamical behavior shows that the network implementation of
logic gates is stable in terms of synchronization and arises from
interdependent dynamics.

Despite being a robust dynamical feature, logic gate
implementation strongly depends on the type of input and
the coupling strength ranges between columns. In this regard,
Figure 3C shows two situations in which there is a wrong
output configuration of an AND gate depending on the input
applied to nodes A1 and A2 (here δA1 = δA2 = 300 Hz, while
all other input characteristics are the same as those in Table 4).
B1 and B2 both receive the standard oscillatory input protocol.
In the first pair of time traces shown, the output displayed by
nodes B1 and B2 does not show correlated dynamics (when
B1 and B2 receive “1” inputs) as expected for a correct AND
implementation. In turn, the second pair of time traces shows
how, after displaying a correct output for the initial four
pairs of input states, the subsequent return to the first output
configuration is no longer possible. Such history dependent
behavior entails the impossibility, for these conditions, of a
forward implementation of the previous logic gate (AND) but
results in the implementation of a state- (or history-) dependent
one. These situations result only for specific input patterns.
However, the response to other inputs may produce well-behaved
logic gates.

3.2. Small Networks of Chua Oscillators
In the previous section we have shown theoretically that
information processing in terms of synchronization-based logic
gates for small networks of neural mass oscillators is possible.
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In this section, we show that these results can also be obtained
experimentally by means of electronic circuits. Even though we
will use another type of system, the Chua oscillator (Madan,
1993), that can show several dynamic regimes, we are going
to consider only situations in which the circuits operate in the
chaotic regime (see Section 2.2).

Such an experimental implementation will be a proof of the
fact that systems as those considered in the previous section
are robust against the parameter mismatch of electronic circuits
and the intrinsic noise of real systems. Chaotic systems, such
as Chua circuits, may display different kinds of synchronization
that can be tuned through the coupling strength between the
networked elements and the particular dynamics of an input
signal (Arenas et al., 2008). Even though the nature of the
oscillators is different from those considered theoretically, these
systems have the ability to process information in the same way
as those described in the previous section. We have designed
and implemented experimentally several logic gates as those
described in Figure 2B. Nevertheless, in what follows we are
going to focus on the description and integration of a XNOR
and AND gates in a network, the former based on complete
synchronization and the latter on phase synchronization.

Figure 4A shows schematically the system integrating the
outputs of a XNOR and AND gate. This circuit represents a
network similar to that studied in Figure 3. It consists of an
integrated circuit formed by five Chua oscillators, two of them
implementing a XNOR gate (nodes A1 and A2), other two
forming an AND gate (nodes B1 and B2) and the fifth Chua
circuit (nodes C) integrating the output of both gates. The input
of each dynamical unit can be either “1” (when a complex signal
is injected into the node) and “0” (in the absence of an input
signal). In order to assess the emergence of the synchronized
time evolutions we have computed the synchronization errors
of the two pairs of nodes that implement the logic gates (see
Equation 15). Such errors allow us the determine a proper
threshold to define each synchronized state, and thus each output
state, in the truth tables of the logic gates. Time traces and
the corresponding truth table for the XNOR gate are shown in
Figure 4B, while synchronization errors determining the gates’
outputs are summarized in Table 5.

The AND gate is based on phase synchronization, and it is
obtained by a fine tuning of the input and coupling resistances.
In this case, we must reach a high phase synchronization

TABLE 5 | Synchronization errors and truth tables of the XNOR gate (with

complete synchronization) and the AND gate (with phase synchronization)

embedded in a network of coupled Chua oscillators. The thresholds to

establish synchronized states are shown in Materials and Methods

section.

Inputs XNOR AND

A1 A2 γ ǫ (V) Out γ ǫ (V) Out

0 0 0.991 0.085 1 0.734 0.357 0

0 1 0.750 0.641 0 0.760 0.294 0

1 0 0.885 0.449 0 0.692 0.285 0

1 1 0.994 0.039 1 0.920 0.288 1

but preventing complete synchronization, the latter leading
to unavoidable (i.e., trivial) matching of the phases of the
oscillators. To guarantee that we have phase, and not complete,
synchronizationwe checked at the same time the synchronization
error ǫ and the phase synchronization index γ (see Equation
14). A combination of a high ǫ and a high γ is the signature of
phase synchronization between the two units forming the gate.
Figure 4C shows the time series and the corresponding truth
table for the AND gate. Table 5 summarizes the values of ǫ and γ

that lead to a successful performance of both gates.
Finally, it is worth mentioning that a tuning of the integrator

resistances (see Table 1) allows the correct functioning of the
ensemble of gates. When the integrator resistances are decreased
(i.e., the coupling with the central node C is increased) to values
close to Rint ≤ 25 k� the functioning of the gates begins to
fail due to interferences between them (see bottom panels of
Figures 4B,C). Such feature was also present in the case of the
Jansen oscillators, in which increasing the coupling strength
between the peripheral cortical columns and the central node led
to an unstable implementation of logic gates.

3.3. Neural Mass Implementation of a Flip Flop
Circuit
Other extended systems able to perform more complex logical
operationsmay be implemented bymeans of networks of coupled
oscillators. We have constructed a Set-Reset Flip Flop circuit,
which is capable of storing a bit of information at each forward
step. To do so, the system has two inputs (Set, S, and Reset, R)
and two outputs C and C̄, which follow the truth table shown
in Figure 5. When neither S nor R receive an input the output
states are C = 0 and C̄ = 1. This output state is preserved
for the following input step, which is S = 0 and R = 1.
Such feature keeps memory of the previous output state. The
following step is S = 1 and R = 0 which "flips" the output
states, being C = 1 and C̄ = 0. An undesired state is achieved
when both S and R are 1, which leads to C = 0 and C̄ = 0
state. Figure 5A shows the network used to implement such
memory: two inputs (S and R) feed two cortical columns which
in turn project unidirectionally toward neural masses B1 and
A2, via intermediate cortical columns I1 and I2, respectively.
The state of synchronization of nodes A1 and A2 will give the
output C, whereas the state of synchronization of nodes B1
and B2 gives C̄. Figure 5B shows the online implementation
of the flip-flop memory, with "flipped" output states and an
undesired C = C̄ = 0 state in which none of the pairs A1–
A2 or B1–B2 are synchronized. Note that transients affect the
performance of the flip-flop implementation (see third pair of
time traces below Figure 5B) but such obstacle may be dependent
on initial conditions. Moreover, as in previous implementations,
each output state is characterized by distinctive time evolutions,
which, on top of memory storage, also give information about
which terminal (S or R) receives the input.

4. Discussion

In order to address how information can be processed, from
the perspective of synchrony, at the mesoscopic scale we
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A B

C

FIGURE 5 | Implementation of a flip-flop memory. (A) Cartoon

depicting the network of cortical columns that fulfill the flip-flop

operational gate. S and R are cortical columns that receive oscillatory

inputs, respectively. These columns excite upstream connected columns

(A1 and B2) which are bidirectionally coupled to columns A2 and B1,

accordingly. The latter receive inputs from two columns that, in turn,

receive the output from A1 and A2 (output C) and B1 and B2 (output

C̄.) (B) Online implementation of a flip-flop. The state of synchronization

is preserved when inputs S = 0 and R = 0, or S = 1 and R = 0, giving

C = 0 and C̄ = 1, but "flips" when S = 0 and R = 1, giving C = 1 and

C̄ = 0 . A not desired situation is the one in which C = 0 and C̄ = 0,

i.e., neither A1 and A2 or B1 and B2 are synchronized. This happens

when S = 1 and R = 1, which fulfills a flip-flop truth table. (C)

Magnification of the time scale of the output signals for the sequence of

five S− R bit pairs of panel (B). The full scale for each sub panel with a

pair of signals is corresponding to 5 s.

TABLE 6 | Values of the parameters used in the implementation of the

flip-flop operational gate shown in Figure 5.

Parameter Value Parameter Value

Flip-flop operational gate

αSA1
80.0 βSA1 0.0

αA1A2
10.0 βA1A2

5.0

αRB2
10.0 βRB2

0.0

αB1B2
9.0 βB1B2

9.0

αI1A1
52.0 βI1A1

9.0

αI1A2
52.0 βI1A2

9.0

αI2B1
10.0 βI2B1

2.0

αI2B2
10.0 βI2B2

2.0

αA2 I2
52.0 βA2 I2

0.0

αB1 I1
10.0 βB1 I1

0.0

Parameter Value

pi (t) = pj (t) (Hz) 155

pS (t) = pR (t) (Hz)
57.8

pI1
(t) = pI2

(t) (Hz)

pA1
(t) (Hz) 150

pA2
(t) (Hz) 150

pB1
(t) (Hz) 250

pB2
(t) (Hz) 250

δS (Hz) 220

δR (Hz) 200

fS = fR (Hz) 8.5

ξS,R,Ai ,Bi ,Ii
(Hz) 1000

have analyzed theoretically a network of coupled neural mass
oscillators. This network uses synchronization as the essential
ingredient to process the information arriving to/from each of

its nodes. We have seen that by interpreting the inputs arriving
to the oscillators of the network as “0” or “1” and defining the
output of the binary operation in terms of the synchronized
state of the two oscillators also as “0” or “1”, several binary logic
gates can be constructed. This dependence of the synchronization
level of two columns on their stimulation has been observed
experimentally, for instance, in the cat visual cortex (Gray et al.,
1989). Interestingly, different binary logic gates constructed using
the same physiological circuitry result only from changes in the
input signals received by the oscillators (e.g., AND, OR, and
XOR gates in Figure 2). This rich behavior shown by only two
coupled cortical columns may be very fruitful when many other
columns are considered. In this sense, the ability to analyze
input signals with very different characteristics (average density
of spikes, amplitude and frequency of oscillations or noise level)
is multiplied by the simple addition of this type of binary logic
gates in a network. Nevertheless, this simplistic view may be even
more sophisticated when putting the binary motifs together in
a larger network. As shown in Figure 3, simply by connecting
two different logic gates through a hub may result in a system
where the two gates operate in parallel independently of each
other (Figure 3A) or operate in a different way (Figure 3B).
In this case, outputs may depend on the input of both gates
at the same time or on the history of the input states driving
the nodes (see examples of both behaviors in Figure 3B). This
type of dynamics, in larger networks, makes selectivity of the
state in terms of the input protocol even richer than just the
repetition of simple binary logic gates in a network. In order
to show the generality of this type of networks (and also its
robustness in terms of the dynamical oscillators used to build
the network) we have constructed several binary logic gates with
electronic circuits operating in a chaotic regime. We have shown
experimentally that a network built by coupling two of these gates
through a hub (using the same simple motif as before) is able to
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process information as expected (see Figure 4). Finally, we have
shown theoretically that by using a network of oscillators we can
implement a Set-Reset Flip Flop circuit (Hahnloser et al., 2000),
which is an example of another stimulus selector, in this case, that
is able to store information.

To conclude, it is worthmentioning that, in this work, we have
considered only the simplest interpretation of input and output
states (leading to Boolean logic). However, our results may be
analyzed in a wider view, for instance, if we explicitly consider
the degree of synchronization of the different elements (resulting
in fuzzy logic) or if we consider as possible output states all
types of synchronization (phase, generalized, lag, complete, ...)
between the different elements which form the network of
oscillators. The fact that we consider only one of the different
dynamical characteristics of the system, in our case its degree

of synchronization, is a coarse simplification. The dynamical
response of the network is not determined only by its degree
of synchronization. For instance, the frequencies involved in
the dynamics, or the degree of excitation/inhibition segregation,
may also inform about the input stimulus characteristics,
enlarging in this way the computational capabilities of the
system.
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