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Abstract

Alternative growth and decay estimates, reminiscent of the classical
Phragmén-Lindelöf principle, are derived for a linearised thermoelastic
body whose plane cross-sections increase unboundedly with respect to a
given direction. The proof uses a modified Poincaré inequality to con-
struct a differential inequality for a weighted linear combination of the
cross-sectional mechanical and thermal energy fluxes. Decay estimates
are deduced also for the cross-sectional mean square measures of the dis-
placement and temperature. An explicit upper bound in terms of base
data is established for the amplitude occurring in the decay estimates.

Keywords: Thermoelastostatics; increasing cross-sections; Phragmén-Lindelöf
principle.

1 Introduction

Spatial stability in equilibrium theories of elasticiy and thermoelasticity may
be established from estimates for spatial (average) behaviour, usually measured
by the energy, in terms of distance from the load surface. Such studies, clearly
related to Saint-Venant’s principle, are significant for investigations into bound-
ary effects and similar phenomena. In elasticity, both growth and decay esti-
mates have been derived for nonprismatic and prismatic finite and semi-infinite
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cylinders (e.g.,[1, 2]), and for cone-like regions (e.g., [5]) unbounded in a given
direction. The method of derivation, however, does not readily extend to ther-
moelasticity, although the cylinder has been successfully treated by separate
weighting of the mechanical and thermal energies [6]. The weight function,
however, becomes unbounded when the cylinder’s cross-section increases un-
boundedly, and consequently is inappropriate for problems considered in this
paper.

We treat a linearised classical thermoelastic body that becomes unbounded
in at least one direction x1 and whose plane cross-sections perpendicular to
this direction are contained between a divergent wedge. Consequently, they
are of indefinitely increasing area. A cone is included, but equally the cross-
sections may extend to infinity in directions that, for example, are parallel to the
intersection of the wedge and cross-sections. For simplicity, it is supposed that
the displacement and temperature are specified non-zero on the base x1 = 0,
but are homogeneous on the lateral sides. Asymptotic behaviour as x1 tends to
infinity is not, however, prescribed. Constitutive coefficients satisfy physically
plausible restrictions that include positive-definiteness and upper boundedness.
The sum of the mechanical and weighted heat energy fluxes across each plane
cross-section, where the polynomial weight function depends upon the single
variable x1, is shown to satisfy a first order differential inequality which on
integration establishes conditions for the growth and decay of the solution with
respect to x1, similar to the Phragmén-Lindelöf principle in potential theory.
The estimates, for which the solution is measured either by the weighted sum of
cross-sectional energy fluxes or volume energies, assume the forms respectively
of an exponentially increasing lower bound, or an exponentially decreasing upper
bound. Under conditions for decay, the mean square cross-sectional measures
of both the displacement and temperature satisfy similar decay estimates.

The calculations rely upon three inequalities, the first of which corresponds
to a modified Poincaré inequality and is derived in Section 2, where geometric
properties are also described. Section 3 defines the boundary value problem to
be studied and presents the assumptions adopted for the various constitutive co-
efficients.The remaining two principal inequalities, constructed in Section 4, are
expressed in terms of a certain function that involves the temperature and its
spatial derivatives. The inequalities are used in Section 5 to obtain a first order
differential inequality for a weighted linear combination of the mechanical and
thermal energy fluxes. In Section 6, reference to results discussed in [2], where
a similar differential inequality is obtained, easily leads to the present alterna-
tive exponential growth and decay estimates corresponding to the Phragmén-
Lindelöf principle. Optimal decay rates are determined in Section 6.1. Section 7
develops procedures for the asymptotic decay of the displacement and temper-
ature in terms of their respective mean-square cross-sectional measures, while
Section 8 examines implications for growth. The amplitude in the decay esti-
mates lacks physical interest since its dependence on base data is not explicit.
The defect is remedied in Section 9 where a bound for the amplitude is obtained
specifically in terms of the base data. Section 10 concludes the main part of the
paper. It briefly examines the uncoupled mechanical and thermal problems and
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derives the corresponding estimeated growth and decay rates by the method of
this paper. The mechanical and thermal rates are simply compared not only
with each other, but also with those obtained by application of the method si-
multaneously to both uncoupled problems. Expressions for the respective rates
in the coupled problem are somewhat complex preventing easy comparision. An
Appendix is devoted to several methods for selecting the arbitrary constants oc-
curring in the previous calculations in order to derive explicit decay and growth
rates. These rates are not, however, optimal.

The standard comma notation is employed to indicate partial differentiation,
and the summation convention is applied, with Roman subscripts in the range
1, 2, 3. Greek subscripts are restricted mainly to 2 and 3. An indicial notation
is also adopted to represent components of vectors and tensors which are taken
with respect to the same Cartesian coordinate system unless stated otherwise.
Existence of a suitably differentiable solution is assumed throughout.

2 Preliminaries

Consider a Cartesian system of rectangular coordinates x1x2x3 and let the spa-
tial region Ω ⊆ {x ∈ IR3 : x1 ≥ 0} be an unbounded non-prismatic cylinder that
extends to infinity as x1 →∞. We introduce the notation

Ω(z) = {x ∈ Ω, x1 ≥ z}, (2.1)

and denote a plane cross-section of the cylinder by

D(z) = {x ∈ Ω, x1 = z}. (2.2)

The boundary ∂D(z) of D(z) is supposed sufficiently smooth to admit applica-
tions of the divergence theorem. We let D(z) become unbounded as z →∞ in
either of the following ways:

(I) The cross-section D(z) is contained between two parallel lines distance
l(z) apart for every z ≥ 0, where

l(z) ≤ πC(z + h)α, C > 0, h > 0, α ∈ (0, 1], (2.3)

and the positive constants C, h, α are chosen to satisfy the relation

1− 2Cαk̃1/2

h1−αk
1/2
1

= C1 > 0, (2.4)

in which k1, k̃ are prescribed constants related to the heat conduction
tensor by (3.8) and (3.10)2.

When α = 1, condition (2.4) is replaced by

1− 2Ck̃1/2

k
1/2
1

= C1 > 0, (2.5)

which is satisfied for all k̃, k1 by suitable choice of the constant C.
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(II) The area |D(z)| of the cross-section D(z) satisfies the upper bound

|D(z)| ≤ πj2
0C

2(z + h)2α, C > 0, h > 0, α ∈ (0, 1], (2.6)

where C, h, α satisfy condition (2.4), or C satisfies (2.5) when α = 1, and
j0 is the first zero of the Bessel function of order zero (j0 ∼ 2.408...).

Regions in Category I are more general than those in Category II since cross-
sections with z <∞ are allowed to become unbounded in directions parallel to
that of the given lines. For this reason, the solution must belong to the function
space W 1,2(D(z)), z ≥ 0, or more generally W 1,2(Ω). Otherwise, we suppose
that D(z) remains bounded for all finite z.

The following provide examples of spatial regions in each category:
Category 1. Suppose Ω = {x, x1 ≥ 0, |x2| ≤ πC(x1 + h)α, |x3| ≤ C0(x1 +

h)α} where C > 0, C0 > 0, h > 0 are constants, and α ∈ (0, 1]. In this example
D(0) = {x, x1 = 0, |x2| ≤ πChα, |x3| ≤ C0hα} and D(z) = {x, x1 = z, |x2| ≤
πC(z + h)α, |x3| ≤ C0(z + h)α}.

Category 2. Suppose Ω = {x, x1 ≥ 0, x2
2 + x2

3 ≤ πj2
0C

2(x1 + h)2α} where
C > 0, h > 0 are constants and α ∈ (0, 1]. In this case, D(0) = {x, x1 =
0, x2

2 +x2
3 ≤ πj2

0C
2h2α} and D(z) = {x, x1 = z ≥ 0, x2

2 +x2
3 ≤ πj2

0C
2(z+h)2α}.

Figures 1 and 2 show examples of regions in Category I and II. Figure 1
depicts a wedge with curvilinear sides for which the parameters are chosen to
be C = h = 1 and α = 1/4.

Figure 1: A Category I region

Figure 2 is an example of a cone-like region belonging to Category II whose
parameters have the same value as those in Figure 1.

A modified Poincaré inequality, key to subsequent arguments, is established
next. We have
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Figure 2: A Category II region

Lemma 2.1 Let the function v ∈ W 1,2
0 (D(z)) be defined on D(z) and satisfy

the boundary condition

v(x2, x3) = 0, (x2, x3) ∈ ∂D(z). (2.7)

Then ∫
D(z)

v2da ≤ C2(z + h)2α

∫
D(z)

v,γv,γda, γ = 2, 3, (2.8)

holds for every z ≥ 0, where da represents the element of area on D(z).

Proof. For regions D(z) belonging to Category II, inequality (2.8) follows
from the standard Poincaré inequality

λ(z)

∫
D(z)

v2 da ≤
∫
D(z)

v,αv,α da, (2.9)

in conjunction with the Faber-Krahn inequality

λ(z) ≥ πj2
0

|D(z)|
. (2.10)

For Category I regions, without loss we may suppose the x3 axis to be
parallel to the given pair of parallel lines distance l(z) apart, and consider the
point (x2, x̄3) ∈ D(z) for fixed x̄3 and fixed z ≥ 0. Let the straight line through
x2, x̄3 parallel to the x2-axis have length l(x̄3, z) and intercept the boundary
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∂D(z) in points x0
2(x̄3) ≤ x1

2(x̄3). The one- dimensional Wirtinger inequality
given by (see, for example, [4, pp., 184-185])∫ x1

2(x̄3)

x0
2(x̄3)

v2(ξ, x̄3) dξ ≤ l2(x̄3, z)

π2

∫ x1
2(x̄3)

x0
2(x̄3)

|v,ξ(ξ, x̄3)|2 dξ, (2.11)

immediately yields∫ x1
2(x̄3)

x0
2(x̄3)

v2(ξ, x̄3) dξ ≤ l2(z)

π2

∫ x1
2(x̄3)

x0
2(x̄3)

|v,ξ(ξ, x̄3)|2 dξ

≤ C2(z + h)2α

∫ x1
2(x̄3)

x0
2(x̄3)

|v,ξ(ξ, x̄3)|2 dξ, (2.12)

by virtue of assumption (2.3). We now allow x̄3 to become arbitrary and inte-
grate with respect to this variable over its extreme values in D(z) to obtain the
stated inequality (2.8). �

3 Linearised thermoelastostatics

In the absence of supply terms, the equilibrium equations of linearised compress-
ible inhomogenous thermoelasticity for the stress tij and heat flux qi become

tij,j = 0, x ∈ Ω, (3.1)

qi,i = 0, x ∈ Ω, (3.2)

where

tij = dijkluk,l + βijθ, x ∈ Ω, (3.3)

qi = kijθ,j , x ∈ Ω. (3.4)

Here, ui(x) are the Cartesian components of the displacement vector, θ(x) > 0 is
the temperature, βij(x) are the Cartesian components of the symmetric thermal
coupling tensor, kij(x) are the Cartesian components of the symmetric heat
conduction tensor, and dijkl(x) are the Cartesian components of the elasticity
tensor that possess only the major symmetry

dijkl = dklij . (3.5)

In general, the kinematical and thermal constitutive functions are differen-
tiable with respect to position xi.

Substitution of the constitutive relations (3.3) and (3.4) in the equilibrium
equations (3.1) and (3.2) yields

(dijkluk,l + βijθ),j = 0, x ∈ Ω, (3.6)

(kilθ,l),i = 0, x ∈ Ω. (3.7)

The following conditions are assumed for the constitutive functions:
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(i) The heat conduction tensor is positive definite and posssesses an upper
bound in the sense that positive constant k1 and k̄ exist such that

kijξiξj ≥ k1ξiξi, for every vector ξi, (3.8)

kijξiξj ≤ k̄ξiξi, for every vector ξi. (3.9)

(ii) The coupling tensor βij and the function k11 possess upper bounds re-
spectively denoted by

β̃ = sup
Ω
βijβij , k̃ = sup

Ω
k11, (3.10)

(iii) Similarly, the elasticity tensor dijkh is positive definite and bounded above

in the sense positive constants d1 and d̃ exist such that

dijkhξijξkh ≥ d1ξijξij , for every tensor ξij , (3.11)

dijkhξijξkh ≤ d̃ξijξij , for every tensor ξij . (3.12)

These assumptions are physically plausible. Condition (3.8) is compatible
with the second law of thermodynamics that requires the heat conduction tensor
to be non-negative. A positive-definite elasticity tensor is related to the stability
of the solutions with respect to small elastodynamic perturbations.

To complete the specification of the boundary value problem (3.6) and (3.7)
we adjoin Dirichlet boundary conditions prescribed by

ui = θ = 0, x ∈ ∂D(z), z ≥ 0, (3.13)

and

ui(0, x2, x3) = fi(x2, x3), θ(0, x2, x3) = g(x2, x3), (0, x2, x3) ∈ D(0), (3.14)

where fi, g are prescribed functions.
Compatibility of these boundary conditions is ensured by the assumption

that
fi(x2, x3) = g(x2, x3) = 0, (x2, x3) ∈ ∂D(0). (3.15)

Dirichlet boundary conditions are chosen for simplicity, but other standard
types can be included in the analysis subject to suitable normalisations for those
of Neumann type.

Before establishing spatial behaviour of the solution to our boundary value
problem, we derive some additional inequalities. It is also convenient to intro-
duce the following further notation

d =

(
d̃

d1

)1/2

, k =

(
k̃

k1

)1/2

, (3.16)

a =

(
β̃

d1k1

)1/2

, b =
aC

2C
1/2
1

, e =
2α

h1−α . (3.17)
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In this notation, condition (2.4) becomes

C1 = 1− keC > 0, (3.18)

where
0 < k < (eC)−1. (3.19)

which for assigned k always hold for sufficiently small eC, as noted in (2.4). A
similar remark applies to (2.5).

4 Inequalities

The main results of the paper also rely upon inequalities which are stated and
proved in the following lemmas both of which involve the function

G(z) = Λ(z)

∫
D(z)

kijθ,iθ,jda+ Λ′(z)

∫
D(z)

ki1θ,iθda, (4.1)

where
Λ(z) = λ(z + h)2α, λ > 0, h > 0, α ∈ (0, 1], (4.2)

and the positive constant λ is to be chosen. A superposed prime indicates
differentiation with respect to the argument.

Lemma 1. Assume that Ω belongs to either Category I or II, and that the
respective conditions (2.4) or (2.5) hold. Then

G(z) ≥ C1Λ(z)

∫
D(z)

kijθ,iθ,jda. (4.3)

Proof. By hypothesis, we have Λ′(z) ≥ 0 for every z ≥ 0. Note also that
the unit normal on D(z) in the positive x1−direction is given by n = (1, 0, 0).
Then by Schwarz’s inequality and condition (3.8) we obtain

|Λ′(z)
∫
D(z)

ki1θ,iθda| = |Λ′(z)
∫
D(z)

kijθ,injθda|

≤ Λ′(z)

[∫
D(z)

kijθ,iθ,jda

∫
D(z)

kijninjθ
2da

]1/2

= Λ′(z)

[∫
D(z)

kijθ,iθ,jda

∫
D(z)

k11θ
2da

]1/2

≤ C(z + h)αkΛ′(z)

∫
D(z)

kijθ,iθ,jda, (4.4)

where k is defined in (3.16)2, and inequality (2.8) together with definition (3.10)2

are additionally used. After insertion of (4.4) into (4.1) and upon noting that
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(z + h)(α−1) ≤ h(α−1) for 0 < α ≤ 1 and z ≥ 0, we obtain

G(z) ≥
[
Λ(z)− 2αCλk(z + h)3α−1

] ∫
D(z)

kijθ,iθ,jda

≥ Λ(z)
[
1− 2αCkhα−1

] ∫
D(z)

kijθ,iθ,jda. (4.5)

The lemma is established on recalling conditions (2.4) and (2.5) . �

Remark 4.1 It easily follows from (2.8) and (4.3) that∫
D(z)

θ2 da ≤ C2(z + h)2α

∫
D(z)

θ,iθ,i da

≤ C2Λ(z)

λk1

∫
D(z)

kijθ,iθ,j da (4.6)

≤ C2

λC1k1
G(z), z ≥ 0. (4.7)

Lemma 2. Let Ω belong to Category I or II and suppose either condition
(2.4) or condition (2.5) hold. Then, there exists a positive constant γ1 such that

|
∫
D(z)

βijui,jθda| ≤
aC

2

[
γ−1

1

∫
D(z)

dijkhui,juk,hda+ γ1(z + h)2α

∫
D(z)

kijθ,iθ,jda

]
,

(4.8)
where a is given by (3.17)1.

Proof. Schwarz’s inequality, inequality (2.8), assumptions (3.8), (3.11), and
(3.10)1 together with (4.6) lead to

|
∫
D(z)

βijui,jθda| ≤

(∫
D(z)

βijβijθ
2da

∫
D(z)

ui,jui,jda

)1/2

≤ aC(z + h)α

(∫
D(z)

kijθ,iθ,jda

∫
D(z)

dijkhui,juk,hda

)1/2

≤ aC(z + h)α

2

(
ε(z)

∫
D(z)

kijθ,iθ,jda+ ε−1(z)

∫
D(z)

dijkhui,juk,hda

)
.

where the arithmetic-geometric mean inequality is used for the last inequality
and ε(z) is an arbitrary positive function depending upon the parameter z ≥ 0.
On setting

ε(z) = γ1(z + h)α,

we obtain inequality (4.8). �
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5 Differential inequality

Preparatory to a Phragmén-Lindelöf alternative established in the next section,
we construct in this section a differential inequality for solutions to the bound-
ary value problem specified by the system (3.6) and (3.7) and the boundary
conditions (3.13) and (3.14). Consider the function

F (z) =

∫
D(z)

(di1khuk,h + βi1θ)uida+ µΛ(z)

∫
D(z)

ki1θ,iθda, (5.1)

where Λ(z) is the function defined by (4.2), and µ is a positive constant to be
chosen.

Let s ≥ 0. Integration by parts gives

F (z + s)− F (z) =

∫ z+s

z

∫
D(η)

(dijkhui,juk,h + βijui,jθ)dadη + µ

∫ z+s

z

G(η)dη,

(5.2)
where G(z) is the function defined by (4.1). It follows that

F ′(z) =

∫
D(z)

(dijkhui,juk,h + βijui,jθ)da+ µG(z). (5.3)

Employment of Lemmas 1 and 2 in the last expression gives the inequality

F ′(z) ≥
(

1− aC

2γ1

)∫
D(z)

dijklui,juk,l da

+

(
µC1 −

aCγ1

2λ

)
Λ(z)

∫
D(z)

kijθ,iθ,j da

= A

∫
D(z)

dijklui,juk,l da+BΛ(z)

∫
D(z)

kijθ,iθ,j da (5.4)

= A

[∫
D(z)

dijklui,juk,l da+A−1BΛ(z)

∫
D(z)

kijθ,iθ,j da

]
, (5.5)

where

A =

(
1− aC

2γ1

)
, (5.6)

B =

(
µC1 −

aCγ1

2λ

)
. (5.7)

The coefficients A and B are strictly positive provided γ1 satisfies

aC

2
< γ1 <

2λµC1

aC
, (5.8)

which holds provided λ and µ are chosen such that(
aC

2

)2

< λµC1. (5.9)

10



In what follows, conditions (5.8) and (5.9) are always assumed.
A first order differential inequality satisfied by F (z) is next derived by esti-

mating the absolute value of the function F (z) in terms of its derivative. It is
immediate from expression (5.1) that

|F (z)| ≤ |I1(z)|+ |I2(z)|+ |I3(z)|, (5.10)

where

I1(z) =

∫
D(z)

di1khuk,huida,

I2(z) =

∫
D(z)

βi1θuida,

and

I3(z) = µΛ(z)

∫
D(z)

ki1θ,iθda.

Arguments similar to those used in Section 4 enable each of the above terms
to be separately bounded. We have

|I1(z)| ≤

(∫
D(z)

dijkhui,juk,hda

∫
D(z)

dijkhuinjuknhda

)1/2

≤ d̃1/2

(∫
D(z)

dijkhui,juk,hda

∫
D(z)

uiuida

)1/2

≤ dC(z + h)α
∫
D(z)

dijkhui,juk,hda,

|I2(z)| ≤

(∫
D(z)

uiuida

∫
D(z)

βijβijθ
2da

)1/2

≤ β̃1/2

(∫
D(z)

uiuida

∫
D(z)

θ2da

)1/2

≤ aC2(z + h)2α

(∫
D(z)

dijkhui,juk,hda

∫
D(z)

kijθ,iθ,jda

)1/2

≤ aC2(z + h)α

(
1

2γ2

∫
D(z)

dijkhui,juk,hda+
γ2

2λ
Λ(z)

∫
D(z)

kijθ,iθ,jda

)
,

|I3(z)| ≤ µΛ(z)

(∫
D(z)

kijθ,iθ,jda

∫
D(z)

k11θ
2da

)1/2

≤ k̃1/2µΛ(z)

(∫
D(z)

kijθ,iθ,jda

∫
D(z)

θ2da

)1/2

≤ kC(z + h)αµΛ(z)

∫
D(z)

kijθ,iθ,jda,
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where γ2 is an arbitrary positive constant to be selected, and the constants k,
a are defined in terms of data by (3.16)2 and (3.17)1.

Substitution in (5.10) gives

|F (z)| ≤ C(z + h)α

[(
d+

aC

2γ2

)∫
D(z)

dijklui,juk,l da

+

(
µk +

aCγ2

2λ

)
Λ(z)

∫
D(z)

kijθ,iθ,j da

]

= C(z + h)α

[
U

∫
D(z)

dijklui,juk,l da

+V Λ(z)

∫
D(z)

kijθ,iθ,j da

]
(5.11)

= UC(z + h)α

[∫
D(z)

dijklui,juk,l da

+U−1V Λ(z)

∫
D(z)

kijθ,iθ,j da

]
, (5.12)

where

U =

(
d+

aC

2γ2

)
, (5.13)

V =

(
µk +

aCγ2

2λ

)
. (5.14)

Now suppose that the constants γ1 and γ2 are selected to satisfy

AV ≤ BU. (5.15)

Then (5.5) and (5.12) imply that

|F (z)| ≤ C∗C(z + h)αF ′(z), (5.16)

where C∗ = A−1U is a positive constant dependent upon specific choices of
γ1, γ2 described later. Meanwhile, we discuss the integration of (5.16).

6 Phragmén-Lindelöf alternative

Integration of the differential inequality (5.16) leads to an extension of the
Phragmén-Lindelöf principle for alternative behaviour, familiar in classical po-
tential theory. We refer to the procedure developed in [2] for the proof of the
following result:
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Theorem 1. Assume that (ui, θ) is a solution to the problem specified by
the system (3.6) and (3.7) subject to boundary conditions (3.13) and (3.14).
Then the function F (z) defined by (5.1) alternatively satisfies the following:

Either
(a) there exists z0 ≥ 0 such that F (z0) > 0 and

F (z) ≥ F (z0) exp

(∫ z

z0

dξ

CC∗(ξ + h)α

)
, (6.1)

or
(b) for z ≥ 0, the decay estimate is satisfied:

−F (z) ≤ −F (0) exp

(
−
∫ z

0

dξ

CC∗(ξ + h)α

)
. (6.2)

We note that the growth estimate (6.1) is of the type

exp

(∫ z

z0

dξ

CC∗(ξ + h)α

)
,

and when α ∈ (0, 1) is of order exp z1−α. Indeed, we have

exp

(∫ z

z0

dξ

CC∗(ξ + h)α

)
= exp

[
1

CC∗(1− α)

(
(z + h)1−α − (z0 + h)1−α)].

(6.3)
Consequently, the solution as measured by F (z) becomes unbounded at infinity
at least to the order exp(z1−α).

When α = 1, we conclude that

exp

(∫ z

z0

dξ

CC∗(ξ + h)

)
=

(
(z + h)

(z0 + h)

)(CC∗)−1

, (6.4)

so that growth is at least polynomial.
Similarly, when 0 < α < 1, the integral in the decay estimate (6.2) becomes

exp

(
−
∫ z

0

dξ

CC∗(ξ + h)α

)
= exp

(
h1−α

CC∗(1− α)

)
exp

(
−
{

(z + h)1−α

CC∗(1− α)

})
,

(6.5)
which behaves at most like exp (−z1−α/CC∗). When α = 1, we have

exp

(
−
∫ z

0

dξ

CC∗(ξ + h)

)
=

(
h

(z + h)

)(CC∗)−1

, (6.6)

and the decay estimate behaves as z−(CC∗)−1

.

Remark 6.1 It is clear from expressions (6.3)-(6.6) that the optimum rate of
growth or decay is achieved when the constant C∗ is chosen to have its minimum
value.
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Remark 6.2 Observe that when γ1 and γ2 are selected to satisfy

BU < AV, (6.7)

the rate of growth and decay becomes proportional to

(C∗)−1 = BV −1 (6.8)

=
(2λµC1 − aCγ1)

(2λµk + aCγ2)

and the optimal rate now corresponds to the minimum value of γ2 which com-
plements the choice of γ2 when condition (5.15) holds. Strict equality in (5.15)
implies that the value of γ2 common to (5.15) and (6.7) should be adopted.
Consequently, there is no loss in confining attention to (5.15).

6.1 Choice of constants γ1, γ2

We recall that the constants γ1 and γ2 are to be chosen to ensure that

AV ≤ BU, (6.9)

which in consequence leads as before to a differential inequality of type (5.16).
Suppose that γ1 is chosen within the range (5.8) and that λ and µ satisfy

(5.9). We determine γ2 such that (6.9) holds, which we express as the quadratic
form

γ2
2Y1 + 2γ2

Y2

aC
− Y3 ≤ 0, (6.10)

where

Y1 =

(
1− aC

2γ1

)
= A, (6.11)

Y2 = λµ(k − dC1) +
aC

2

(
dγ1 −

λµk

γ1

)
, (6.12)

Y3 =

(
λµC1 − γ1

aC

2

)
= λB. (6.13)

In terms of Y1 and Y3, which are positive in view of (5.8), we may write

Y2 = λµkY1 − dY3. (6.14)

It follows that (6.10) is satisfied for 0 < γ2 ≤ γ̄2, where γ̄2 is defined by

γ̄2 =

[
−Y2 +

√
(Y 2

2 + a2C2Y1Y3)
]

aCY1
(6.15)

=
(Y4 − Y2)

aCY1
, (6.16)
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in which

Y 2
4 = Y 2

2 + a2C2Y1Y3

= γ−2
1

[
γ4

1d
2

(
aC

2

)2

+ γ3
1X1

+γ2
1X2 + γ1X3 +

(
aC

2

)2

(λµk)
2

]
, (6.17)

and

X1 = aC

[
λµd(k − dC1)− (aC)2

2

]
,

X2 = λ2µ2 (k − dC1)
2

+ λµ(aC)2

(
C1 −

d

2

)
+

(aC)4

4
,

X3 = λµaC

[
C1

(
1

2
+ λµkd

)
− λµk2

]
.

In this respect, we recall the assumptions

C1 = (1− Cek) > 0, (6.18)

aC

2
< γ1 <

2λµC1

aC
. (6.19)

The expression (6.17) along with (6.11) and (6.12) provide the explicit depen-
dence of γ̄2 upon γ1.

The optimal growth and decay rate corresponds to the maximum value of

(C∗)−1 = AU−1

=
(2γ1 − aC)

2γ1d

[
1− aC

(2γ2d+ aC)

]
(6.20)

which is achieved when γ2 is its maximum value γ̄2. Substitution from (6.15)
gives

(C∗)−1 =

(
1− aC

2γ1

)
2(Y4 − Y2)

W
(6.21)

=
2Y1 (Y4 − Y2)

W
(6.22)

=
Y1

d
− a2C2Y 2

1

dW
, (6.23)

where
W =

(
a2C2Y1 + 2d(Y4 − Y2)

)
. (6.24)

The value of γ1 within the range (6.19) is now sought that maximises (C∗)−1.
Let a superposed prime denote diffferentiation with respect to γ1 and differen-
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tiate (6.23) to first obtain

(
(C∗)−1

)′
=

Y ′1
d
− a2C2

d

[
2Y1Y

′
1

W
− Y 2

1

(
a2C2Y ′1 + 2d(Y ′4 − Y ′2)

)
W 2

]

=
Y ′1
d
− a2C2

d

[
Y1Y

′
1

{
a2C2Y1 + 4d(Y4 − Y2)

}
− 2dY 2

1 (Y ′4 − Y ′2)

W 2

]

=
Y ′1
d
− a2C2

dY4W 2

[
a2C2Y 2

1 (Y4Y
′
1 − d(Y1Y3)′)+

+2d(Y4 − Y2)(2Y1Y4Y
′
1 + Y 2

1 Y
′
2)
]
. (6.25)

On noting the relations

Y ′1 =
aC

2γ2
1

,

Y ′2 = λµkY ′1 − dY ′3

=
λµaC

2γ2
1

+
daC

2
,

Y ′3 = −aC
2
,

Y ′4 =
Y2Y

′
2

Y4
+
a2C2

2Y4
(Y1Y3)

′
,

we may rewrite expression (6.25) as

(
(C∗)−1

)′
=

aC

2dγ2
1

− a3C3

2d

Y1

γ2
1Y4W 2

[
Y1a

2C2
{

(Y4 − dY3) + dγ2
1Y1

}
+

+2d(Y4 − Y2)
{

2Y4 + Y1(λµk + dγ2
1)
}]
. (6.26)

We examine the sign of the derivative (6.26) at the extreme endpoints of the
range (6.19) .

At the lower point γ1 = aC/2, we have

Y1 = 0,

Y2 = −dY3 < 0,

Y3 = λµC1 −
(
aC

2

)2

,

Y 2
4 = Y 2

2 , (6.27)

and (6.27) yields
(Y4 + Y2)(Y4 − Y2) = 0,

from which we conclude
Y4 = −Y2 = dY3,
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and consequently we have
W = 4dY3.

Substitution in (6.26) gives(
(C∗)−1

)′
=

2

daC
> 0.

Next consider γ1 = 2λµC1/aC, which leads to

Y1 = 1−
(
aC

2

)2
1

λµC1
> 0,

Y2 = λµkY1 > 0,

Y3 = 0,

Y 2
4 = Y 2

2

and again implies
(Y4 + Y2)(Y4 − Y2) = 0,

and consequently

Y4 = Y2 = λµkY1,

W = a2C2Y1.

Insertion into (6.26) leads to

(
(C∗)−1

)′
=

aC

2dγ2
1

1− a2C2Y1

λµkY1

Y1a
2C2

{
λµkY1 + dY1

(
2λµC1

aC

)2
}

a4C4Y 2
1




=
aC

2dγ2
1

[
1− 1

Y 2
1

(
Y1

{
Y1 +

4dλµC2
1

a2C2k

})]
= − λµC2

1

aCkY1

< 0.

In consequence, the derivative of (C∗)−1 must vanish at least once in the
interval (6.19), the first zero being a (local) maximum for (C∗)−1. Other maxima
also may occur in the same interval. Let γ̄1 denote the greatest such maximum.
Then the optimum growth and decay rate is obtained for γ̄1 which may be
calculated, for example, by standard computer programs. Details are omitted
as they are beyond the intended scope of the paper. Even so, optimum growth
and decay rates remain elusive since the maximum value of the constant γ1 can
be chosen arbitrarily close, but not exactly equal, to the upper bound in the
range (5.8)

Less general methods that nevertheless lead to explicit rates are described
in the Appendix, where the mean value of γ1 in the range (5.8) is adopted as a
compromise in (A.9).
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7 Implications of the decay estimate

7.1 Energy decay

Under conditions sufficient for decay, we infer from (6.2) that F (z) ≤ 0, z ≥ 0
and that

lim
z→∞

F (z) = 0. (7.1)

Integration of inequality (5.5) yields

−F (z) ≥ A

∫ ∞
z

[∫
D(η)

dijkhui,juk,hda

+A−1BΛ(η)

∫
D(η)

kijθ,iθ,jda

]
dη (7.2)

≥ A

∫
Ω(z)

[dijkhui,juk,h

+A−1BΛ(0)kijθ,iθ,j
]
dadη, (7.3)

since Λ(z) = λ(z + h)α ≥ λhα = Λ(0), and where Ω(z) is defined in (2.1).
Define the total energy to be

E(z) =

∫
Ω(z)

(
dijkhui,juk,h +A−1BΛ(0)kijθ,iθ,j

)
dadη. (7.4)

Then from (7.3) and (6.2), we conclude that

E(z) ≤ −A−1F (z)

≤ −A−1F (0) exp

(
−
∫ z

0

dξ

CC∗(ξ + h)α

)
. (7.5)

In particular, we deduce from (7.5) the further estimate

E(0) ≤ −A−1F (0). (7.6)

7.2 Asymptotic Limits. First method

The decay estimates (6.2) and (7.5) only implicitly describe the asymptotic
behaviour of the practically important positive-definite terms

J1(z) =

∫
D(z)

dijklui,juk,l da,

J2(z) =

∫
D(z)

kijθ,iθ,j da,

J3(z) = Λ(z)

∫
D(z)

kijθ,iθ,j da.
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Such information is easily extracted from inequalities (7.2) and (7.5) for solu-
tions in W 1,2(Ω). Indeed, (7.5) implies that

lim
z→∞

Jγ(z) = 0, γ = 1, 2, (7.7)

while (7.2) implies that
lim
z→∞

J3(z) = 0,

and from (2.8) that

lim
z→∞

∫
D(z)

θ2 da = lim
z→∞

Λ(z)J2(z) = lim
z→∞

J3(z) = 0. (7.8)

We use the asymptotic behaviour specified in (7.8) to derive a decay estimate
for the mean-square cross-sectional measure of the temperature θ. Let

H(z) =

∫
Ω(z)

θ2 dadη, (7.9)

so that by (7.8) we have

−H ′(z) =

∫
D(z)

θ2 da

= −2

∫
Ω(z)

θθ,1 dadη

≤ 2

(∫
Ω(z)

θ2 dadη

)1/2(∫
Ω(z)

θ2
,1 dadη

)1/2

, (7.10)

which on rearrangement and appeal to (7.5) gives the differential inequality

− H ′(z)

H1/2(z)
≤ 2

k
1/2
1

(∫
Ω(z)

kijθ,iθ,j dadη

)1/2

≤
[
−4F (0)

k1BΛ(0)

]1/2

exp

(
−1

2

∫ z

0

dξ

CC∗(ξ + h)α

)
=

[
−4F (0)

k1BΛ(0)

]1/2

exp

(
h1−α

2CC∗(1− α)

)
exp

(
− (z + h)1−α

2CC∗(1− α)

)
.

where 0 < α < 1. When α = 1, the previous inequality reduces to

− H ′(z)

H1/2(z)
≤
[
−4F (0)

k1BΛ(0)

]1/2(
h

(z + h)

)(2CC∗)−1

.

On using [3, §3.381,3, p.364] to evaluate the integral, we may integrate over
(z,∞) to obtain for 0 < α < 1 the estimate

H1/2(z) ≤ 4

[
−F (0)

k1BΛ(0)

]1/2

exp

(
h1−α

2CC∗(1− α)

)[
1

(z + h)(1− α)

]
×

×Γ

(
1

(1− α)
,

(z + h)1−α

2CC∗(1− α)

)
. (7.11)
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When α = 1 and 2CC∗ < 1, the estimate becomes

H1/2(z) ≤ 4

[
−F (0)

k1BΛ(0)

]1/2
h

( 1
2CCi

)

(1− 2C−1(C∗)−1)

[
(z + h)(1−[2CC∗]−1)

]
, (7.12)

where the incomplete gamma function Γ(γ, x) is defined by

Γ(γ, x) =

∫ x

0

e−ηηγ−1 dη. (7.13)

The corresponding integral in (7.12) is divergent for 2CC∗ ≥ 1.
An estimate for the mean-square cross-sectional measure of the temperature

is obtained by combining (7.10) with (7.5) and either (7.11) or (7.12).
Although a similar argument may be applied to the displacement, a slightly

different treatment is presented in the next section.

7.3 Asymptotic Limits. Second method

A second derivation of asymptotic behaviour is based upon an application of
L’Hopital’s Theorem to (7.5) and leads to the limit

lim
z→∞

CC∗(z + h)α exp
(z + h)1−α

CC∗(1− α)

[∫
D(z)

{
dijklui,juk,l +A−1BΛ(0)kijθ,iθ,j

}
da

]
≤ −A−1F (0). (7.14)

In consequence, on appealing to the positive-definite conditions (3.8) and
(3.11), we conclude that

lim
z→∞

(z + h)α exp
(z + h)1−α

CC∗(1− α)

∫
D(z)

ui,jui,j da = −A−1F (0), (7.15)

lim
z→∞

(z + h)α exp
(z + h)1−α

CC∗(1− α)

∫
D(z)

θ,iθ,i da = −A−1F (0), (7.16)

so that the displacement and temperature tend asymptotically to respective
constants which vanish by virtue of the boundary conditions (3.13).

Inequality (2.8) may be used to derive from (7.15) the improved asymptotic
decay behaviour

lim
z→∞

(z + h)−α exp (z + h)1−α
∫
D(z)

uiui da ≤M1, (7.17)

where M1 is a non-negative constant.
To derive an estimate for the mean-square cross-sectional integral of the

displacement, we introduce the function

P (z) =

∫
Ω(z)

uiui dadη, (7.18)
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which by (7.17) is convergent and indeed

lim
z→∞

P (z) = 0. (7.19)

Differentiation followed by appeal to (7.19) and Schwarz’s inequality yields

−P ′(z) =

∫
D(z)

uiui da

= −2

∫
Ω(z)

uiui,1 dadη

≤ 2

(∫
Ω(z)

uiui dadη

)1/2(∫
Ω(z)

ui,1ui,1 dadη

)1/2

≤ 2P 1/2(z)

(∫
Ω(z)

ui,jui,j dadη

)1/2

≤ 2d
−1/2
1 P 1/2(z)

(∫
Ω(z)

dijklui,juk,l dadη

)1/2

≤ 2d
−1/2
1 P 1/2(z)E1/2(z).

Replacement of the energy by the decaying upper bound (7.5) yields the differ-
ential inequality

− P ′(z)

P 1/2(z)
≤ 2

[
−F (0)

d1A

]1/2

exp

(
−1

2

∫ z

0

dξ

CC∗(ξ + h)α

)
, (7.20)

where 0 < α < 1, with a corresponding upper bound for α = 1.
Integration of these inequalities and their subsequent treatment is accom-

plished in the manner just described for the temperature, and leads to estimates
for P (z) and for the mean-square cross-sectional measure P ′(z).

8 Implications of the growth estimate

We next discuss implications of the growth estimate (6.1) for functions related
to the total energy. Define the function Π1(z) to be

Π1(z) =

∫ z

0

∫
D(η)

(dijkhui,juk,h + βijui,jθ) dηda+ µ

∫ z

0

G(η)dη. (8.1)

It immediately follows from (5.2) that

Π1(z) = F (z)− F (0)

≥ −F (0) + F (z0) exp

(∫ z

z0

dξ

CCi(ξ + h)α

)
, (8.2)
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where z ≥ z0 ≥ 0 and z0 is such that F (z0) > 0.
The function G(z) defined in (4.1) has at least polynomial growth. Never-

theless, we conclude from estimate (8.2) that the function Π1(z) becomes expo-
nentially unbounded as z tends to infinity which, with respect to the integrals
appearing in (8.1), implies that either one or both possess the same exponen-
tially growing lower bound. The conclusion may be refined when 0 < α < 1 by
considering the function

Π2(z) = A1

∫ z

0

∫
D(η)

(dijkhui,juk,h + Λ0(η)kijθ,iθ,j) dηda, (8.3)

where

A1 =

[
1 +

C

2

(
ek +

√
(e2k2 + a2)

)]
.

On using the upper instead of the lower bounds from (4.4) - (4.8), we may
conclude from (5.2) that

Π2(z) ≥ F (z)− F (0), z ≥ z0 ≥ 0. (8.4)

Consequently, either integral or both in (8.3) possess exponentially increasing
lower bounds

The results of this section and of Section 7.1 may be summarised in the
following:

Corollary 1. Assume that (ui, θ) is a solution to the boundary value prob-
lem under consideration and let 0 < α < 1. Then the following alternatives
hold:

Either
(a) The function Π2(z) defined at (8.3) becomes unbounded,

or
(b) The energy function E(z) satisfies the decay estimate (7.5).

9 The amplitude

It is evident that the rate of decay depends solely upon data. In contrast, the
decay estimate (7.5) obtained in the previous section is impractical because
dependence of the amplitude −F (0) on the data is not explicit. The aim of
this section is to obtain an upper bound for −F (0) in terms of the data (3.13)
and (3.14), but for a general family of regions Ω that includes those previously
considered.

Indeed, the regions Ω are such that the cross-sections D(z) satisfy

D(z) = ζ(z)D(0), z ≥ 0, (9.1)

where the C1-function ζ : [0,∞) → (0,∞) satisfies ζ(0) = 1, and ζ(z), |ζ ′(z)|
are bounded by a polynomial Q(z) for every z ≥ 0. That is, points in D(z) are
given by (z, ζ(z)x2, ζ(z)x3) where (0, x2, x3) ∈ D(0). Moreover, we assume that
the correspondence is bijective.
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The examples discussed in Section 2 involve regions satisfying (9.1) with the
function ζ(z) given by

ζ(t) =
(t+ h)α

hα
, α ∈ (0, 1].

Denote by (vi, ϕ) smooth functions satisfying the boundary conditions (3.13),
(3.14) whose asymptotic decay is sufficiently fast 1. Substitution in (5.1) gives

−F (0) =

∫
D(0)

(dijkluk,l + βθ) vinj da+ µΛ(0)

∫
D(0)

kijθ,iϕnj da, (9.2)

which after an integration by parts yields

−F (0) =

∫
Ω

(dijkhui,jvk,h + βijvi,jθ) dadη + µΛ(0)

∫
Ω

kijθ,iϕ,jdadη

+F̃ (∞), (9.3)

where by hypothesis F (0) < 0. Furthermore, we have set

F̃ (z) =

∫
D(z)

(dijkluk,l + βijθ) vinj da+ µΛ(0)

∫
D(z)

kijθ,iϕda. (9.4)

Schwarz’s inequality gives

F̃ (z) ≤

(∫
D(z)

dijklui,juk,l da

∫
D(z)

dijklvivknjnl da

)1/2

+

(∫
D(z)

βijβijθ
2 da

∫
D(z)

vivinjnj da

)1/2

+µΛ(0)

(∫
D(z)

kijθ,iθ,j da

∫
D(z)

kijϕ
2nini da

)1/2

≤

(d̃∫
D(z)

dijklui,juk,l da

)1/2

+

(
β̃

∫
D(z)

θ2 da

)1/2
(∫

D(z)

vivi da

)1/2

+µΛ(0)

(∫
D(z)

kijθ,iθ,j da

∫
D(z)

k̃ϕ2nini da

)1/2

.

We now suppose that

lim
z→∞

∫
D(z)

vivi da ≤ M2
2 , (9.5)

lim
z→∞

∫
D(z)

ϕ2 da ≤ M2
3 , (9.6)

1This assumption can be made explicit. For instance we can assume that (vi, ϕ) tend to
zero exponentially in the x1 component, and uniformly with respect to (x2, x3)
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where M2,M3 are specified constants. Consequently, by virtue of the asymptotic
behaviour (7.7), we conclude

F̃ (∞) = lim
z→∞

F̃ (z) = 0, (9.7)

and therefore (9.3) becomes

−F (0) =

∫
Ω

(dijkhui,jvk,h + βijvi,jθ) dadη + µΛ(0)

∫
Ω

kijθ,iϕ,j dadη,

which on noting (7.6) and successively applying the Schwarz and arithmetic-
geometric mean inequalities, we conclude that

−F (0) ≤
(∫

Ω

dijkhui,juk,h dadη

∫
Ω

dijkhvi,jvk,h dadη

)1/2

+

(∫
Ω

(z + h)2αvi,jvi,j dadη

∫
Ω

(z + h)−2αβijβijθ
2 dadη

)1/2

+µΛ(0)

(∫
Ω

kijθ,iθ,j dadη

)1/2(∫
Ω

kijϕ,iϕ,j dadη

)1/2

≤ ε1
2

∫
Ω

dijkhui,juk,h dadη +
1

2ε1

∫
Ω

dijkhvi,jvk,h dadη

+
1

2λε2

∫
Ω

Λ(η)vi,jvi,j dadη +
C2β̃ε2

2k1

∫
Ω

kijθ,iθ,j dadη

+
µΛ(0)ε3

2

∫
Ω

kijθ,iθ,j dadη +
µΛ(0)

2ε3

∫
Ω

kijϕ,iϕ,j dadη

=
ε1
2

∫
Ω

dijklui,juk,l dadη +

[
C2β̃ε2

2k1
+
µΛ(0)ε3

2

]∫
Ω

kijθ,iθ,j dadη

+
1

2ε1

∫
Ω

dijklvi,jvk,l daη +
1

2λε2

∫
Ω

Λ(z)vi,jvi,j dadη +
µΛ(0)

2ε3

∫
Ω

kijϕ,iϕ,j dadη,

where the arbitrary positive constants εi, i = 1, . . . , 3 are chosen to be

ε1 = A,

ε2 =
k1BΛ(0)

2C2β̃
,

ε3 =
B

2µ
.

Substitution yields

ε1
2

∫
Ω

dijklui,juk,l dadη +

[
C2β̃ε2

2k1
+
µΛ(0)ε3

2

]∫
Ω

kijθ,iθ,j dadη

=
A

2

∫
Ω

dijklui,juk,l dadη +
BΛ(0)

2

∫
Ω

kijθ,iθ,j dadη

= AE(0)/2

≤ −F (0)/2, (9.8)
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where (7.4) is used and the last inequality follows from (7.6).
An upper bound for −F (0) in terms of data can then be established in the

form

−F (0) ≤ 1

ε1

∫
Ω

dijkhvi,jvk,h dadη +
1

λε2

∫
Ω

Λ(η)vi,jvi,j dadη

+
µΛ(0)

ε3

∫ ∞
0

∫
Ω

kijϕ,iϕ,j dadη. (9.9)

An explicit estimate is derived on taking

vi(x1, x2, x3) = fi(x2ζ
−1(x1), x3ζ

−1(x1)) exp(−ωx1),

ϕ(x1, x2, x3) = g(x2ζ
−1(x1), x3ζ

−1(x1)) exp(−ωx1),

where ω is a positive constant, ζ(z) is the function appearing in (9.1), and the
prescribed functions fi(., .), g(.) are those appearing in (3.14).

In particular, we have for δ = 2, 3:

vi,1 = ai exp(−ωx1),

ai = −ωfi(x2ζ1(x1), x3ζ
−1(x1))− xδζ

′(x1)

ζ2(x1)
fi,δ(x2ζ

−1(x1), x3ζ
−1(x1)),

vi,δ =
1

ζ(x1)
fi,δ(x2ζ

−1(x1), x3ζ
−1(x1)) exp(−ωx1),

ϕ,1 = m exp(−ωx1),

m = −ωg(x1
2ζ
−1(x1), x3ζ

−1(x1))− xδζ
′(x1)

ζ2(x1)
g,δ(x2ζ

−1(x1), x3ζ
−1(x1)),

and

ϕ,δ =
1

ζ(x1)
g,δ(x2ζ

−1(x1), x3ζ
−1(x1)) exp(−ωx1).

Appeal to (3.9)-(3.12), and (3.19) combined with an easy substitution then
leads to∫

Ω

dijklvi,jvk,l dadη ≤ d̃

∫
Ω

vi,jvi,j dadη

= d̃

∫
Ω

exp (−2ωη)
[
aiai + ζ−2(η)fi,δfi,δ

]
dadη,∫

Ω

Λ(η)vi,jvi,j dadη =

∫
Ω

Λ(η) exp (−2ωη)
[
aiai + ζ−2(η)fi,δfi,δ

]
dadη,∫

Ω

kijϕ,iϕ,j dadη =

∫
Ω

exp (−2ωη)
[
k11m

2 + 2k1δmζ
−1(η)g,δ

+kγδζ
−2g,γg,δ

]
dadη.

The indefinite integrals appearing in these estimates converge whenever ω
is a positive constant, while the desired result is obtained by substituting these
estimates in (9.9). This upper bound can be optimised by selecting the value of
ω to minimise the bound.
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10 Comparison of estimated growth and decay
rates in the uncoupled problem

It is of interest to compare the estimated growth and decay rates for the uncou-
pled mechanical and thermal problems. Precise dependence upon the thermal
coupling tensor is postponed to a later study. The argument developed in Sec-
tion 5 is here applied simultaneously to both uncoupled problems, before each
problem is separately treated. The estimated rates obtained are then compared
and conditions deduced for the optimum rate. The weight function Λ(z) moder-
ates the rates in all cases, but does not affect the comparative relations between
them. For simplicity, only the case 0 < α < 1 is considered.

The mechanical and thermal problems become uncoupled when βij = 0 so

that (3.10) gives β̃ = 0, while the respective definitions (3.17), (5.6), and (5.7)
give a = b = 0, and A = 1, B = µC1. The constant γ1 is therefore redundant.
Further inspection shows that I2(z) = 0, U = d, and V = µk. Consequently,
the constant γ2 is likewise redundant.

To simultaneously apply the method of Section 5, suppose first that dC1 ≥ k,
or equivalently that

k ≤ d

(1 + deC)
<

1

eC
, (10.1)

which implies that, but is not implied by, k < d. The second inequality is
satisfied for sufficiently small eC.

The differential inequality (5.16) reduces to

|F (z)| ≤ dC(z + h)αF ′(z), (10.2)

in which

F (z) =

∫
D(z)

di1kluk,lui da+ µΛ(z)

∫
D(z)

ki1θ,iθ da.

Integration and subsequent discussion of the differential inequality (10.2) re-
peats the earlier procedures allowing details to be safely omitted. Of present
importance is the corresponding estimated growth and decay rate R1 which,
easilty obtained from (5.16) and the discussion of Section 6, is given by

R1 =
1

dC(1− α)
. (10.3)

Next, suppose that dC1 ≤ k, which after rearrangement may be expressed
as

k ≥ d

(1 + deC)
,

and is satisfied for sufficiently large eC irrespective of the magnitudes of k and
d. The differential inequality (5.16) becomes

|F (z)| ≤ kCC−1
1 (z + h)

α
F ′(z).
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The estimated growth and decay rate R2 now becomes proportional to BV −1

and by Section 6 is given explicity by

R2 =
C1

kC(1− α)
, (10.4)

where in accordance with (3.19), k must be restricted to the range

d

(1 + deC)
≤ k < 1

eC
. (10.5)

We conclude that the rates R1 and R2 are in the proportion

R1 =
k

dC
R2, (10.6)

but it is worth remarking that the rates are determined under different condi-
tions (10.1) and (10.5).

Complete uncoupling is achieved by separate consideration of the mechanical
and thermal problems.

The mechanical problem corresponds to βij = 0, kij = 0, and so (3.10) and

(3.16) imply β̃ = k = 0, while (2.4) implies C1 = 1, and (4.1) gives G(z) = 0.
Moreover, the notation of Section 5 simplifies to F (z) = I1(z), I2(z) = I3(z) =
0, and the differential inequality (5.16) becomes

|F (z)| ≤ dC(z + h)αF ′(z),

leading to an estimated growth and decay rate RM given by

RM =
1

dC(1− α)
. (10.7)

Note that RM is identical to R1, but does not require (10.1) which is trivially
satisfied.

For the uncoupled thermal problem, we have βij = dijkl = 0, and β̃ = d = 0
follows from (3.10) and (3.16). Now, however, C1 continues to be defined by
(2.4), which reduces to

0 < k < (eC)−1, (10.8)

while G(z) remains defined by (4.1). The first inequality in (10.8) is satis-
fied by our assumptions on the heat conduction tensor. Furthermore, F (z) =
I3(z), I1(z) = I2(z) = 0, and the differential inequality becomes

|F (z)| ≤ kCC−1
1 (z + h)αF ′(z),

which leads to the growth and decay rate

RT =
C1

kC(1− α)
.

Consequently, RT = R2.
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The rates RM and RT are related by

RM =
k

dC1
RT ,

and therefore are in the same ratio (10.6) as R1 and R2. After substitution from
(3.18), we conclude that RM is greater than, equal to, or less than RT according
as k is greater than, equal to, or less than

d

(1 + deC)
.

These conclusions establish that

k <
d

(1 + deC)
⇒ R1 = RM < RT ,

k >
d

(1 + deC)
⇒ RM > RT = R2,

k =
d

(1 + deC)
⇒ RM = RT = R1 = R2.

In particular, observe that k < d implies the second and third of these rela-
tions, but not the first. On the other hand, k ≥ d implies the second relation,
but neither the first nor third. Although similar comparison with estimated
rates in the coupled problem discussed in Section 6.1 is comparatively straight-
forward, the expressions are complicated and consequently further analysis is
not undertaken.
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A Appendix: Particular choices of γ1, γ2

This Appendix presents three alternative methods for selecting the positive
constants γ1, γ2, and lead to different growth and decay rates. Of course, γ1

is assumed always to satisfy condition (5.8), but additional conditions are also
imposed which curtail the applicability of the general procedure.

A.1 Method 1

The first selection of γ1 and γ2 is taken to ensure that

A = B, (A.1)

U = V, (A.2)

and yields the choice

γ1 = −λ(1− µC1)

aC
+ λ

√√√√[( (1− µC1)

aC

)2

+
1

λ

]
,

A = B =
1

2
(1 + µC1)− aC

2

√√√√[( (1− µC1)

aC

)2

+
1

λ

]
,

γ2 = −λ(µk − d)

aC
+ λ

√√√√[( (µk − d)

aC

)2

+
1

λ

]
,

U = V =
1

2
(µk + d) +

aC

2

√√√√[( (µk − d)

aC

)2

+
1

λ

]
,

The corresponding growth and decay rates become proportional to

(C∗)−1 = AU−1

=
λ

(4λµkd− a2C2)

(1 + µC1)− aC

√√√√{( (1− µC1)

aC

)2

+
1

λ

}
×

(µk + d)− aC

√√√√{( (µk − d)

aC

)2

+
1

λ

} (A.3)

=
(4λµC1 − a2C2)

λ

1[
(1 + µC1) + aC

√{(
(1−µC1)
aC

)2

+ 1
λ

}]

× 1[
(µk + d) + aC

√{(
(µk−d)
aC

)2

+ 1
λ

}] .
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The maximum value of (C∗)−1 is not easily determined from an examination
of its derivative. Instead, we introduce the positive constant M4 that satisfies

a2C2

4C1
< M4 ≤ ∞, (A.4)

and set
λ = M2

4 , µ = M−1
4 , λµ = M4, (A.5)

to obtain from (A.3)

(C∗)−1 =
1

(4M4kd− a2C2)

[
(M4 + C1)−

√
((M4 − C1)2 + a2C2)

]
×
[
(k +M4d)−

√
((k −M4d)2 + a2C2)

]
. (A.6)

We now select

M4 =
a2C2

4kdp
, (A.7)

where p > 0. In order to satisfy (5.9) and (A.4), we require

0 < p <
(1− keC)

kd
< (kd)−1 < 1, (A.8)

the last inequality being derived from the properties k > 1, d ≥ 1, which are valid
by definition of k and d. Substitution of (A.7) in (A.6) leads to corresponding
rates of growth and decay as previously explained. Note that p cannot be
arbitrarily small (and therefore M4 arbirtrarily large) since (A.5) implies that
then λ → ∞ and µ → 0, while λµ → ∞, and the definitions of Λ(z) and F (z)
are invalidated.

A.2 Method 2

Indicative rates may be provided for certain geometries by taking γ2 = γ̄2,
defined in (6.16), and γ1 to be the mean value of the range (5.8); that is, we
insert

γ1 =

(
a2C2 + 4λµC1

)
4aC

, γ2 = γ̄2, (A.9)
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into (6.21) to obtain the rate of growth and decay proportional to (C∗)−1, where
routine calculations show that

Y1 =
(4λµC1 − a2C2)

(4λµC1 + a2C2)
,

Y3 =
(4λµC1 − a2C2)

8
,

Y2 =
(4λµC1 − a2C2)

8(4λµC1 + a2C2)

[
4(2k − dC1)− da2C2

]
,

Y 2
4 =

(
(4λµC1 − a2C2)

2
√

2(4λµC1 + a2C2)

)2

×
[
16(2k − dC1)2 − 4a2C2 {2d(2k − dC1)− λµC1} a4C4(1 + d2)

]
,

W =
(4λµC1 − a2C2)

(4λµC1 + a2C2)

[
a2C2

+2d
[
16(2k − dC1)2 − 4a2C2 {2d(2k − dC1)− λµC1} a4C4(1 + d2)

]1/2
+da2C2 − 4(2k − dC1)

]
.

Now suppose that

0 < 2k − dC1 ≡ k(2 + deC)− d,

which is satisfied for sufficiently large e, or sufficiently small h, and any given
C. Next, set

λµ =
2d(2k − dC1)

C1
,

which from (5.9) requires that

a2C2 < d[k(2 + deC)− d], (A.10)

which always holds provided C lies in the range

ed2 −
√

(e2d4 − 4a2d(d− 2k)) ≤ C ≤ ed2 +
√

(e2d4 − 4a2d(d− 2k)), (A.11)

and
4a2(d− 2k) ≤ e2d3. (A.12)

The last condition is valid for sufficiently large e.
Then we have

(C∗)−1 = Y1

[
4(2
√

2− 1)(2k − dC1) + da2C2
]

4 [4(2d− 1)(2k − dC1) + a2C2(1 + d)]
,

where

Y1 =

[
2d(2k − dC1)− a2C2

]
[2d(2k − dC1) + a2C2]

,

and is positive by virtue of assumption (A.10).
Subject to the above stated conditions, growth and decay rates now follow

as described previously.
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A.3 Method 3

A third possible choice of constants consists in putting

γ1 =
bC

1/2
1

C2
, (A.13)

for arbitrary positive constant C2. The estimate (4.8) is replaced by

|
∫
D(z)

βijui,jθda| ≤ C2

[∫
D(z)

dijkhui,juk,hda+ C1Λ0(z)

∫
D(z)

kijθ,iθ,jda

]
,

where

Λ0(z) =
b2

C2
2

(z + h)2α

=
b2

λC2
2

Λ(z). (A.14)

Consequently, Lemma 2 holds for arbitrarily large positive constant C2. We
restrict, however, the constant to satisfy 0 < C2 < 1. It will become apparent
in what follows that while the choice (A.13) leads to certain simplications, it
presents difficulties when determining optimum growth and decay rates.

To proceed, we further set

λµ =

(
b

C2

)2

, (A.15)

which in conjunction with (5.9) implies that C2
2 < 1, while definitions (5.6) and

(5.7) reduce to

A = (1− C2), (A.16)

B = µC1 −
abCC

1/2
1

2λC2

= µC1 −
b2C1

λC2

=

(
b

C2

)2
C1

λ

(
λµ

(
C2

b

)2

− C2

)

=

(
b

C2

)2
C1

λ
(1− C2). (A.17)

It follows from (A.13) and (A.14) that

BΛ(z) = C1(1− C2)Λ0(z), (A.18)

and that the lower bound (5.5) becomes

F ′(z) ≥ (1− C2)

[∫
D(z)

dijklui,juk,l da+ C1Λ0(z)

∫
D(z)

kijθ,iθ,j da

]
. (A.19)

32



For the particular choice of γ2, we set

γ2 =
aC

2C2
, (A.20)

Subject to the further special choices (A.13) and (A.15), we then have

U = (d+ C2), (A.21)

V =
b2C1

λC2
2

(
C2 + kC−1

1

)
(A.22)

=
1

λ

(
ac

2C2

)2 (
C2 + kC−1

1

)
. (A.23)

On substituting from (A.16), (A.17), (A.21), and (A.22) in (5.4) and (5.11)
we conclude that

|F (z)| ≤ C(z + h)α

[
(d+ C2)

∫
D(z)

dijklui,juk,l da

+
b2C1

λC2
2

Λ(z)(C2 + kC−1
1 )

∫
D(z)

kijθ,iθ,j da

]

≤ nC(z + h)α

[∫
D(z)

dijklui,juk,l da+
b2C1

λC2
2

Λ(z)

∫
D(z)

kijθ,iθ,j da

]

= nC(z + h)α

[∫
D(z)

dijklui,juk,l da+ C1Λ0(z)

∫
D(z)

kijθ,iθ,j da

]

≤ nC

(1− C2)
(z + h)αF ′(z) (A.24)

= C∗C(z + h)αF ′(z), (A.25)

where we have used (A.14), and set

n = max
{

(C2 + d), (C2 + kC−1
1 )
}
, (A.26)

C∗ = n(1− C2)−1. (A.27)

The differential inequality (A.25) is consistent with the generic form whose
integration has been previously discussed.

It has already been remarked that optimum growth and decay rates are
achieved for minimum values of the generic constant C∗. That is, for the present
special choice of γ1, γ2 , we wish to choose C2 to ensure that

(C∗)−1 =
(1− C2)

(C2 + q)

is a maximum, where
q = max

(
d, kC−1

1

)
. (A.28)
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It follows in these circumstances that the optimum value q of C∗, attained in
the limit C2 → 0, is not achievable because several quantities entering into the
above calculations become unbounded rendering the conclusions meaningless.
In particular, note that from (A.15), in the limit we also have λµ→∞, so that
either λ or µ or both must be infinite invalidating the choice of Λ(z) or F (z) or
both.

Of course, explicit rates are obtained upon selecting a definite value for C2

in the interval 0 < C2 < 1, say C2 = 0.25. Details are omitted.
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