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Abstract— In this paper, the problem of designing a
parameter-scheduled state-feedback controller is investigated.
In particular, the concepts of finite time stability (FTS) and
finite time boundedness (FTB) are extended, introducing their
shifting counterparts. By introducing new scheduling parame-
ters, the controller can be designed in such a way that different
values of these parameters imply different characteristics of
the finite time stability/boundedness property. In this way, the
performance of the control system can be varied during its
operation. The problem is analyzed in the continuous-time LPV
case, even though the developed theory could be also applied
to LTI systems. The design conditions are feasibility problems
involving linear matrix inequalities (LMIs) that can be solved
efficiently using available solvers. Results obtained in simulation
demonstrate the effectiveness and the relevant features of the
proposed approach.

I. INTRODUCTION

The idea of finite time stability (FTS), as introduced
by [1], allows to analyze or design control systems that
present some constraints on the state response without being
necessarily stable [2]. In fact, when the behavior of the
system over a fixed time interval is of interest, a system
could be referred to as stable when, given some initial
conditions, the state remains within some desired bounds in
such time interval, and unstable when it does not [3]. It is
worth recalling that the idea of FTS is independent from the
classical Lyapunov asymptotic stability, since a system can
be finite time stable but not asymptotically stable, and vice
versa [4].

Another concept which is strongly related to FTS is finite
time boundedness (FTB), which takes into account norm
bounded disturbances affecting the system [3]. In particular,
a system is said to be FTB if, given a bound on the initial
condition and a characterization of the set of admissible
disturbances, the state remains within the prescribed bounds
for all the disturbances in the set. FTB implies FTS, but the
converse is not true.

The last decade has seen a lot of development of these two
concepts. For example, the output feedback design case has
been considered in [5]. In such case, the design is divided in
two steps: the synthesis of a state feedback controller, and
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the design of a state observer capable of retaining the finite-
time properties guaranteed by the controller. The authors
of [6]–[8] have extended these definitions to different type
of systems (e.g. singular ones) with impulsive effect. The
definition of finite-time H∞ control has been presented in
[9] for dealing with systems subject to time-varying norm-
bounded exogenous disturbance. Finally, other works have
dealt with finite-time quantized guaranteed cost fuzzy control
[10] and FTS of delay systems [11].

In the last decades, gain-scheduling control techniques
have consolidated as an efficient answer to analysis and
synthesis problems for nonlinear systems [12]. The strength
of these techniques consists in the fact that the properties
of the nonlinear systems are checked on the basis of a
collection of linear systems, that is also used for designing
the controller. This is done in a divide and conquer fashion
so that well established linear methods can be applied to
nonlinear problems. Among the approaches that have proved
to be successful for performing gain-scheduling control, there
is the linear parameter varying (LPV) paradigm, introduced
by Shamma [13]. This class of systems is important be-
cause gain-scheduling control of nonlinear systems can be
performed according to the LPV paradigm by embedding the
nonlinearities in the varying parameters that depend on some
endogenous signals, e.g. some system states [14] (in this
case, the system is named quasi-LPV). The LPV approach
has been successfully applied in many situations [15], [16],
among which finite time stability [17].

Recently, the idea of shifting specifications has been in-
troduced as an extension of some classical control problems
[18], [19]. This idea relies on introducing some varying
parameters, or using the existing ones, to schedule the
controller such that different values of these parameters
imply different performances. From a practical point of view,
reasons for which this problem can be of interest include
all situations where some performance degradation could
be desirable, e.g. high/low-gain control, control of systems
with saturation nonlinearities [20], graceful performance
degradation for active fault-tolerant control [21] and actuator
health degradation avoidance [22].

The goal of this paper is to further explore the possibilities
offered by shifting specifications, introducing the concepts
of shifting finite time stability and shifting finite time bound-
edness. These concepts are developed theoretically, and a
numerical example is used to illustrate the relevant features
that distinguish them from other results available in the
literature.

This paper is structured as follows. Section II recalls some
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definitions and known results that will be used throughout
the paper. The main theoretical results of this work, i.e. the
design using shifting finite time boundedness and shifting
finite time stability specifications, are presented in Section
III. An example of application of the proposed approach is
shown in Section IV. Finally, Section V outlines the main
conclusions.

Notation: If a matrix M ∈ Rn×n is symmetric, then M ∈
Sn×n. A matrix M ∈ Sn×n is said positive definite (M �
0) if all its eigenvalues are positive, and negative definite
(M ≺ 0) if all its eigenvalues are negative. For a generic
vector v, its length is denoted by nv, i.e. v ∈ Rnv . I and O
denote the identity matrix and the zero matrix of appropriate
dimensions, respectively.

II. PRELIMINARIES

The idea of finite time stability concerns the boundedness
of the state of a system over a finite time interval for
given initial conditions. This concept has been formalized
in [3], extending the original formulation provided by [1],
as follows.

Definition 1: The continuous-time linear system

ẋ(t) = A(t)x(t) (1)

is said to be finite time stable (FTS) with respect to
(c1,c2,T,R), with c2 > c1 > 0 and R� O if

x(0)T Rx(0)≤ c1⇒ x(t)T Rx(t)< c2 ∀t ∈ [0,T ] (2)

On the other hand, the idea of state boundedness is more
general and concerns the behavior of the state in presence
of external disturbances [3].

Definition 2: The continuous-time linear system

ẋ(t) = A(t)x(t)+G(t)w(t) (3)

is said to be finite time bounded (FTB) with respect to
(c1,c2,T,R,d), with c2 > c1 > 0, R� O and d > 0 if{

x(0)T Rx(0)≤ c1
w(t)T w(t)≤ d ⇒ x(t)T Rx(t)< c2 ∀t ∈ [0,T ] (4)

Notice that FTS can be recovered as a special case of FTB
when w = 0.

Let us now recall the definition of linear parameter varying
(LPV) systems. Following the terminology of [23], LPV
systems are linear time varying (LTV) plants whose state-
space matrices are fixed functions of some vector of varying
parameters θ(t) ∈Θ⊂ Rnθ . By replacing (1) and (3) with

ẋ(t) = A(θ(t))x(t) (5)

ẋ(t) = A(θ(t))x(t)+G(θ(t))w(t) (6)

and by requiring that (2) and (4) hold ∀θ ∈ Θ, the charac-
terization of FTS and FTB for LPV systems is obtained.

An important class of LPV systems are the polytopic
ones, for which the state-space matrices satisfy the following
property(

A(θ(t))
G(θ(t))

)
=

N

∑
i=1

αi (θ(t))
(

Ai
Gi

)
∀θ ∈Θ (7)

with
N

∑
i=1

αi (θ(t)) = 1 αi (θ(t))≥ 0 (8)

The following lemma provides a sufficient condition for
the FTB of a continuous-time LPV system.

Lemma 1: The continuous-time LPV system (6) is FTB
with respect to (c1,c2,T,R,d) if, letting Q̃1 =R−1/2Q1R−1/2,
there exist positive scalars α, λ1, λ2, λ3 and two positive
definite matrices Q1 ∈ Snx×nx and Q2 ∈ Snw×nw such that the
following conditions hold ∀θ ∈Θ(

A(θ) Q̃1 + Q̃1A(θ)T −αQ̃1 G(θ)Q2

Q2G(θ)T −αQ2

)
≺ O (9)

λ1I ≺ Q1 ≺ I (10)

λ2I ≺ Q2 ≺ λ3I (11)

 c2e−αT √
c1
√

d√
c1 λ1 0√
d 0 λ2

� O (12)

Proof : The proof is based on showing that, once defined:

V (x(t),w(t)) = x(t)T Q̃−1
1 x(t)+w(t)T Q−1

2 w(t) (13)

the following holds ∀θ ∈Θ:

V̇ (x(t),w(t))< αV (x(t),w(t)) (14)

The details are omitted due to space limitations, but follow
the reasoning provided by [3]. �

Conditions similar to those of Lemma 1 can be obtained
for the case of FTS for continuous-time LPV systems.

Corollary 1: The continuous-time LPV system (5) is FTS
with respect to (c1,c2,T,R) if, letting Q̃1 = R−1/2Q1R−1/2,
there exist positive scalars α, λ1 and a positive definite matrix
Q1 ∈ Snx×nx such that the following conditions hold ∀θ ∈Θ

A(θ) Q̃1 + Q̃1A(θ)T −αQ̃1 ≺ O (15)

λ1I ≺ Q1 ≺ I (16)(
c2e−αT √

c1√
c1 λ1

)
� O (17)

Proof: It is a direct consequence of Lemma 1, when
G(θ(t)) = O and d = 0. �

III. MAIN RESULTS

In this paper, we consider the problem of designing a
continuous-time LPV state-feedback control law

u(t) = K (θ(t), p(t))x(t) (18)

where p(t) is a vector of scheduling parameters defined in the
following, so as to satisfy one of the following specifications
• shifting finite time boundedness
• shifting finite time stability
Remark 1: Despite in this paper the problem of control

design using shifting specification is considered for the case
of LPV systems, the proposed method is useful for LTI
systems too. In this case, the controller is scheduled by



means of the vector of parameters p(t), such that, even
though the plant to be controlled is LTI, the overall system
is LPV and the mathematical reasoning developed hereafter
can be applied. The reason to do so is that in this way the
performance of the closed-loop system can be varied in time
according to some criterium, e.g. energetic issues.

A. Shifting finite time boundedness

Given the following LPV system

ẋ(t) = A(θ(t))x(t)+Bu(t)+G(θ(t))w(t) (19)

it is wished to design the controller (18) such
that the resulting closed-loop system is shifting
finite time bounded (SFTB) with respect to
(c1 (p(t)) ,c2 (p(t)) ,T (p(t)) ,R,d (p(t)))∀p ∈ Π, where
the definition of SFTB for continuous-time systems is given
hereafter.

Definition 3: The continuous-time LPV system (6) is said
to be shifting finite time bounded (SFTB) with respect
to (c1 (p(t)) ,c2 (p(t)) ,T (p(t)) ,R,d (p(t))), with c2 (p(t))>
c1 (p(t))> 0, d (p(t))> 0 ∀p ∈Π and R� O if

 x(t0)T Rx(t0)≤ c1(p0)
w(t)T w(t)≤ d(p0)
p(t) = p0 ∀t ∈ [t0, t0 +T (p0)]

⇒ x(t)T Rx(t)< c2(p0)
∀t ∈ [t0, t0 +T (p0)]

(20)
Then, the following theorem provides conditions for the

system (19) controlled by (18) to be SFTB.
Theorem 1: The continuous-time LPV system (19) un-

der the control law (18) is SFTB with respect to
(c1 (p(t)) ,c2 (p(t)) ,T (p(t)) ,R,d (p(t))) if, letting Q̃1 =
R−1/2Q1R−1/2, there exist a positive scalar α, positive func-
tions λ1(p), λ2(p), λ3(p) and positive definite matrices Q1 ∈
Snx×nx and Q2 ∈ Snw×nw such that the following conditions
hold ∀θ ∈Θ and ∀ p ∈Π(

Acl (θ, p) Q̃1 + Q̃1Acl (θ, p)T −αQ̃1 G(θ)Q2
Q2G(θ)T −αQ2

)
≺ O

(21)
λ1(p)I ≺ Q1 ≺ I (22)

λ2(p)I ≺ Q2 ≺ λ3(p)I (23) c2(p)e−αT (p)
√

c1(p)
√

d(p)√
c1(p) λ1(p) 0√
d(p) 0 λ2(p)

� O (24)

Acl (θ, p) = A(θ)+BK (θ, p) (25)

Proof: From Definition 3, by introducing the new time
variable t̃ = t− t0, (20) becomes x(0)T Rx(0)≤ c1(p0)

w(0)T w(0)≤ d(p0)
p(t̃) = p0 ∀t̃ ∈ [0,T (p0)]

⇒ x(t̃)T Rx(t̃)< c2(p0)
∀t̃ ∈ [0,T (p0)]

(26)
Since p(t̃) is constant during the considered time interval, it
follows that in order to obtain (26), the property of finite time
boundedness, as defined in Definition 1, must hold ∀ p ∈Π.
By replacing (18) into (19), the LPV form (6) is recovered,

with a state matrix given by A(θ) + BK(θ, p). Hence, by
considering that Lemma 1 should hold ∀ p ∈ Π, (21)-(24)
are obtained, completing the proof. �

From a practical point of view, Theorem 1 is useless
because it relies on the satisfaction of infinite constraints.
This difficulty can be alleviated by fixing a value for α under
the assumption that the matrices A(θ) and G(θ) are polytopic
as in (7)-(8), and that

√
c1(p)

c2(p)e−αT (p)√
d(p)

=
P

∑
j=1

π j(p)

 κ1 j
κ2 j
κ3 j

 ∀p ∈Π (27)

with
P

∑
j=1

π j (p) = 1 π j (p)≥ 0 (28)

Then, it is possible to reduce (21)-(24) to a finite num-
ber of Linear Matrix Inequalities (LMIs), as stated in the
following corollary.

Corollary 2: Let Q̃1 = R−1/2Q1R−1/2, fix α > 0, and find
positive scalars λ1 j, λ2 j, λ3 j, j = 1, . . . ,P, positive definite
matrices Q1 ∈ Snx×nx and Q2 ∈ Snw×nw , and P ·N matrices
Γi j ∈ Rnu×nx such that the following conditions hold ∀ i =
1, . . . ,N and ∀ j = 1, . . . ,P(

AiQ̃1 +BΓi j + Q̃1AT
i +ΓT

i jB
T −αQ̃1 GiQ2

Q2GT
i −αQ2

)
≺ O

(29)
λ1 jI ≺ Q1 ≺ I (30)

λ2 jI ≺ Q2 ≺ λ3 jI (31) κ2 j κ1 j κ3 j
κ1 j λ1 j 0
κ3 j 0 λ2 j

� O (32)

Then, the LPV system (19) under control law (18) with

K (θ(t), p(t)) =
N

∑
i=1

αi (θ(t))
P

∑
j=1

π j (p(t))Ki j (33)

and
Ki j = Γi jQ̃−1

1 (34)

is SFTB with respect to:

(c1 (p(t)) ,c2 (p(t)) ,T (p(t)) ,R,d (p(t)))

Proof: Due to a basic property of matrices [24], any
linear combination of (29) with non-negative coefficients
is negative definite. Similarly, any linear combination of
(32) with non-negative coefficients is positive definite. For
the same reason, the inequalities (30)-(31) would still hold
for any linear combination with non-negative coefficients.
Hence, using the coefficients provided by (8) and (28), and
taking into account (7), (27), (33), Γi j = Ki jQ̃1 and(

λ1(p)
λ2(p)

)
=

P

∑
j=1

π j(p)
(

λ1 j
λ2 j

)
(35)

(21)-(24) are obtained. �



Remark 2: In some cases, the input matrix B in (19) is
parameter-varying. In these cases, a prefiltering of the input
u(t) would lead to defining a new system with a constant
input matrix B̃, as proposed in [25]. More specifically,
defining a new input ũ(t) such that

ẋu(t) = Auxu(t)+Buũ(t) (36)

u(t) =Cuxu(t) (37)

where Au is stable, the resulting system would be(
ẋ(t)
ẋu(t)

)
=

(
A(θ(t)) B(θ(t))Cu

O Au

)(
x(t)
xu(t)

)
+

(
O
Bu

)
ũ(t)+

(
G(θ(t))

O

)
w(t)

(38)
such that the new input matrix is parameter-independent.

B. Shifting finite time stability

Given the following LPV system

ẋ(t) = A(θ(t))x(t)+Bu(t) (39)

the objective is to design the controller (18) such that the
resulting closed-loop system is shifting finite time stable
(SFTS) with respect to (c1 (p(t)) ,c2 (p(t)) ,T (p(t)) ,R)∀p∈
Π, where the definition of SFTS for continuous-time systems
is given hereafter.

Definition 4: The continuous-time LPV system
(5) is said to be shifting finite time stable (SFTS)
with respect to (c1 (p(t)) ,c2 (p(t)) ,T (p(t)) ,R) with
c2 (p(t))> c1 (p(t))> 0 ∀p ∈Π and R� O if{

x(t0)T Rx(t0)≤ c1(p0)
p(t) = p0 ∀t ∈ [t0, t0 +T (p0)]

⇒ x(t)T Rx(t)< c2(p0)
∀t ∈ [t0, t0 +T (p0)]

(40)
Then, the following theorem provides conditions for the

system (39) controlled by (18) to be SFTS.
Theorem 2: The continuous-time LPV system

(39) under the control law (18) is SFTS with
respect to (c1 (p(t)) ,c2 (p(t)) ,T (p(t)) ,R) if, letting
Q̃1 = R−1/2Q1R−1/2, there exist a positive scalar α, a
positive function λ1(p) and a positive definite matrix
Q1 ∈ Snx×nx such that the following conditions hold ∀θ ∈ Θ

and ∀p ∈Π

Acl (θ, p) Q̃1 + Q̃1Acl (θ, p)T −αQ̃1 ≺ O (41)

λ1(p)I ≺ Q1 ≺ I (42)(
c2(p)e−αT (p)

√
c1(p)√

c1(p) λ1(p)

)
� O (43)

with Acl (θ, p) defined as in (25).
Proof: The proof is similar to the one of Theorem 1, and

thus is omitted. �
As in the shifting finite time boundedness case, in order to

reduce (41)-(43) to a finite number of constraints, α is fixed,
and the assumptions that A(θ) is polytopic as in (7)-(8), and
that( √

c1(p)
c2(p)e−αT (p)

)
=

P

∑
j=1

π j(p)
(

κ1 j
κ2 j

)
∀p ∈Π (44)

with coefficients π j(p) satisfying (28), are made, leading to
the following corollary.

Corollary 3: Let Q̃1 = R−1/2Q1R−1/2, fix α > 0, and find
positive scalars λ1 j, j = 1, . . . ,P, and a positive definite
matrix Q1 ∈ Snx×nx and P ·N matrices Γi j ∈Rnu×nx such that
the following conditions hold ∀i = 1, . . . ,N and ∀ j = 1, . . . ,P

AiQ̃1 +BΓi j + Q̃1AT
i +Γ

T
i jB

T −αQ̃1 ≺ O (45)

λ1 jI ≺ Q1 ≺ I (46)(
κ2 j κ1 j
κ1 j λ1 j

)
� O (47)

Then, the LPV system (39) under the control law (18) with
the matrix K (θ(t), p(t)) calculated as in (33)-(34) is SFTS
with respect to (c1 (p(t)) ,c2 (p(t)) ,T (p(t)) ,R).

Proof: The proof is similar to the one of Corollary 2, and
thus is omitted. �

Remark 3: Also in this case, if the input matrix B in
(39) is parameter-varying, a prefiltering of the input u(t)
using (36)-(37) would lead to an augmented system with
parameter-independent input matrix.

IV. EXAMPLE

The example used to illustrate the method proposed in
this paper is a slight modification of the numerical example
provided by [3]. Consider the LPV system (39) with matrices
defined as follows

A(θ(t)) =
(

0 1
−2+θ(t) −1+θ(t)

)
(48)

B =
(

0 1
)T (49)

where θ(t)∈ [−10,0], and consider the problem of designing
the controller (18) such that the resulting closed-loop system
is SFTS with respect to (1,c2 (p(t)) ,T (p(t)) , I) with

c2 (p(t)) = 1.7+0.3(1− p(t)) (50)

T (p(t)) = 0.5−0.1(1− p(t)) (51)

First of all, notice that A(θ(t)) can be described in the
polytopic form

A(θ(t)) = α1 (θ(t))A1 +α2 (θ(t))A2 (52)

with

A1 =

(
0 1
−12 −11

)
A2 =

(
0 1
−2 −1

)
(53)

α1 (θ(t)) =−
θ(t)
10

α2 (θ(t)) = 1+
θ(t)
10

(54)

Then, once a value α = 1 has been chosen, one can verify
that

c2 (p(t))e−αT (p(t)) = π1 (p(t))κ21 +π2 (p(t))κ22 (55)

with
κ21 = 2e−0.4 κ22 = 1.7e−0.5 (56)

π1 (p(t)) =
c2 (p(t))e−αT (p(t))−1.7e−0.5

2e−0.4−1.7e−0.5 (57)



π2 (p(t)) =
2e−0.4− c2 (p(t))e−αT (p(t))

2e−0.4−1.7e−0.5 (58)

The application of Corollary 3 leads to searching for
positive scalars λ11 and λ12, Q1 � O and matrices Γ11, Γ12,
Γ21, Γ22 such that

A1Q̃1 +BΓ11 + Q̃1AT
1 +ΓT

11BT − Q̃1 ≺ O
A1Q̃1 +BΓ12 + Q̃1AT

1 +ΓT
12BT − Q̃1 ≺ O

A2Q̃1 +BΓ21 + Q̃1AT
2 +ΓT

21BT − Q̃1 ≺ O
A2Q̃1 +BΓ22 + Q̃1AT

2 +ΓT
22BT − Q̃1 ≺ O

λ11I ≺ Q1 ≺ I
λ12I ≺ Q1 ≺ I(

2e−0.4 1
1 λ11

)
� O(

1.7e−0.5 1
1 λ12

)
� O

(59)

Using the YALMIP toolbox [26] with SeDuMi solver [27],
the following solution has been found

K11 = K12 =
(

10.9998 11.1948
)

(60)

K21 = K22 =
(

0.9998 1.1948
)

(61)

Simulations with x(0)=
(

1 0
)T and x(0)=

(
0 1

)T

have shown that the obtained closed-loop systems satisfy
the desired shifting specifications, as shown in Fig. 1 for
different values of the parameter p(t). However, notice that
the LMI solver favors a conservative solution, where the
gains corresponding to different values of the parameter p(t)
are the same. Hence, the closed-loop dynamics does not vary
for different values of p(t), as shown in Fig. 1.

In order to obtain a less conservative solution, let us add
the following LMIs to (59)



2smin
1 Q̃1−A1Q̃1−BΓ11− Q̃1AT

1 −ΓT
11BT ≺ O

2smin
1 Q̃1−A2Q̃1−BΓ21− Q̃1AT

2 −ΓT
21BT ≺ O

2smin
2 Q̃1−A1Q̃1−BΓ12− Q̃1AT

1 −ΓT
12BT ≺ O

2smin
2 Q̃1−A2Q̃1−BΓ22− Q̃1AT

2 −ΓT
22BT ≺ O

A1Q̃1 +BΓ11 + Q̃1AT
1 +ΓT

11BT −2smax
1 Q̃1 ≺ O

A2Q̃1 +BΓ21 + Q̃1AT
2 +ΓT

21BT −2smax
1 Q̃1 ≺ O

A1Q̃1 +BΓ12 + Q̃1AT
1 +ΓT

12BT −2smax
2 Q̃1 ≺ O

A2Q̃1 +BΓ22 + Q̃1AT
2 +ΓT

22BT −2smax
2 Q̃1 ≺ O

(62)

that correspond to a shifting pole placement [18] in the LMI
region

D = {z ∈ C : smin (p(t))< Re(z)< smax (p(t))} (63)

with

smin (p(t)) = smin
2 +

(
smin

1 − smin
2

)
(1− p(t)) (64)

smax (p(t)) = smax
2 +(smax

1 − smax
2 )(1− p(t)) (65)

with smin
1 = 0.5, smin

2 = −100, smax
1 = 100, smax

2 = 0 (notice
that this specification corresponds to asking the closed-loop
system to be unstable for p(t) = 0, and stable for p(t) = 1).

Then, a solution to the LMIs (59) and (62) is

K11 =
(

9.4305 11.6247
)

(66)
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Fig. 1. x1(t)2 + x2(t)2 using the proposed shifting finite time stability
approach.

K12 =
(
−0.5695 1.6247

)
(67)

K21 =
(

22.9370 −83.1982
)

(68)

K22 =
(

12.9370 −93.1982
)

(69)

The relevant feature of this solution is that the charac-
teristics of the closed-loop system would vary according to
the value of p(t), always satisfying the SFTS specification,
as shown in Fig. 2. Also, if we take a deeper look at the
results obtained for p(t) = 0 (see Fig. 3), it can be seen that
the closed-loop system with p(t) = 0 satisfies the SFTS with
respect to (1,2,0.4, I), corresponding to p(t)) = 0. However,
this is not the case with respect to (1,1.85,0.45, I) and
(1,1.7,0.5, I), that correspond to p(t) = 0.5 and p(t) = 1,
respectively.

This feature is in accordance with the developed theory
and distinguishes the proposed method from other results
available in the literature.

V. CONCLUSIONS

In this paper, the problem of designing a parameter-
scheduled state-feedback controller that satisfies a new kind
of specifications, referred to as shifting finite time bounded-
ness and shifting finite time stability, has been investigated.
The problem has been analyzed in the continuous-time
LPV case, even though the developed theory could also be
applied to LTI systems. The design conditions are feasibility
problems involving LMIs that can be solved efficiently using
available solvers. In contrast with the classical concepts
of finite time boundedness and finite time stability, the
design using shifting specifications allows to select different
characteristics for different values of the scheduling param-
eter p, thus allowing to vary online the control system
performance. Results obtained in simulation with an LPV
numerical example have demonstrated the effectiveness and
the relevant features of the proposed approach.
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Fig. 2. x1(t)2 + x2(t)2 using the proposed shifting finite time stability
approach adding shifting pole placement constraints.
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Fig. 3. x1(t)2 + x2(t)2 using the proposed shifting finite time stability
approach adding shifting pole placement constraints (p(t) = 0).
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