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Abstract—The lack of high power conversion efficiency in RF passive rectifier circuits at sub-µW power levels with current 

MOSFET technologies is directly related with the difficulty of the transistors in conducting the required level of current at low voltage 

values. With a different carrier injection mechanism, the superior electrical characteristics of the Tunnel FET devices at low voltage 

values (sub-0.25 V) can outperform the process of energy conversion at ultra-low power, thus improving the operation range of RF 

energy harvesting circuits. In this work, a simulation study on the doping profile and material selection of Tunnel FET devices shows 

the impact of device properties in rectifier circuit efficiency. 
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I.  INTRODUCTION 

The search for high power conversion efficiency (PCE) at reduced power levels has been, over the last years, the main focus in 
the radio-frequency (RF) energy harvesting (EH) field [1-4]. The limitation of the available RF power from the surrounding 
environment constrains the operation range of batteryless circuits, and this way, it is of the major importance to improve the 
efficiency of RF powered circuits at a broader range of input power. As an example, the lack of power efficiency at the sub-mW 
range limits the operation distance of passive RFID tags to some meters and their computational capability [5]. 

Conventional MOSFET technologies applied in the front-end rectifiers of RF powered circuits are characterized by a minimum 
subthreshold-slope swing (SS) of 60 mV/ dec (at room temperature). This characteristic limits the current at low input voltage 
values in the front-end rectifier. Steep-slope transistors may overcome this drawback and thus take advantage of the available sub-
mW RF input power range for RF powered circuits.  

The Tunnel FET (TFET) device has been shown to present better electrical characteristics at low voltage levels compared to 
other electronic and spintronic devices [6]. With a  
sub-60 mV/dec of SS, this device is suitable in the EH field, both in the ultra-low power DC-DC conversion [7] and AC-DC 
rectification [5, 8]. For example, an RF passive rectifier circuit with TFETs can improve the PCE up to 70 % at -39 dBm [5]. 
However, when the p-i-n structure of the TFET device (Fig. 1) is largely reverse biased (both VGS and VDS negative for n-type 
TFET, and VGS, VDS positive for p-type TFET), the reverse current of the transistors in the “off state” is important, thus limiting the 
PCE of the rectifier circuit. This undesired property can be alleviated by doping and material selection. 

In this work, it is shown by means of simulations how a proper doping concentration and material selection in TFET devices 
can improve the efficiency of RF passive rectifiers for energy harvesting circuits. For the purpose, the dependence of the TFET 
internal resistance on these parameters is presented for both reverse and forward biasing conditions. The simulations are performed 
with Atlas device simulator [9].  

Section II introduces the TFET carrier injection mechanism. Section III discusses the problems of applying TFET devices in 
passive rectifiers. Section IV presents the dependence of the TFET internal resistance on different channel materials and 
source/drain doping concentrations. Finally, the conclusions are presented. 

II. THE TUNNEL FET DEVICE 

A. Physical Characteristics 

Unlike the conventional MOSFET, the TFET device is designed as a reverse-biased gated p-i-n diode. For an n-type TFET (n-
TFET) the source region is highly doped p-type and the drain a highly doped n-type semiconductor as shown in  
Fig. 1. For this configuration, the tunneling current is generated at the source-channel interface (Fig. 2 b). For the p-type TFET (p-
TFET) the drain presents a p-type doped and the source an n-type doping semiconductor. In this work, a double-gate structure 



configuration is considered. All the simulations are performed considering a gate length of 20 nm, source and drain regions of 100 
nm, relative dielectric constant of 22, dielectric thickness of 2.5 nm and a channel thickness of 5 nm. 

 
Fig. 1 Double-gate n-TFET structure 

B. Band-to-Band Tunneling and Drift Diffusion  

In TFET devices, the carrier injection mechanism does not follow the laws of thermionic injection as in conventional 

MOSFET devices. In Fig. 2, the band-to-band tunneling (BTBT) injection mechanism and drift diffusion of a Si  

n-TFET device with the same source/drain doping concentration (𝑁𝐴,𝐷 = 1 ∙ 1020𝑐𝑚−3) is presented: 

 
Fig. 2 Energy band diagram of a Si n-TFET, a) Equilibrium State; b) Forward biasing; c) Low reverse biasing; d) High reverse biasing 

In the equilibrium state, the source and the drain in an  
n-TFET are doped such that the valence band in the p+ type region is located above the Fermi level and the conduction band in the 
n+ type region is located below the Fermi level. In the off state condition (Fig 2 a), the tunneling barrier between the source and the 
channel region is high. This will result in a low BTBT probability as expressed in (1) and consequently low tunneling generation 
rate (TGR) between the regions (2). 

According to (1), materials with low relative mass m and low energy band gap Eg can increase the tunneling probability and 
hence the tunneling current as expressed in (3). This characteristic will be discussed in section IV. More information about the 
presented equations can be found in [10].  
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In passive rectifiers it is assumed the same polarity of both gate and drain regions in the transistors. For the case of  
n-TFET devices, an increase of both gate and drain voltage will result in the decrease of the tunneling barrier in the source-channel 
interface as shown in Fig 2 b). The conduction and valence band in the channel region bend down, increasing this way the tunneling 
probability of carriers under the valence band of the p+ region to tunnel through the channel to the empty states of the conduction 
band in the n+ region giving rise in this way to tunneling current (normal on-state).  



In TFET devices, the reverse biasing results in two different carrier injection mechanisms. With the increase of both energy 
band curves in the channel and drain regions produced by reverse biasing, drift diffusion of carriers can occur as shown in Fig. 2 c). 
At low reverse biasing, both tunneling and drift injection mechanisms may coexist. At large reverse biasing, the drift diffusion is 
the main injection mechanism as shown in Fig. 2 d). In this case, no tunneling current is presented. The transition between these 
two different injection mechanisms results in a negative differential resistance for large reverse bias voltages as shown in Fig. 4 and 
Fig. 5. Besides, unlike thermionic injection devices as conventional MOSFET technologies, the drift diffusion current of TFETs 
can result in high reverse losses in passive rectifiers.  

III. TFET IN ENERGY HARVESTING PASSIVE RECTIFIERS 

In order to evaluate the application impact of Tunnel FET devices in RF energy harvesting passive rectifiers, it is important to 

understand the limitation of this technology in the different regions of operation of the circuit. The RF passive rectifier presented 

in Fig. 3 a) will be the subject of study. This rectifier has been presented as a viable solution for RF energy harvesting at low 

power levels (~mW range) with conventional transistors [1, 3].  

 
Fig. 3 a) Differential-drive passive rectifier topology; b) Regions of operation 

The transistors in this topology are characterized by a VGS=2 VDS during both regions of operation of Fig. 3 b) (at least in the 

initial condition: VOUT = 0 V). As the output voltage increases, and during the first region of operation, the transistors M2 and M3 

are “on”, while the transistors M1 and M4 are in the “off” state. In the second region of operation both M1 and M4 are “on” while 

M2 and M3 are “off”.  

These biasing conditions considers that the transistors in the “off” state are reverse biased with a voltage in the gate that is 

twice the voltage in the drain. For the TFET technology, and considering the simulations in section II B, this biasing condition can 

result in a high drift diffusion current, and consequently high reverse losses in the rectifier. In fact, the application of TFET 

devices in this passive rectifier topology was already investigated in [5, 8]. The authors have shown by simulations higher power 

efficiency at low RF AC magnitude voltage values (sub-0.35 VAC) compared to the use of the FinFET technology. However, and 

as expected, at higher AC magnitude values the power conversion efficiency of the circuit is degraded due to the increase of the 

reverse current suffered by the TFET transistors in the “off” state during both regions of operation (negative VGS and VDS values 

for  

n-TFETs and positive VGS and VDS for p-TFETs). This cause of PCE loss is evident with the previous discussion in  

Section II and was not explicitly identified in previous works. 

As the unwanted drift diffusion current of reverse biased TFETs is dependent on the level of energies shown in  

Fig. 2, the next section will present the variation of the TFET internal resistance for different materials and doping concentrations 

on both source and drain regions.  

IV. INTERNAL RESISTANCE AND PHYSICAL PARAMETERS 

A. Source Doping Dependence 

In order to improve the power conversion efficiency of RF passive rectifiers, low forward and reverse losses in the applied 

transistors must be verified. According to (1), the decrease of the first can be accomplished with low energy band gap and mass 

materials. Fig. 4 a) presents the current-voltage characteristic of an n-TFET device with different materials, biased with the 

specific conditions of the passive rectifier of Fig. 3 a): VGS=2 VDS. The simulated n-TFET presents a drain doping concentration 

of ND = 1 ∙ 1018cm−3 and source doping concentration of NA = 1 ∙ 1020cm−3. It is observed that III-V materials as InGaAs with 

an energy band gap of 0.571 eV (room temp.) can conduct the same amount of current (IDS=10µA/µm) at a lower voltage value 

compared to Germanium TFET (0.66 eV) and Silicon TFET (1.12 eV). It is evident from the graph that the inclusion of III-V 

TFET materials in passive rectifiers can reduce the forward losses, compared to the use of Si or Ge materials.  

With the drain doping concentration fixed, the increase in the source doping results in the decrease of the internal resistance of 

both n-TFET devices and consequently lower forward losses can be expected. This can be seen in Fig. 4 b), c) and d). The 

increase of the source concentration results in an increase of the energy curves in the p+ region of Fig. 2 b), decreasing this way 

the tunneling barrier between the source-channel interface. This barrier decrease results, however, in an increase of the reverse 



current at very low reverse biasing (while the BTBT is still the main injection mechanism). This behavior is observed with the 

decrease of the internal resistance at low reverse biasing. At high reverse biasing, the increase of the reverse current is mainly due 

to the increase of the drift diffusion carrier mechanism. Therefore, increasing the source doping concentration can reduce the 

forward losses of a passive rectifier but consequently increases the reverse losses. 

B. Drain Doping Dependence 

In order to keep the low internal resistance at forward biasing conditions, and attenuate the reverse losses by increasing the 

internal resistance of the n-TFET device, a study of the variation of the drain doping concentration is performed and presented in 

Fig. 5. The simulated n-TFET present a source doping concentration of NA = 1 ∙ 1020cm−3. 

 

 
Fig. 4 a) Current-voltage characteristic of n-TFET with different materials; b) Dependence of TFET internal resistance on source doping concentration for: b) 

Silicon, c) Germanium and d) InGaAs materials. 

With the highest energy band gap material in study (Eg=1.12 eV) the reverse current of the Si TFET does not change with the 

variation of the drain doping concentration as shown in Fig. 5 a). For the Ge TFET (Fig. 5 b), the increase in the drain doping 

concentration increases the internal resistance in the reverse region and this way, less reverse losses can be expected in a RF 

passive rectifier. In this case, an increase in the doping concentration is increasing the energy levels of the n+ region in Fig. 2 c), 

decreasing this way the probability of BTBT.  

In contrast, as the InGaAs TFET (Fig 5 c) presents a lower energy band gap (Eg=0.575 eV) and consequently a lower potential 

between regions, the increase of the drain doping concentration is not only attenuating the BTBT mechanism, but increasing the 

drift diffusion current (Fig. 5 d). This way, for low energy band gap materials as InGaAs TFETs, the increase on the n-TFET 

doping concentration can result in high reverse losses of passive rectifiers compared to the use of Si or Ge TFETs. 



 
  

Fig. 5 Internal resistance of the n-Tunnel FET device for different drain doping concentrations. a) Silicon, b) Germanium, c) InGaAs. d) Drift diffusion current of 

InGaAs TFET at Vds= -0.25 V. 

V. CONCLUSIONS 

This work discusses the perspectives of using TFET devices in RF passive rectifier circuits, taking into account the design 

with low energy band gap materials and different doping concentrations on both the drain and source regions.   

Compared to Si and Ge materials, the design of TFET devices with III-V materials as InGaAs can reduce the forward losses of 

passive rectifiers due to the possibility of conducting more current at considerable less voltage. The increase of the source doping 

concentration is also expected to reduce the forward losses due to the increase of the tunneling probability at the source-channel 

interface. However, this same increase can also raise the reverse losses of the rectifier at low reverse biasing. At high reverse 

biasing, high reverse losses of the passive rectifier are produced due to the dominance of the drift diffusion carrier mechanism.  

A method to attenuate the reverse losses at a low reverse biasing is increasing the drain doping concentration. This behavior is 

shown for the Ge TFET. However, for the InGaAs TFET, such increase in the doping concentration results in the dominance of 

the drift diffusion current (instead of the BTBT current) at similar reverse biasing conditions.  

In summary, the inclusion of TFET devices in passive rectifier circuits can be a viable solution in terms of power conversion 

efficiency at low RF AC magnitudes (where conventional technologies presents difficulties in conducting the same amount of 

current than TFETs). However, at large RF AC magnitudes, the high reverse current due to the drift diffusion mechanism, 

inherent of TFET devices is expected to degrade the power efficiency of rectifier circuits. 

A solution to solve this problem would be a different rectifier topology that forces the VGS to less negative values in the TFET 

transistors during their “off” state (instead of VGS =2VDS), in order to mitigate the drift diffusion mechanism at high RF AC 

magnitudes.  
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